Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Transl Med ; 22(1): 73, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238834

RESUMEN

BACKGROUND: The role of mitochondrial dynamics, encompassing fission, fusion, and mitophagy, in cancer progression has been extensively studied. However, the specific impact of mitochondrial dynamics on hepatocellular carcinoma (HCC) is still under investigation. METHODS: In this study, mitochondrial dynamic genes were obtained from the MitoCarta 3.0 database, and gene expression data were collected from The Cancer Genome Atlas (TCGA) database. Based on the expression of these dynamic genes and differentially expressed genes (DEGs), patients were stratified into two clusters. Subsequently, a prognostic model was constructed using univariate COX regression and the least absolute shrinkage and selection operator (LASSO) regression, and the prognostic signature was evaluated. We analyzed the interaction between these model genes and dynamic genes to identify hub genes and reveal mitochondrial status. Furthermore, we assessed immune infiltration, tumor mutational burden (TMB), tumor stemness indices (TSI), and the response to immune checkpoint block (ICB) therapy using the TIDE algorithm and risk scores. Additionally, transmission electron microscopy (TEM), hematoxylin-eosin (H&E) staining, immunohistochemistry (IHC), western blotting (WB), and immunofluorescence (IF) were conducted to afford detailed visualization of the morphology of the mitochondria and the expression patterns of fission-associated proteins. RESULTS: Patients in Cluster 2 exhibited heightened mitochondrial fission and had a worse prognosis. The up-regulated dynamic genes in Cluster 2 were identified as fission genes. GO/KEGG analyses reconfirmed the connection of Cluster 2 to augmented mitochondrial fission activities. Subsequently, a ten-gene prognostic signature based on the differentially expressed genes between the two clusters was generated, with all ten genes being up-regulated in the high-risk group. Moreover, the potential links between these ten signature genes and mitochondrial dynamics were explored, suggesting their involvement in mediating mitochondrial fission through interaction with MTFR2. Further investigation revealed that the high-risk group had an unfavorable prognosis, with a higher mutation frequency of TP53, increased immune checkpoint expression, a higher TIS score, and a lower TIDE score. The mitochondrial imbalance characterized by increased fission and upregulated MTFR2 and DNM1L expression was substantiated in both HCC specimens and cell lines. CONCLUSIONS: In conclusion, we developed a novel MTFR2-related prognostic signature comprising ten mitochondrial dynamics genes. These genes play crucial roles in mitochondrial fission and have the potential to serve as important predictors and therapeutic targets for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Algoritmos , Carcinoma Hepatocelular/genética , Línea Celular , Neoplasias Hepáticas/genética , Dinámicas Mitocondriales/genética , Pronóstico
2.
Cancer Invest ; 42(3): 212-225, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38527848

RESUMEN

This study aimed to develop prognostic prediction models for patients diagnosed with synchronous thyroid and breast cancer (TBC). Utilizing the SEER database, key predictive factors were identified, including T stage of thyroid cancer, T stage of breast cancer, M stage of breast cancer, patient age, thyroid cancer surgery type, and isotope therapy. A nomogram predicting 5-year and 10-year survival rates was constructed and validated, exhibiting strong performance (C-statistic: 0.79 in the development cohort (95% CI: 0.74-0.84), and 0.82 in the validation cohort (95% CI: 0.77-0.89)). The area under the Receiver Operator Characteristic (ROC) curve ranged from 0.798 to 0.883 for both cohorts. Calibration and decision curve analyses further affirmed the model's clinical utility. Stratifying patients into high-risk and low-risk groups using the nomogram revealed significant differences in survival rates (P < 0.0001). The successful development and validation of this nomogram for predicting 5-year and 10-year survival rates in patients with synchronous TBC hold promise for similar patient populations, contributing significantly to cancer research.


Asunto(s)
Neoplasias de la Mama , Nomogramas , Programa de VERF , Neoplasias de la Tiroides , Humanos , Femenino , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Neoplasias de la Tiroides/mortalidad , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/cirugía , Persona de Mediana Edad , Pronóstico , Anciano , Neoplasias Primarias Múltiples/mortalidad , Neoplasias Primarias Múltiples/patología , Adulto , Tasa de Supervivencia , Estadificación de Neoplasias , Curva ROC
3.
Bioorg Chem ; 145: 107205, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387395

RESUMEN

Seven new indole-diterpenoids, penpaxilloids A-E (1-5), 7-methoxypaxilline-13-ene (6), and 10-hydroxy-paspaline (7), along with 20 known ones (8-27), were isolated from the marine-derived fungus Penicillium sp. ZYX-Z-143. Among them, compound 1 was a spiro indole-diterpenoid bearing a 2,3,3a,5-tetrahydro-1H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1-one motif. Compound 2 was characterized by a unique heptacyclic system featuring a rare 3,6,8-trioxabicyclo[3.2.1]octane unit. The structures of the new compounds were established by extensive spectroscopic analyses, NMR calculations coupled with the DP4 + analysis, and ECD calculations. The plausible biogenetic pathway of two unprecedented indole diterpenoids, penpaxilloids A and B (1 and 2), was postulated. Compound 1 acted as a noncompetitive inhibitor against protein tyrosine phosphatase 1B (PTP1B) with IC50 value of 8.60 ± 0.53 µM. Compound 17 showed significant α-glucosidase inhibitory activity with IC50 value of 19.96 ± 0.32 µM. Moreover, compounds 4, 8, and 22 potently suppressed nitric oxide production on lipopolysaccharide-stimulated RAW264.7 macrophages.


Asunto(s)
Diterpenos , Penicillium , Diterpenos/química , Antiinflamatorios/química , Macrófagos , Indoles/química , Penicillium/química , Estructura Molecular
4.
Mar Drugs ; 22(3)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38535469

RESUMEN

Chitosan oligosaccharides are the degradation products of chitin obtained from the shell extracts of shrimps and crabs. Compared with chitosan, chitosan oligosaccharides have better solubility and a wider application range. In this study, high-molecular-weight chitosan oligosaccharides (COST, chitosan oligosaccharides, MW ≤ 1000) were isolated and purified by a GPC gel column, and the molecular weight range was further reduced to obtain high-purity and low-molecular-weight chitosan (COS46). Compared with COST, COS46 is better at inhibiting CCl4-induced cell death, improving cell morphology, reducing ALT content, and improving cell antioxidant capacity. The effects of COST and COS46 on CCl4-induced acute liver injury were further verified in mice. Both COS46 and COST improved the appearance of the liver induced by CCl4, decreased the levels of ALT and AST in serum, and decreased the oxidation/antioxidant index in the liver. From the liver pathological section, the effect of COS46 was better. In addition, some indicators of COS46 showed a dose-dependent effect. In conclusion, compared with COST, low-molecular-weight COS46 has better antioxidant capacity and a better therapeutic effect on CCl4-induced acute liver injury.


Asunto(s)
Quitosano , Animales , Ratones , Antioxidantes , Hígado , Muerte Celular , Oligosacáridos
5.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34503999

RESUMEN

The ancestors of marine mammals once roamed the land and independently committed to an aquatic lifestyle. These macroevolutionary transitions have intrigued scientists for centuries. Here, we generated high-quality genome assemblies of 17 marine mammals (11 cetaceans and six pinnipeds), including eight assemblies at the chromosome level. Incorporating previously published data, we reconstructed the marine mammal phylogeny and population histories and identified numerous idiosyncratic and convergent genomic variations that possibly contributed to the transition from land to water in marine mammal lineages. Genes associated with the formation of blubber (NFIA), vascular development (SEMA3E), and heat production by brown adipose tissue (UCP1) had unique changes that may contribute to marine mammal thermoregulation. We also observed many lineage-specific changes in the marine mammals, including genes associated with deep diving and navigation. Our study advances understanding of the timing, pattern, and molecular changes associated with the evolution of mammalian lineages adapting to aquatic life.


Asunto(s)
Adaptación Fisiológica , Evolución Molecular , Genoma , Genómica , Mamíferos/fisiología , Filogenia , Termogénesis/genética , Animales , Factores de Transcripción NFI/genética , Factores de Transcripción NFI/metabolismo , Selección Genética , Semaforinas/genética , Semaforinas/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
6.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892467

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases in the world, which begins with liver lipid accumulation and is associated with metabolic syndrome. Also, the name chosen to replace NAFLD was metabolic dysfunction-associated steatotic liver disease (MASLD). We performed focused drug screening and found that Cilostazol effectively ameliorated hepatic steatosis and might offer potential for NAFLD treatment. Our aim was to investigate the therapeutic effects of Cilostazol on the glycolipid metabolism and intestinal flora in NAFLD mice and explore the specific mechanism. In this study, 7-week-old male C57BL/6J mice were fed a high-fat diet (HFD) for 8 weeks to induce NAFLD, and then treated with intragastric administration for 12 weeks. The results showed that Cilostazol inhibited liver lipid de novo synthesis by regulating the AMPK-ACC1/SCD1 pathway and inhibited liver gluconeogenesis by the AMPK-PGC1α-G6P/PEPCK pathway. Cilostazol improved the intestinal flora diversity and intestinal microbial composition in the NAFLD mice, and specifically regulated Desulfovibrio and Akkermansia. In addition, Cilostazol increased the level of short-chain fatty acids in the NAFLD mice to a level similar to that in the blank Control group. Cilostazol reduces liver lipid accumulation in NAFLD mice by improving glucose and lipid metabolism disorders and intestinal dysfunction, thereby achieving the purpose of treating NAFLD.


Asunto(s)
Cilostazol , Microbioma Gastrointestinal , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Animales , Cilostazol/farmacología , Cilostazol/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Ratones , Masculino , Microbioma Gastrointestinal/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Enfermedades Intestinales/tratamiento farmacológico , Enfermedades Intestinales/metabolismo , Modelos Animales de Enfermedad
7.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38473773

RESUMEN

This article aims to develop an aspirin-loaded double-modified nano-delivery system for the treatment of hepatocellular carcinoma. In this paper, mesoporous silica nanoparticles (MSN) were prepared by the "one-pot two-phase layering method", and polydopamine (PDA) was formed by the self-polymerization of dopamine as a pH-sensitive coating. Gal-modified PDA-modified nanoparticles (Gal-PDA-MSN) were synthesized by linking galactosamine (Gal) with actively targeted galactosamine (Gal) to PDA-coated MSN by a Michael addition reaction. The size, particle size distribution, surface morphology, BET surface area, mesoporous size, and pore volume of the prepared nanoparticles were characterized, and their drug load and drug release behavior in vitro were investigated. Gal-PDA-MSN is pH sensitive and targeted. MSN@Asp is different from the release curves of PDA-MSN@Asp and Gal-PDA-MSN@Asp, the drug release of PDA-MSN@Asp and Gal-PDA-MSN@Asp accelerates with increasing acidity. In vitro experiments showed that the toxicity and inhibitory effects of the three nanodrugs on human liver cancer HepG2 cells were higher than those of free Asp. This drug delivery system facilitates controlled release and targeted therapy.


Asunto(s)
Neoplasias Hepáticas , Nanopartículas , Humanos , Silicio , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Dióxido de Silicio/química , Concentración de Iones de Hidrógeno , Galactosamina
8.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38673890

RESUMEN

Endotoxin is a general term for toxic substances in Gram-negative bacteria, whose damaging effects are mainly derived from the lipopolysaccharides (LPS) in the cell walls of Gram-negative bacteria, and is a strong pyrogen. Obesity is a chronic, low-grade inflammatory condition, and LPS are thought to trigger and exacerbate it. The gut flora is the largest source of LPS in the body, and it is increasingly believed that altered intestinal microorganisms can play an essential role in the pathology of different diseases. Today, the complex axis linking gut flora to inflammatory states and adiposity has not been well elucidated. This review summarises the evidence for an interconnection between LPS, obesity, and gut flora, further expanding our understanding of LPS as a mediator of low-grade inflammatory disease and contributing to lessening the effects of obesity and related metabolic disorders. As well as providing targets associated with LPS, obesity, and gut flora, it is hoped that interventions that combine targets with gut flora address the individual differences in gut flora treatment.


Asunto(s)
Microbioma Gastrointestinal , Lipopolisacáridos , Obesidad , Humanos , Obesidad/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Inflamación/metabolismo
9.
Molecules ; 29(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542836

RESUMEN

Cardiovascular disease (CVD) stands as the foremost cause of patient mortality, and the lack of early diagnosis and defined treatment targets significantly contributes to the suboptimal prevention and management of CVD. Myocardial fibrosis (MF) is not only a complex pathogenic process with no effective treatment currently available but also exerts detrimental effects on the progression of various cardiovascular diseases, thereby escalating their mortality rates. Exosomes are nanoscale biocommunication vehicles that facilitate intercellular communication by transporting bioactive substances, such as nucleic acids and proteins, from specific cell types. Numerous studies have firmly established that microRNAs (miRNAs), as non-coding RNAs, wield post-transcriptional regulatory mechanisms and exhibit close associations with various CVDs, including coronary heart disease (CHD), atrial fibrillation (AF), and heart failure (HF). MiRNAs hold significant promise in the diagnosis and treatment of cardiovascular diseases. In this review, we provide a concise introduction to the biological attributes of exosomes and exosomal miRNAs. We also explore the roles and mechanisms of distinct cell-derived exosomal miRNAs in the context of myocardial fibrosis. These findings underscore the pivotal role of exosomes in the diagnosis and treatment of cardiac fibrosis and emphasize their potential as biotherapies and drug delivery vectors for cardiac fibrosis treatment.


Asunto(s)
Enfermedades Cardiovasculares , Exosomas , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Exosomas/genética , Exosomas/metabolismo , Enfermedades Cardiovasculares/metabolismo , Comunicación Celular , Fibrosis
10.
Small ; 19(34): e2301849, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37093540

RESUMEN

Herein, an integrated structure of single Fe atom doped core-shell carbon nanoboxes wrapped by self-growing carbon nanotubes (CNTs) is designed. Within the nanoboxes, the single Fe atom doped hollow cores are bonded to the shells via the carbon needles, which act as the highways for the electron transport between cores and shells. Moreover, the single Fe atom doped nanobox shells is further wrapped and connected by self-growing carbon nanotubes. Simultaneously, the needles and carbon nanotubes act as the highways for electron transport, which can improve the overall electron conductivity and electron density within the nanoboxes. Finite element analysis verifies the unique structure including both internal and external connections realize the integration of active sites in nano scale, and results in significant increase in electron transfer and the catalytic performance of Fe-N4 sites in both Li2 Sn lithiation and Li2 S delithiation. The Li-S batteries with the double-shelled single atom catalyst delivered the specific capacity of 702.2 mAh g-1 after 550 cycles at 1.0 C. The regional structure design and evaluation method provide a new strategy for the further development of single atom catalysts for more electrochemical processes.

11.
Hepatology ; 76(1): 155-171, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34717002

RESUMEN

BACKGROUND AND AIMS: NAFLD is a key component of metabolic syndrome, ranging from nonalcoholic fatty liver to NASH, and is now becoming the leading cause of cirrhosis and HCC worldwide. However, due to the complex and unclear pathophysiological mechanism, there are no specific approved agents for treating NASH. Breviscapine, a natural flavonoid prescription drug isolated from the traditional Chinese herb Erigeron breviscapus, exhibits a wide range of pharmacological properties, including effects on metabolism. However, the anti-NASH efficacy and mechanisms of breviscapine have not yet been characterized. APPROACH AND RESULTS: We evaluated the effects of breviscapine on the development of hepatic steatosis, inflammation, and fibrosis in vivo and in vitro under metabolic stress. Breviscapine treatment significantly reduced lipid accumulation, inflammatory cell infiltration, liver injury, and fibrosis in mice fed a high-fat diet, a high-fat/high-cholesterol diet, or a methionine- and choline-deficient diet. In addition, breviscapine attenuated lipid accumulation, inflammation, and lipotoxicity in hepatocytes undergoing metabolic stress. RNA-sequencing and multiomics analyses further indicated that the key mechanism linking the anti-NASH effects of breviscapine was inhibition of TGF-ß-activated kinase 1 (TAK1) phosphorylation and the subsequent mitogen-activated protein kinase signaling cascade. Treatment with the TAK1 inhibitor 5Z-7-oxozeaenol abrogated breviscapine-mediated hepatoprotection under metabolic stress. Molecular docking illustrated that breviscapine directly bound to TAK1. CONCLUSION: Breviscapine prevents metabolic stress-induced NASH progression through direct inhibition of TAK1 signaling. Breviscapine might be a therapeutic candidate for the treatment of NASH.


Asunto(s)
Flavonoides , Quinasas Quinasa Quinasa PAM , Enfermedad del Hígado Graso no Alcohólico , Animales , Dieta Alta en Grasa/efectos adversos , Flavonoides/farmacología , Inflamación/metabolismo , Metabolismo de los Lípidos , Hígado/patología , Cirrosis Hepática/complicaciones , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/prevención & control , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/patología
12.
Glob Chang Biol ; 29(16): 4586-4594, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37265328

RESUMEN

Identifying the thresholds for the positive responses of total net primary productivity (NPP) to nitrogen (N) enrichment is an essential prerequisite for predicting the benefits of N deposition on ecosystem carbon sequestration. However, the responses of below-ground NPP (BNPP) to N enrichment are unknown in many ecosystems, which limits our ability to understand the carbon cycling under the scenario of increasing N availability. We examined the changes in above-ground NPP (ANPP), BNPP, and NPP of a temperate meadow steppe across a wide-ranging N addition gradient (0, 2, 5, 10, 20, and 50 g N m-2 year-1 ) during 5 years. Both ANPP and NPP increased nonlinearly with N addition rates. The N saturation threshold for ANPP (TA ) and NPP (TN ) was at the rate of 13.11 and 6.70 g N m-2 year-1 , respectively. BNPP decreased with increasing N addition when N addition rates ˃5 g N m-2 year-1 , resulting in much lower TN than TA . Soil N enrichment played a key role in driving the negative impacts of high N addition rates on BNPP, and consequently on the earlier occurrence of N saturation threshold for NPP. Our results highlight the negative effects of soil N enrichment on NPP in natural grasslands super-saturated with N. Furthermore, by considering ANPP and BNPP simultaneously, our results indicate that previous findings from above-ground might have over-estimated the positive effects of N deposition on primary productivity.


Asunto(s)
Ecosistema , Pradera , Nitrógeno , Ciclo del Carbono , Suelo
13.
Oecologia ; 202(3): 549-559, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37454309

RESUMEN

Nutrient resorption is a fundamental physiological process in plants, with important ecological controls over numerous ecosystem functions. However, the role of community assembly in driving responses of nutrient resorption to perturbation remains largely unknown. Following the Price equation framework and the Community Assembly and Ecosystem Function framework, we quantified the contribution of species loss, species gain, and shared species to the reduction of community-level nutrient resorption efficiency in response to multi-level nitrogen (N) addition in a temperate steppe, after continuous N addition for seven years. Reductions of both N and phosphorus (P) resorption efficiency (NRE and PRE, respectively) were positively correlated with N addition levels. The dissimilarities in species composition between N-enriched and control communities increased with N addition levels, and N-enriched plots showed substantial species losses and gains. Interestingly, the reduction of community-scale NRE and PRE mostly resulted from N-induced decreases in resorption efficiency for the shared species in the control and N-enriched communities. There were negative correlations between the contributions of species richness effect and species identity effect and between the number and identity of species gained for the changes in both NRE and PRE following N enrichment. By simultaneously considering N-induced changes in species composition and in species-level resorption, our work presents a more complete picture of how different community assembly processes contribute to N-induced changes in community-level resorption.


Asunto(s)
Ecosistema , Nitrógeno , Nitrógeno/análisis , Plantas , Fósforo , Nutrientes , Suelo , Hojas de la Planta/química
14.
Biomed Eng Online ; 22(1): 6, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732817

RESUMEN

BACKGROUND: The diagnosis of primary membranous nephropathy (PMN) often depends on invasive renal biopsy, and the diagnosis based on clinical manifestations and target antigens may not be completely reliable as it could be affected by uncertain factors. Moreover, different experts could even have different diagnosis results due to their different experiences, which could further impact the reliability of the diagnosis. Therefore, how to properly integrate the knowledge of different experts to provide more reliable and comprehensive PMN diagnosis has become an urgent issue. METHODS: This paper develops a belief rule-based system for PMN diagnosis. The belief rule base is constructed based on the knowledge of the experts, with 9 biochemical indicators selected as the input variables. The belief rule-based system is developed of three layers: (1) input layer; (2) belief rule base layer; and (3) output layer, where 9 biochemical indicators are selected as the input variables and the diagnosis result is provided as the conclusion. The belief rule base layer is constructed based on the knowledge of the experts. The final validation was held with gold pattern clinical cases, i.e., with known and clinically confirmed diagnoses. RESULTS: 134 patients are used in this study, and the proposed method is defined by its sensitivity, specificity, accuracy and area under curve (AUC), which are 98.0%, 96.9%, 97.8% and 0.93, respectively. The results of this study present a novel and effective way for PMN diagnosis without the requirement of renal biopsy. CONCLUSIONS: Through analysis of the diagnosis results and comparisons with other methods, it can be concluded that the developed system could help diagnose PMN based on biochemical indicators with relatively high accuracy.


Asunto(s)
Glomerulonefritis Membranosa , Humanos , Glomerulonefritis Membranosa/diagnóstico , Sistemas Especialistas , Reproducibilidad de los Resultados , Receptores de Fosfolipasa A2 , Computadores
15.
Bioorg Chem ; 137: 106646, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37285764

RESUMEN

Type 2 diabetes mellitus (T2DM) is a rapidly growing epidemic that results in increased morbidity, mortality, and soaring medical costs. Prostaglandin E2 (PGE2), a vital lipid mediator, has been reported to protect against hepatic steatosis, inflammation, endoplasmic reticulum (ER) stress, and insulin resistance, indicating its potential therapeutic role in T2DM. PGE2 can be degraded by 15-hydroxyprostaglandin dehydrogenase (15-PGDH). SW033291, an inhibitor of 15-PGDH, has been reported to increase PGE2 levels, however, the effect of SW033291 in T2DM remains to be explored. This study aims to evaluate whether SW033291 protects against T2DM and explore its potential mechanisms. A T2DM mouse model was established through high-fat diet/streptozotocin injection, while palmitic acid-treated mouse primary hepatocytes were used as insulin-resistant cell models. SW033291 treatment reduced body weight, fat weight, fasting blood glucose, and improved impaired glucose tolerance and insulin resistance in T2DM mice. More importantly, SW033291 alleviated steatosis, inflammation, and ER stress in the liver of T2DM mice. Mechanistically, SW033291 decreased the expressions of SREBP-1c and ACC1, and increased the expression of PPARα in T2DM mice. Additionally, SW033291 inhibited NF-κB and eIF2α/CHOP signaling in T2DM mice. Further, we showed that the protective effects of SW033291 on the above-mentioned pathophysiological processes could be hindered by inhibition of the PGE2 receptor EP4. Overall, our study reveals a novel role of SW033291 in alleviating T2DM and suggests its potential as a new therapeutic strategy for T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hígado Graso , Resistencia a la Insulina , Ratones , Animales , Dinoprostona/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo de los Lípidos , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Hígado Graso/metabolismo
16.
World J Surg Oncol ; 21(1): 181, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37337182

RESUMEN

BACKGROUND: This study investigated the clinicopathological features, immunophenotypic characteristics and differential diagnosis of primary breast carcinomas with signet ring cell differentiation, as well as differences in the traits of signet ring-like cell mucin. METHODS: A total of five cases of primary breast cancer diagnosed with signet ring cell differentiation and treated at The First People's Hospital of Jingmen from January 2016 to December 2021 were collected. HE, immunohistochemical staining, and AB-PAS staining were used for the analysis. RESULTS: Although we strictly selected all the primary breast cancer cases with signet ring cell differentiation, there were differences in the arrangement of the cells and the grading of nuclei. Our immunohistochemical results showed that the ER was consistently strongly positive, and the PR expression was not consistent, while all the cases of HER2 were negative. CK7 was negative in one case, and CK20 and CK5/6 were not expressed in all the cases. The mucin MUC1 was positive and showed two patterns. MUC2 was strongly positive in all the cases. All the cases were negative for CDX2, SATB2, PAX8, TTF-1, and Napsin A, while the positive expression of COX2, Villin, and WT-1 was not constant. One case expressed neuroendocrine markers. The expression level of Ki67 was between 10 and 30%. AB (pH 2.5)-PAS staining revealed that the intracellular mucus contained more cells with neutral mucus, while the extracellular mucus was mainly acidic. CONCLUSION: We found that histological morphology, cell morphology, and nuclear grading differentiate among different cases. The immunohistochemical characteristics of primary breast cancers diagnosed with signet ring cell differentiation are helpful for identification. The differences in the expression patterns of mucins may be related to unfavorable clinicopathological factors, but their usefulness as a prognostic marker remains to be further understood. The heterogeneity of cell mucus, the differentiation of tumor cells, and the phenotypic changes of tumors also need further study.


Asunto(s)
Neoplasias de la Mama , Carcinoma de Células en Anillo de Sello , Humanos , Femenino , Biomarcadores de Tumor/metabolismo , Carcinoma de Células en Anillo de Sello/diagnóstico , Diferenciación Celular , Mucinas , Neoplasias de la Mama/patología
17.
Molecules ; 28(19)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37836761

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a liver disease syndrome. The prevalence of NAFLD has continued to increase globally, and NAFLD has become a worldwide public health problem. Glucosamine (GLC) is an amino monosaccharide derivative of glucose. GLC has been proven to not only be effective in anti-inflammation applications, but also to modulate the gut microbiota effectively. Therefore, in this study, the therapeutic effect of GLC in the NAFLD context and the mechanisms underlying these effects were explored. Specifically, an NAFLD model was established by feeding mice a high-fat and high-sugar diet (HFHSD), and the HFHSD-fed NAFLD mice were treated with GLC. First, we investigated the effect of treating NAFLD mice with GLC by analyzing serum- and liver-related indicator levels. We found that GLC attenuated insulin resistance and inflammation, increased antioxidant function, and attenuated serum and liver lipid metabolism in the mice. Then, we investigated the mechanism underlying liver lipid metabolism, inflammation, and intestinal barrier function in these mice. We found that GLC can improve liver lipid metabolism and relieve insulin resistance and oxidative stress levels. In addition, GLC treatment increased intestinal barrier function, reduced LPS translocation, and reduced liver inflammation by inhibiting the activation of the LPS/TLR4/NF-κB pathway, thereby effectively ameliorating liver lesions in NAFLD mice.


Asunto(s)
Hepatitis , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Metabolismo de los Lípidos , Glucosamina/farmacología , Lipopolisacáridos/farmacología , Hígado , Inflamación/metabolismo , Hepatitis/metabolismo , Azúcares/metabolismo , Dieta , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL
18.
Molecules ; 28(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37241887

RESUMEN

OBJECTIVE: the study was to find a suitable treatment for acute drug-induced liver injury. The use of nanocarriers can improve the therapeutic effect of natural drugs by targeting hepatocytes and higher loads. METHODS: firstly, uniformly dispersed three-dimensional dendritic mesoporous silica nanospheres (MSNs) were synthesized. Glycyrrhetinic acid (GA) was covalently modified on MSN surfaces through amide bond and then loaded with COSM to form drug-loaded nanoparticles (COSM@MSN-NH2-GA). The constructed drug-loaded nano-delivery system was determined by characterization analysis. Finally, the effect of nano-drug particles on cell viability was evaluated and the cell uptake in vitro was observed. RESULTS: GA was successfully modified to obtain the spherical nano-carrier MSN-NH2-GA (≤200 nm). The neutral surface charge improves its biocompatibility. MSN-NH2-GA has high drug loading (28.36% ± 1.00) because of its suitable specific surface area and pore volume. In vitro cell experiments showed that COSM@MSN-NH2-GA significantly enhanced the uptake of liver cells (LO2) and decreased the AST and ALT indexes. CONCLUSION: this study demonstrated for the first time that formulation and delivery schemes using natural drug COSM and nanocarrier MSN have a protective effect on APAP-induced hepatocyte injury. This result provides a potential nano-delivery scheme for the targeted therapy of acute drug-induced liver injury.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Quitosano , Ácido Glicirretínico , Nanopartículas , Humanos , Portadores de Fármacos/química , Dióxido de Silicio/química , Ácido Glicirretínico/farmacología , Nanopartículas/química , Sistemas de Liberación de Medicamentos , Oligosacáridos , Porosidad
19.
Molecules ; 28(14)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37513467

RESUMEN

Chitooligosaccharide (COS) is a natural product from the ocean, and while many studies have reported its important role in metabolic diseases, no study has systematically elaborated the anti-obesity effect and mechanism of COS. Herein, COSM (MW ≤ 3000 Da) was administered to diet-induced obese mice by oral gavage once daily for eight weeks. The results show that COSM administration reduced body weight; slowed weight gain; reduced serum Glu, insulin, NEFA, TC, TG, and LDL-C levels; increased serum HSL and HDL-C levels; improved inflammation; and reduced lipid droplet size in adipose tissue. Further lipidomic analysis of adipose tissue revealed that 31 lipid species are considered to be underlying lipid biomarkers in COS therapy. These lipids are mainly enriched in pathways involving insulin resistance, thermogenesis, cholesterol metabolism, glyceride metabolism and cyclic adenosine monophosphate (cAMP), which sheds light on the weight loss mechanism of COS. The Western blot assay demonstrated that COSM intervention can improve insulin resistance, inhibit de novo synthesis, and promote thermogenesis and ß-oxidation in mitochondria by the AMPK pathway, thereby alleviating high-fat diet-induced obesity. In short, our study can provide a more comprehensive direction for the application of COS in obesity based on molecular markers.


Asunto(s)
Resistencia a la Insulina , Ratones , Animales , Ratones Obesos , Lipidómica , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/metabolismo , Metabolismo de los Lípidos , Dieta Alta en Grasa/efectos adversos , Lípidos , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por AMP/metabolismo
20.
Br J Sociol ; 74(1): 83-104, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36628518

RESUMEN

Occupying public spaces can be an effective tactic for conveying a semantic message of protest and gaining wider support; however, it may also severely disrupt the everyday lives of non-participants and causes a backfire. Therefore, it remains unclear whether and how the occupy movements have shifted political attitudes among the general public. Bringing a social-spatial perspective to the case of the Occupy Central Movement (OCM) in Hong Kong, this study investigates how the attitudinal impact of occupation has varied according to people's spatial proximity to the protest sites. Using two waves of individual-level panel data collected right before and after the OCM and detailed geo-information on the respondents' home addresses and the occupied areas, we apply a difference-in-differences (DIDs) design to identify the causal link between space and attitudes. In addition, propensity score matching (PSM) methods are used to ensure the comparability of nearby and faraway residents. The results show that after the OCM, residents living near the occupied areas not only maintained their support for the pro-democracy camp but also became more liberal as compared to faraway residents. This phenomenon can be explained by the "on-site" effect, which suggests that the direct exposure to protestors' solidarity and the repressive actions of authorities arouse bystanders' sympathy for the protestors and support for their political cause. Such influence appears to be long-lasting and can be evidenced by the local election results after the protest.


Asunto(s)
Actitud , Política , Humanos , Hong Kong , Medio Social , Procesos de Grupo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA