Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Dairy Sci ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38554824

RESUMEN

Ultra-instantaneous UHT (UI-UHT, > 155°C, < 0.1 s) treated milk exhibits higher retention of active protein than regular UHT milk. However, UI-UHT products demonstrate increased susceptibility to destabilization during storage. This study aimed at monitoring the destabilizing process of UI-UHT milk across different storage temperatures and uncovering its potential mechanisms. Compared with regular UHT treatment, ultra-instantaneous treatment markedly accelerated the milk's destabilization process. Aged gel formation occurred after 45 d of storage at 25°C, while creaming and sedimentation were observed after 15 d at 37°C. To elucidate the instability mechanism, measurements of plasmin activity, protein hydrolysis levels, and proteomics of the aged gel were conducted. In UI-UHT milk, plasmin activity, and protein hydrolysis levels significantly increased during storage. Excessive protein hydrolysis at 37°C resulted in sedimentation, while moderate hydrolysis and an increase in protein particle size at 25°C resulted in aged gel formation. Proteomics analysis results indicated that the aged gel from UI-UHT milk contained intact caseins, major whey proteins, and their derived peptides. Furthermore, specific whey proteins including albumin, lactotransferrin, enterotoxin-binding glycoprotein PP20K, and MFGM proteins were identified in the gel. Additionally, MFGM proteins in UI-UHT milk experienced considerable hydrolysis during storage, contributing to fat instability. This study lays a theoretical foundation for optimizing UI-UHT milk storage conditions to enhance the quality of liquid milk products.

2.
Nanotechnology ; 34(50)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37789673

RESUMEN

The practical application of Molybdenum sulphide (MoS2) electrodes has been hindered by its structural instability, and poor electrical conductivity. To enhance the cycle stability and rate performance of MoS2in lithium/sodium-ion batteries (LIBs/SIBs), we synthesized a graphene-supported MoS2composite (MoS2@rGO) with affluent covalent bridged bonds through a facile and scalable hydrothermal and annealing process. The covalent bridged bonds of Mo-S-C, Mo-O-C and C-O-S provide an effective charge transfer path between MoS2and graphene, facilitating fast charge hopping and improving rate performance. As anode materials for LIBs, the MoS2@rGO exhibited exceptional long-term cycle life (906 mAh g-1at 1.0 A g-1after 400 cycles) and outstanding rate capability (1267.7/314.7 mAh g-1at 0.1/6.5 A g-1). Additionally, the MoS2@rGO electrode demonstrated a stable reversible capacity of 521.7 mAh g-1at 1.0 A g-1after 700 cycles and excellent rate capabilities of 665.1 and 326.3 mAh g-1at 0.1 and 10.0 A g-1in SIBs. The edge Mo of MoS2is directly coupled with the oxygen of the functional group on rGO, achieved by adjusting the pH value of the solution to tune the surface charge feature, can effectively enhance the structural stability of electrode even under higher current density.

3.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36768661

RESUMEN

Soluble fibrinogen-like protein 2 (sFgl2), a novel effector of regulatory T cells (Tregs), has been demonstrated to have potent immunosuppressive functions. Multiple studies indicate that Tregs could exert important atheroprotective effects, but their numbers gradually decrease during atherogenesis. The receptor of sFgl2 can be expressed on Treg precursor cells, while the role of sFgl2 on Treg differentiation and atherosclerosis progression remains unclear. Firstly, we detected that the sFgl2 was decreased in humans and mice with atherosclerotic diseases and was especially lower in their vulnerable plaques. Then, we used both Adeno-associated virus-sFgl2 (AAV-sFgl2)-injected ApoE-/- mice, which is systemic overexpression of sFgl2, and sFgl2TgApoE-/- bone marrow cells (BMC)-transplanted ApoE-/- mice, which is almost immune-system-specific overexpression of sFgl2, to explore the role of sFgl2 in atherosclerosis. Our experiment data showed that AAV-sFgl2 and BMT-sFgl2 could reduce atherosclerotic area and enhance plaque stability. Mechanistically, sFgl2 increases the abundance and immunosuppressive function of Tregs, which is partly mediated by binding to FcγRIIB receptors and phosphorylating Smad2/3. Collectively, sFgl2 has an atheroprotective effect that is mainly achieved by forming a positive feedback pathway with Treg. sFgl2 and Treg could synergistically protect against atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Animales , Ratones , Linfocitos T Reguladores/metabolismo , Retroalimentación , Aterosclerosis/genética , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Fibrinógeno/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo
4.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36430571

RESUMEN

Hypoxic stress occurs in various physiological and pathological states, such as aging, disease, or high-altitude exposure, all of which pose a challenge to many organs in the body, necessitating adaptation. However, the exact mechanisms by which hypoxia affects advanced brain function (learning and memory skills in particular) remain unclear. In this study, we investigated the effects of hypoxic stress on hippocampal function. Specifically, we studied the effects of the dysfunction of mitochondrial oxidative phosphorylation using global proteomics. First, we found that hypoxic stress impaired cognitive and motor abilities, whereas it caused no substantial changes in the brain morphology or structure of mice. Second, bioinformatics analysis indicated that hypoxia affected the expression of 516 proteins, of which 71.1% were upregulated and 28.5% were downregulated. We demonstrated that mitochondrial function was altered and manifested as a decrease in NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4 expression, accompanied by increased reactive oxygen species generation, resulting in further neuronal injury. These results may provide some new insights into how hypoxic stress alters hippocampal function via the dysfunction of mitochondrial oxidative phosphorylation.


Asunto(s)
Mitocondrias , Proteómica , Ratones , Animales , Mitocondrias/metabolismo , Hipocampo/metabolismo , Hipoxia/metabolismo , Neuronas/metabolismo
5.
Arterioscler Thromb Vasc Biol ; 40(10): 2360-2375, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32787516

RESUMEN

OBJECTIVE: Platelet activation by stimulatory factors leads to an increase in intracellular calcium concentration ([Ca2+]i), which is essential for almost all platelet functions. Modulation of Ca2+ influx and [Ca2+]i in platelets has been emerging as a possible strategy for preventing and treating platelet-dependent thrombosis. Voltage-gated potassium 1.3 channels (Kv1.3) are highly expressed in platelets and able to regulate agonist-evoked [Ca2+]i increase. However, the role of Kv1.3 channels in regulating platelet functions and thrombosis has not yet been elucidated. In addition, it is difficult to obtain a specific blocker for this channel, since Kv1.3 shares identical drug-binding sites with other K+ channels. Here, we investigate whether specific blockade of Kv1.3 channels by monoclonal antibodies affects platelet functions and thrombosis. Approach and Results: In this study, we produced the anti-Kv1.3 monoclonal antibody 6E12#15, which could specifically recognize both human and mouse Kv1.3 proteins and sufficiently block Kv1.3 channel currents. We found Kv1.3 blockade by 6E12#15 inhibited platelet aggregation, adhesion, and activation upon agonist stimulation. In vivo treatment with 6E12#15 alleviated thrombus formation in a mesenteric arteriole thrombosis mouse model and protected mice from collagen/epinephrine-induced pulmonary thromboembolism. Furthermore, we observed Kv1.3 regulated platelet functions by modulating Ca2+ influx and [Ca2+]i elevation, and that this is mediated in part by P2X1. Interestingly, Kv1.3-/- mice showed impaired platelet aggregation while displayed no abnormalities in in vivo thrombus formation. This phenomenon was related to more megakaryocytes and platelets produced in Kv1.3-/- mice compared with wild-type mice. CONCLUSIONS: We showed specific inhibition of Kv1.3 by the novel monoclonal antibody 6E12#15 suppressed platelet functions and platelet-dependent thrombosis through modulating platelet [Ca2+]i elevation. These results indicate that Kv1.3 could act as a promising therapeutic target for antiplatelet therapies.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Plaquetas/efectos de los fármacos , Fibrinolíticos/farmacología , Canal de Potasio Kv1.3/antagonistas & inhibidores , Inhibidores de Agregación Plaquetaria/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Embolia Pulmonar/prevención & control , Trombosis/prevención & control , Animales , Coagulación Sanguínea/efectos de los fármacos , Plaquetas/metabolismo , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Canal de Potasio Kv1.3/sangre , Canal de Potasio Kv1.3/deficiencia , Canal de Potasio Kv1.3/genética , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Activación Plaquetaria/efectos de los fármacos , Embolia Pulmonar/sangre , Embolia Pulmonar/genética , Embolia Pulmonar/metabolismo , Transducción de Señal , Trombosis/sangre , Trombosis/genética , Trombosis/metabolismo
6.
Sensors (Basel) ; 20(8)2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32295136

RESUMEN

Today, as media and technology multitasking becomes pervasive, the majority of young people face a challenge regarding their attentional engagement (that is, how well their attention can be maintained). While various approaches to improve attentional engagement exist, it is difficult to produce an effect in younger people, due to the inadequate attraction of these approaches themselves. Here, we show that a single 30-min engagement with an attention restoration theory (ART)-inspired closed-loop software program (Virtual ART) delivered on a consumer-friendly virtual reality head-mounted display (VR-HMD) could lead to improvements in both general attention level and the depth of engagement in young university students. These improvements were associated with positive changes in both behavioral (response time and response time variability) and key electroencephalography (EEG)-based neural metrics (frontal midline theta inter-trial coherence and parietal event-related potential P3b). All the results were based on the comparison of the standard Virtual ART tasks (control group, n = 15) and closed-loop Virtual ART tasks (treatment group, n = 15). This study provides the first case of EEG evidence of a VR-HMD-based closed-loop ART intervention generating enhanced attentional engagement.


Asunto(s)
Atención/fisiología , Ansiedad/patología , Electroencefalografía , Femenino , Humanos , Masculino , Programas Informáticos , Realidad Virtual , Adulto Joven
7.
Immunopharmacol Immunotoxicol ; 41(1): 86-94, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30604645

RESUMEN

Background: Accumulating evidence suggests that inflammation is a contributor to the cause and progression of neurodegenerative disease, such as Alzheimer's disease (AD) and Parkinson disease (PD). However, the exact mechanisms of neuroinflammation are still unclear. Here, we discussed the potential mechanisms of lipopolysaccharide (LPS)-induced brain injury via NR2B antagonists (Ro25-6981) treatment in mice. Methods: Neuroinflammation was induced in mice by virtue of LPS (1 mg/kg) by intraperitoneal injection. Immunoprecipitation was performed to measure the assembly of NR2B-calmodulin dependent protein kinase II (CaMKII)-Postsynaptic density protein 95 (PSD95) signal module in the hippocampus and frontal cortex. Nissl's staining was employed to access neuron injury in the brain. Results: Data demonstrated that LPS could induce neuron damage, and promote the assembly of NR2B-CaMKII-PSD95 signal module and increase the expression of phosphorylated CaMKII and c-Jun N-terminal kinase (JNK) in the frontal cortex and hippocampus. However, NR2B antagonists could protect neuron injury against LPS-induced inflammation, inhibit the assembly of NR2B-CaMKII-PSD95 signal module and decrease the level of phosphorylated CaMKII and JNKs in mice. Conclusions: These findings indicated that the assembly of NR2B-CaMKII-PSD95 signal module is related to LPS-induced neuroinflammation, NR2B plays a key role in the assembly of NR2B-CaMKII-PSD95 signal module and NR2B antagonists could alleviate LPS-related inflammation through the reduced assembly of NR2B-CaMKII-PSD95 signal module in frontal cortex and hippocampus.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Lóbulo Frontal/efectos de los fármacos , Hipocampo/efectos de los fármacos , Lipopolisacáridos/toxicidad , Fenoles/farmacología , Piperidinas/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Animales , Lóbulo Frontal/inmunología , Lóbulo Frontal/metabolismo , Hipocampo/inmunología , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Transducción de Señal
8.
Lipids Health Dis ; 17(1): 296, 2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30593279

RESUMEN

BACKGROUND: Excessive lipid depositing in liver cells could induce pathophysiological development of liver. Our study aimed to assess whether non-HDL cholesterol to HDL-cholesterol ratio (NonHDLc/HDLc) is an independent risk factor for liver function tests (LFTs) abnormalities in geriatric population. METHODS: We enrolled 1745 eligible subjects (714 males, 1031 females) with normal liver function tests at baseline who participated in annual health checkup for liver disease in 2015. Logistic regression models were used to examine the independent relationship between NonHDLc/HDLc ratio and LFTs abnormalities. RESULTS: After one year follow-up, there were 6.1% (n = 107) participants developed new-onset LFTs abnormalities in 2016. Equally dividing participants into tertiles according to their baseline NonHDLc/HDLc ratio levels, we found compared with tertile 1, the multivariable-adjusted ORs (95% CIs) for new-onset LFTs abnormalities of tertile 3 were 2.85 (1.18-6.93), P = 0.021. In stratified analysis, compared with controls, the correlation between NonHDLc/HDLc ratio and incidence of LFTs abnormalities was more remarkable in female individuals, BMI > 24 individuals and free of diabetes individuals. CONCLUSION: Our study suggests that NonHDLc/HDLc ratio is an independent risk factor for LFTs abnormalities in geriatric population, and assessment of NonHDLc/HDLc ratio may help early identify high risk people of liver diseases. TRIAL REGISTRATION: Trial registration in the Ethics Committee of Tongji Medical College, Huazhong University of Science and Technology (IORG No: IORG0003571 ). Registered 3 March 2015.


Asunto(s)
Colesterol/sangre , Dislipidemias/complicaciones , Hepatopatías/epidemiología , Pruebas de Función Hepática , Anciano , HDL-Colesterol/sangre , Dislipidemias/sangre , Femenino , Humanos , Incidencia , Hepatopatías/etiología , Modelos Logísticos , Masculino , Factores de Riesgo
9.
BMC Biotechnol ; 17(1): 19, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28231778

RESUMEN

BACKGROUND: Manganese peroxidase (MnP) of white rot basidiomycetes, an extracellular heme enzyme, is part of a peroxidase superfamily that is capable of degrading the different phenolic compounds. Ganoderma, a white rot basidiomycete widely distributed worldwide, could secrete lignin-modifying enzymes (LME), including laccase (Lac), lignin peroxidases (LiP) and MnP. RESULTS: After the selection of a G. lucidum strain from five Ganoderma strains, the 1092 bp full-length cDNA of the MnP gene, designated as G. lucidum MnP (GluMnP1), was cloned from the selected strain. We subsequently constructed an eukaryotic expression vector, pAO815:: GlMnP, and transferred it into Pichia pastoris SMD116. Recombinant GluMnP1 (rGluMnP1) was with a yield of 126 mg/L and a molecular weight of approximately 37.72 kDa and a specific enzyme activity of 524.61 U/L. The rGluMnP1 could be capable of the decolorization of four types of dyes and the degradation of phenol. Phenol and its principal degradation products including hydroquinone, pyrocatechol, resorcinol, benzoquinone, were detected successfully in the experiments. CONCLUSIONS: The rGluMnP1 could be effectively expressed in Pichia pastoris and with a higher oxidation activity. We infer that, in the initial stages of the reaction, the catechol-mediated cycle should be the principal route of enzymatic degradation of phenol and its oxidation products. This study highlights the potential industrial applications associated with the production of MnP by genetic engineering methods, and the application of industrial wastewater treatment.


Asunto(s)
Colorantes/química , Peroxidasas/química , Fenol/química , Pichia/enzimología , Reishi/enzimología , Contaminantes Químicos del Agua/química , Biodegradación Ambiental , Clonación Molecular/métodos , Colorantes/aislamiento & purificación , Activación Enzimática , Peroxidasas/genética , Peroxidasas/metabolismo , Fenol/aislamiento & purificación , Pichia/genética , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reishi/clasificación , Reishi/genética , Especificidad de la Especie , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos
10.
BMC Microbiol ; 16(1): 196, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27565900

RESUMEN

BACKGROUND: Ophiocordyceps sinensis (DongChong XiaCao (DCXC) in Chinese), a fungal parasite of caterpillars, is a traditional Chinese medicine. Bioactive components isolated from natural DCXC possess a wide range of pharmacological actions. Many efforts have been directed towards isolating the fungi based on culture-dependent methods for investigation of fungal diversity in order to determine the anamorph of natural DCXC and find new medicinal fungi resources, and the results have been varied. RESULTS: In the present study, a total of 44,588 bacterial and 51,584 fungal sequences corresponding to 11,694 and 9297 putative operational taxonomic units (OTU) were respectively identified by a Roche/454-based, high throughput sequence analysis of 16S rRNA genes and ITS regions. The main bacterial groups were Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria and Firmicutes, while the Ascomycota, Basidiomycota and Zygomycota were the main fungal phyla. Proteobacteria presented 68.4, 49.5, 38.9 and 35.6 % of all bacteria in the sclerotia, stromata, external mycelial cortices and soil, respectively. As the main fungi phyla, Ascomycota presented 21.0, 45.6 26.4 and 59.3 % in the sclerotia, stromata, external mycelial cortices and soil, respectively. Bacterial and fungal communities were more diverse in the environmental sample than in the natural DCXC sample. Microbial communities were obviously distinct in each sample. Several novel unclassifiable bacterial (10.41 %) and fungal (37.92 %) species were also detected. CONCLUSIONS: This study revealed an abundant endogenetic fungal and bacterial resources and a variety of genetic information in natural DCXC by high-throughput 454 sequencing technology. Microorganism that had been discovered in natural DCXC will provide sources for screening the new bioactive metabolites and its biotechnological application.


Asunto(s)
Bacterias/genética , Hongos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Microbiota , Microbiología del Suelo , Secuencia de Bases , Biodiversidad , ADN Bacteriano/genética , ADN de Hongos/genética , Ecosistema , Filogenia , ARN Ribosómico 16S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Suelo , Tibet
11.
J Org Chem ; 79(9): 4225-30, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24689970

RESUMEN

A metal-free and cost-effective synthesis protocol has been initially proposed for the construction of CF3-containing oxindoles via the direct oxidative trifluoromethylation of activated alkenes with Langlois' reagent (CF3SO2Na). The present methodology, which utilizes very cheap CF3 reagent and a simple oxidant, provides a convenient and practical approach to CF3-containing oxindoles with a wide variety of functional groups.


Asunto(s)
Alquenos/química , Clorofluorocarburos de Metano/química , Indoles/síntesis química , Indoles/química , Metilación , Conformación Molecular , Oxindoles
12.
Neural Regen Res ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38845216

RESUMEN

ABSTRACT: Poststroke cognitive impairment is a major secondary effect of ischemic stroke in many patients; however, few options are available for the early diagnosis and treatment of this condition. The aims of this study were to (1) determine the specific relationship between hypoxic and α-synuclein during the occur of poststroke cognitive impairment and (2) assess whether the serum phosphorylated α-synuclein level can be used as a biomarker for poststroke cognitive impairment. We found that the phosphorylated α-synuclein level was significantly increased and showed pathological aggregation around the cerebral infarct area in a mouse model of ischemic stroke. In addition, neuronal α-synuclein phosphorylation and aggregation were observed in the brain tissue of mice subjected to chronic hypoxia, suggesting that hypoxia is the underlying cause of α-synuclein-mediated pathology in the brains of mice with ischemic stroke. Serum phosphorylated α-synuclein levels in patients with ischemic stroke were significantly lower than those in healthy subjects, and were positively correlated with cognition levels in patients with ischemic stroke. Furthermore, a decrease in serum high-density lipoprotein levels in stroke patients was significantly correlated with a decrease in phosphorylated α-synuclein levels. Although ischemic stroke mice did not show significant cognitive impairment or disrupted lipid metabolism 14 days after injury, some of them exhibited decreased cognitive function and reduced phosphorylated α-synuclein levels. Taken together, our results suggest that serum phosphorylated α-synuclein is a potential biomarker for poststroke cognitive impairment.

13.
Colloids Surf B Biointerfaces ; 240: 113987, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38795586

RESUMEN

Residual plasmin activity in whole ultra-instantaneous UHT (UI-UHT) milk causes rapid fat rise during storage, seriously affecting consumers' purchase intentions. In this work, the molecular mechanisms underlying fat destabilization in whole UI-UHT milk by added plasmin were investigated based on the hydrolysis behavior of interfacial proteins. By using SDS-PAGE and peptidomic analysis, we found that the hydrolysis of interfacial proteins by plasmin led to a decrease in the amount and coverage of interfacial proteins and an increase in zeta-potential value, causing the flocculation and coalescence of fat globules. Moreover, the hydrolysis pattern varied in different categories of interfacial proteins by plasmin. In total, 125 peptides in all samples were identified. Plasmin tended to hydrolyze most major milk fat globule membrane (MFGM) proteins into protein fragments (>10 kDa) rather than peptides (<10 kDa). In contrast, peptides derived from caseins were more preferentially identified within a relatively short incubation time. It was the co-hydrolysis of caseins and some major MFGM proteins as anchors that destroyed the stability of MFGM. Furthermore, studies on the effect of trilayer membrane structure remaining at the interface on the hydrolysis rate of major MFGM proteins by plasmin revealed that ADPH and BTN were very sensitive to plasmin action, while PAS 7 was very resistant to plasmin action. Overall, membrane structure reduced the susceptibility of some major MFGM proteins to plasmin and provided protective effects. Therefore, this study provided important insights into the hydrolysis behavior of interfacial proteins in whole UI-UHT milk induced by plasmin.


Asunto(s)
Fibrinolisina , Glucolípidos , Glicoproteínas , Gotas Lipídicas , Leche , Fibrinolisina/química , Fibrinolisina/metabolismo , Animales , Glicoproteínas/química , Leche/química , Gotas Lipídicas/química , Gotas Lipídicas/metabolismo , Glucolípidos/química , Hidrólisis
14.
Foods ; 13(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38672908

RESUMEN

To investigate the gelation process of direct ultra-high-temperature (UHT) milk, a pilot-scale steam infusion heat treatment was used to process milk samples over a wide temperature of 142-157 °C for 0.116-6 s, followed by storage at 4 °C, 25 °C, and 37 °C. The results of the physicochemical properties of milk showed that the particle sizes and plasmin activities of all milk samples increased during storage at 25 °C, but age gelation only occurred in three treated samples, 147 °C/6 s, 142 °C/6 s, and 142 °C/3 s, which all had lower plasmin activities. Furthermore, the properties of formed gels were further compared and analyzed by the measures of structure and intermolecular interaction. The results showed that the gel formed in the 147 °C/6 s-treated milk with a higher C* value had a denser network structure and higher gel strength, while the 142 °C/6 s-treated milk had the highest porosity. Furthermore, disulfide bonds were the largest contributor to the gel structure, and there were significant differences in disulfide bonds, hydrophobic interaction forces, hydrogen bonds, and electrostatic force among the gels. Our results showed that the occurrence of gel was not related to the thermal load, and the different direct UHT treatments produced different age gels in the milk.

15.
J Vis Exp ; (206)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38682934

RESUMEN

The eustachian tube (ET) is one of the most complex organs in the human body, and its dysfunction may lead to a variety of diseases. In recent years, an increasing number of scholars have opted to conduct ET-related studies using large experimental animals such as miniature pigs or sheep, yielding promising results. Typically, conventional endoscopic procedures are performed through the nasal approach for large experimental animals. However, due to the elongated and narrow nasal cavity in these animals, transnasal surgeries are challenging. To address this issue, we explored an ET surgery approach via the soft palate. The animal was placed in a supine position. After endotracheal intubation under general anesthesia, a mouth opener was used to fully expose the upper palate. Local infiltration with diluted adrenal fluid was performed for anesthesia of the area. A sickle knife was then used to make a longitudinal soft palate incision at the junction of the soft and hard palates. After hemostasis, an endoscope was inserted into the nasopharynx cavity, allowing the visualization of the pharyngeal opening of the ET on the posterior lateral wall of the nasal cavity. Subsequently, a specialized pusher was used to insert a balloon into ET. The balloon was inflated, maintained at 10 bar for 2 min, and then removed. The incision in the soft palate was then sutured to ensure proper alignment. The soft palate healed well after the operation. This surgical approach is suitable for ET-related procedures in large experimental animals (e.g., miniature pigs, sheep, and dogs). The surgical procedure is simple, with a short surgical time, and wound healing is rapid. Under endoscopy, the pharyngeal opening of the ET is visible, and it is thus a good choice for procedures such as balloon dilation of the ET.


Asunto(s)
Trompa Auditiva , Paladar Blando , Porcinos Enanos , Animales , Trompa Auditiva/cirugía , Porcinos , Paladar Blando/cirugía , Endoscopía/métodos , Dilatación/métodos
16.
CNS Neurosci Ther ; 29(1): 202-215, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36401601

RESUMEN

BACKGROUND: Central nervous system diseases are associated with hypoxia, which usually cause irreversible nerve damage, but the underlying mechanism is unclear and effective intervention strategies are lacking. This study was designed to explore the mechanism and treatment strategy of hypoxia-induced nerve injury. METHODS: In this study, 13% O2 was used to treat mice for 0, 1, 3 7, and 14 days, Morris water maze and other animal behavior experiments were used to evaluate the neurological function of mice. TUNEL, BrdU, PCNA, DCX, and SOX2 staining were used to observe the apoptosis and proliferation of mouse neurons. RT-PCR and Iba1 staining were used to evaluate the release of inflammatory factors IL-1ß, IL-6, and TNF-α and the activation of microglia. RESULTS: Short-term hypoxia promotes neurogenesis, while long-term hypoxia inhibits neurogenesis. The changes in hypoxia-induced neurogenesis were positively correlated with neurological functions, but negatively correlated with apoptosis. Moreover, intermittent hypoxic conditioning restored long-term hypoxia-induced neurological dysfunction by promoting neural stem cell generation and inhibiting the release of inflammatory factors IL-1ß, IL-6, and TNF-α and the activation of microglia. CONCLUSION: Hypoxia promoted neurogenesis in a time-dependent manner, and intermittent hypoxic conditioning exerted a neuroprotective effect through promoting neural stem cell generation and suppressing inflammation induced by long-term hypoxia stress, which provided a novel concept to develop a treatment for hypoxia-related brain injury.


Asunto(s)
Hipoxia Encefálica , Factor de Necrosis Tumoral alfa , Ratones , Animales , Interleucina-6 , Hipoxia , Neuronas , Microglía
17.
Braz J Microbiol ; 54(1): 223-238, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36547866

RESUMEN

It is difficult to produce chitin oligosaccharides by hydrolyzing untreated natural chitinous waste directly. In this study, two fungi Talaromyces allahabadensis Hi-4 and Talaromyces funiculosus Hi-5 from rotten black soldier fly were isolated and identified through multigene phylogenetic and morphological analyses. The chitinolytic enzymes were produced by solid state fermentation, and the growth conditions were optimized by combining single-factor and central composite design. The best carbon sources were powder of molting of mealworms (MMP) and there was no need for additional nitrogen sources in two fungi, then the maximum chitinolytic enzyme production of 46.80 ± 3.30 (Hi-4) and 55.07 ± 2.48 (Hi-5) U/gds were achieved after analyzing the 3D response surface plots. Pure chitin (colloidal chitin) and natural chitinous substrates (represented by MMP) were used to optimize degradation abilities by crude enzymes obtained from the two fungi. The optimum temperature for hydrolyzing MMP (40 °C both in two fungi) were lower and closer to room temperature than colloidal chitin (55 °C for Hi-4 and 45 °C for Hi-5). Then colloidal chitin, MMP and the powder of shrimp shells (SSP) were used for analyzing the products after 5-day degradation. The amounts of chitin oligosaccharides from SSP and MMP were about 1/6 (Hi-4), 1/17 (Hi-5) and 1/8 (Hi-4), 1/10 (Hi-5), respectively, in comparison to colloidal chitin. The main components of the products were GlcNAc for colloidal chitin, (GlcNAc)2 for MMP, and oligosaccharides with higher degree of polymerization (4-6) were obtained when hydrolyzing SSP, which is significant for applications in medicine and health products.


Asunto(s)
Quitinasas , Dípteros , Talaromyces , Animales , Quitina/metabolismo , Fermentación , Filogenia , Polvos , Talaromyces/metabolismo , Oligosacáridos , Quitinasas/genética , Insectos , Dípteros/metabolismo
18.
CNS Neurosci Ther ; 29(2): 544-558, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36514210

RESUMEN

AIMS: The etiology of Parkinson's disease (PD) is complex and the mechanism is unclear. It has become a top priority to find common factors that induce and affect PD pathology. We explored the key role of hypoxia in promoting the pathological propagation of α-synuclein (α-syn) and the progression of PD. METHODS: We performed PD modeling by conducting intracranial stereotaxic surgery in the unilateral striatum of mice. We then measured protein aggregation in vitro. The rotarod and pole tests were employed next to measure the damage of the phenotype. Pathological deposition and autophagy were also observed by immunofluorescence staining and protein levels measured by western blotting. RESULTS: We demonstrated that short-term hypoxia activated phosphorylated (p)-α-syn in mice. We confirmed that p-α-syn was more readily formed aggregates than α-syn in vitro. Furthermore, we found that hypoxia promoted the activation and propagation of endogenous α-syn, contributing to the earlier degeneration of dopaminergic neurons in the substantia nigra and the deposition of p-α-syn in our animal model. Finally, autophagy inhibition contributed to the above pathologies. CONCLUSION: Hypoxia was shown to accelerate the pathological progression and damage phenotype in PD model mice. The results provided a promising research target for determining common interventions for PD in the future.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Ratones , Animales , alfa-Sinucleína/metabolismo , Neuronas Dopaminérgicas/metabolismo , Enfermedad de Parkinson/genética , Sustancia Negra , Cuerpo Estriado/metabolismo
19.
J Neurol ; 270(1): 152-170, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36098838

RESUMEN

OBJECTIVES: To comprehensively summarize and meta-analyze the concurrence across voxel-based morphometric (VBM) neuroimaging studies of migraine. METHODS: Neuroimaging studies published from origin to August 1, 2021 were searched in six databases including PubMed, Web of Science, Excerpta Medica Database (EMBASE), China National Knowledge Infrastructure (CNKI), Wanfang Database, and Chongqing VIP. Study selection, quality assessment, and data extraction were conducted by two independent researchers. Anisotropic effect size-signed differential mapping (AES-SDM) and activation likelihood estimation (ALE) were used to perform the meta-analysis of available studies reporting whole-brain gray matter (GM) structural data in migraine patients. Clinical variables correlation analysis and migraine subgroup analysis were also conducted. RESULTS: 40 articles were included after the strict screening, containing 1616 migraine patients and 1681 matched healthy subjects (HS) in total. Using the method of AES-SDM, migraine patients showed GM increase in the bilateral amygdala, the bilateral parahippocampus, the bilateral temporal poles, the bilateral superior temporal gyri, the left hippocampus, the right superior frontal gyrus, and the left middle temporal gyrus, as well as GM decrease in the left insula, the bilateral cerebellum (hemispheric lobule IX), the right dorsal medulla, the bilateral rolandic operculum, the right middle frontal gyrus, and the right inferior parietal gyrus. Using the method of ALE, migraine patients showed GM increase in the left parahippocampus and GM decrease in the left insula. The results of correlation analysis showed that many of these brain regions were associated with migraine headache frequency and migraine disease duration. Migraine patients in different subtypes (such as migraine without aura (MwoA), migraine with aura (MwA), episodic migraine (EM), chronic migraine (CM), vestibular migraine (VM), etc.), and in different periods (in the ictal and interictal periods) presented not entirely consistent GM alterations. CONCLUSION: Migraine patients have GM alterations in multiple brain regions associated with sensation, affection, cognition, and descending modulation aspects of pain. These changes might be a consequence of repeated migraine attacks. Further studies are required to determine how these GM changes can be used to diagnose, monitor disease progression, or exploit potential therapeutic interventions for migraine patients.


Asunto(s)
Encéfalo , Migraña sin Aura , Humanos , Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Lóbulo Frontal , Corteza Prefrontal , Imagen por Resonancia Magnética/métodos
20.
Food Res Int ; 173(Pt 1): 113351, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803655

RESUMEN

Milk fat globule membrane (MFGM) proteins have several biological functions and maintain the fat globule structure. However, the major MFGM protein compositions in simulated human milk emulsions are different from those in human milk due to the composition loss in the isolation process of MFGM materials. To overcome this limitation, we developed a novel strategy, namely, the solution enriched with MFGM was homogenized with cream separated from the milk rich in large-sized fat globules. The results of physicochemical properties and the interfacial protein coverage of the emulsions showed that the emulsions prepared by the new method had a smaller particle size, higher stability, and more interfacial protein coverage when the ratio of fat to protein was 1:3. In addition, proteome differences in interfacial proteins between the new emulsions and simulated infant formula emulsions were investigated, and the results revealed that the interface of the emulsions prepared by the new method contained all major MFGM proteins and unique GO annotations and KEGG pathways. However, only four MFGM proteins (XO, ADPH, PAS 6/7) were quantified at the interface of the emulsions prepared by the common method. Furthermore, the protein number and the total relative abundance of major MFGM proteins were approximately 2-fold and 475-fold higher at the interface of the emulsions prepared by the new method compared to the common method. Overall, the study modulated the interfacial protein composition of fat globules by screening the sources of lipid and homogenization methods and revealed its potential effect on processing stability and biological properties.


Asunto(s)
Proteínas de la Membrana , Leche Humana , Femenino , Lactante , Humanos , Emulsiones , Glucolípidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA