Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pest Manag Sci ; 79(1): 428-436, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36177948

RESUMEN

BACKGROUND: Host plant-microbe associations mediate interspecific interactions amongst herbivorous insects. However, this theory has rarely been ecologically verified in tephritid fruit flies. Research on this subject can not only help predict tephritid species invasion and occurrence patterns, but also develop potential novel lures for the control of the tephritid fruit fly pests. Recently, we observed mixed infestation of Bactrocera minax and Bactrocera dorsalis larvae in citrus orchards, which prompted us to explore the underlying mechanism. RESULTS: Following oviposition by B. minax, the yeast Pichia kluyveri translocated to and proliferated inside the citrus fruit. The level of d-limonene released from citrus fruits containing P. kluyveri was 27 times higher than that released from healthy fruits. Mature B. dorsalis females were attracted to d-limonene and oviposited into fruits previously infested by B. minax. Furthermore, the interspecific interaction between B. dorsalis and B. minax within the same fruit significantly decreased the number of surviving larvae and pupal weight in B. dorsalis, but its effect on B. minax was weaker. CONCLUSION: In the studied interspecific interaction, B. minax occupies the dominant position, implying ecological significance for this species in terms of consolidating its own niche and inhibiting the invasion of exotic species. To our best knowledge, this is the first report from both ecological and physiological perspectives on a symbiotic yeast mediating the interaction between B. minax and B. dorsalis through altering fruit volatiles. © 2022 Society of Chemical Industry.


Asunto(s)
Saccharomyces cerevisiae
2.
Insects ; 13(1)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35055927

RESUMEN

Nitrogen is usually a restrictive nutrient that affects the growth and development of insects, especially of those living in low nitrogen nutrient niches. In response to the low nitrogen stress, insects have gradually developed symbiont-based stress response strategies-biological nitrogen fixation and nitrogenous waste recycling-to optimize dietary nitrogen intake. Based on the above two patterns, atmospheric nitrogen or nitrogenous waste (e.g., uric acid, urea) is converted into ammonia, which in turn is incorporated into the organism via the glutamine synthetase and glutamate synthase pathways. This review summarized the reaction mechanisms, conventional research methods and the various applications of biological nitrogen fixation and nitrogenous waste recycling strategies. Further, we compared the bio-reaction characteristics and conditions of two strategies, then proposed a model for nitrogen provisioning based on different strategies.

3.
Front Microbiol ; 13: 949590, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36071970

RESUMEN

A Gram-negative bacteria (Pseudomonas fluorescens) was exposed to different concentrations (0, 20, and 40 mg/L) of dimethyl phthalate (DMP) for 8 h, and then Fourier transform infrared spectroscopy (FTIR) analysis, lipopolysaccharide content detection, analysis of fatty acids, calcein release test, proteomics, non-targeted metabolomics, and enzyme activity assays were used to evaluate the toxicological effect of DMP on P. fluorescens. The results showed that DMP exposure caused an increase in the unsaturated fatty acid/saturated fatty acid (UFA/SFA) ratio and in the release of lipopolysaccharides (LPSs) from the cell outer membrane (OM) of P. fluorescens. Moreover, DMP regulated the abundances of phosphatidyl ethanolamine (PE) and phosphatidyl glycerol (PG) of P. fluorescens and induced dye leakage from an artificial membrane. Additionally, excessive reactive oxygen species (ROS), malondialdehyde (MDA), and changes in antioxidant enzymes (i.e., catalase [CAT] and superoxide dismutase [SOD]) activities, as well as the inhibition of Ca2+-Mg2+-ATPase and Na+/K+-ATPase activities in P. fluorescens, which were induced by the DMP. In summary, DMP could disrupt the lipid asymmetry of the outer membrane, increase the fluidity of the cell membrane, and destroy the integrity of the cell membrane of P. fluorescens through lipid peroxidation, oxidative stress, and ion imbalance.

4.
Adv Sci (Weinh) ; 9(13): e2200614, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35246956

RESUMEN

Rechargeable zinc-air batteries (ZABs) have attracted great interests for emerging energy applications. Nevertheless, one of the major bottlenecks lies in the fabrication of bifunctional catalysts with high electrochemical activity, high stability, low cost, and free of precious and rare metals. Herein, a high-performance metal-free bifunctional catalyst is synthesized in a single step by regulating radicals within the recently invented high-flux plasma enhanced chemical vapor deposition (HPECVD) system equipped with in situ plasma diagnostics. Thus-derived (N, O)-doped vertical few-layer graphene film (VGNO) is of high areal population with perfect vertical orientation, tunable catalytic states, and configurations, thus enabling significantly enhanced electrochemical kinetic processes of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with reference to milestone achievements to date. Application of such VGNO to aqueous ZABs (A-ZABs) and flexible solid-state ZABs (S-ZABs) exhibited high discharge power density and excellent cycling stability, which remarkably outperformed ZABs using benchmarked precious-metal based catalysts. The current work provides a solid basis toward developing low-cost, resource-sustainable, and eco-friendly ZABs without using any metals for outstanding OER and ORR catalysis.

5.
ACS Appl Mater Interfaces ; 12(49): 54904-54915, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33251793

RESUMEN

The scalability processing of all functional layers in perovskite solar cells (PSCs) is one of the critical challenges in the commercialization of perovskite photovoltaic technology. In response to this issue, a large-area and high-quality gallium-doped tin oxide (Ga-SnOx) thin film is deposited by direct current magnetron sputtering and applied in CsPbBr3 all-inorganic PSCs as an electron transport layer (ETL). It is found that oxygen defects of SnOx can be remarkably offset by regulating oxygen flux and acceptor-like Ga doping level, resulting in higher carrier mobility and suitable energy level alignment, which is beneficial in accelerating electron extraction and suppressing charge recombination at the perovskite/ETL interface. At the optimal O2 flux (12 sccm) and Ga doping level (5%), the device based on sputtered Ga-SnOx ETL without any interface modification shows a power conversion efficiency (PCE) of 8.13%, which is significantly higher than that of undoped SnOx prepared by sputtering or spin coating. Furthermore, a PCE of 5.98% for a device with an active area of 1 cm2 is obtained, demonstrating great potential in fabricating efficient and stable large-area PSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA