Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(23): e2309535, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38193268

RESUMEN

Photodynamic therapy (PDT) has emerged as a promising non-invasive approach for cancer treatment. Enhancing its efficacy and understanding its absorption-induced attenuation are significant while the solutions are limited, particularly for the latter. In this study, a rod-shaped liquid plasticine (LP), comprised of a tumor cell solution encased by a nanoparticle monolayer, is used to serve as a powerful minireactor for addressing these issues. The channel structure, openness, and cuttability of the LP reactor are exploited for providing benefits to PDT. The resulting PDT efficacy is several times higher than those from droplet reactors with common spherical shapes. The attenuation law, which is fundamental in PDT yet poorly understood due to the lack of experimental approaches, is preliminarily uncovered here from the perspective of in vitro experiments by using the LP's cuttability, affording quantitative understanding on this difficult subject. These findings provide insights into the widely-concerned topics in PDT, and highlight the great potential of an LP reactor in offering innovation power for the biochemical and biomedical arenas.


Asunto(s)
Neoplasias , Fotoquimioterapia , Fotoquimioterapia/métodos , Humanos , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Nanopartículas/química
2.
Front Bioeng Biotechnol ; 10: 1126860, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36686238

RESUMEN

[This corrects the article DOI: 10.3389/fbioe.2022.1060026.].

3.
Front Bioeng Biotechnol ; 10: 1060026, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507270

RESUMEN

The repair of diabetic wounds has always been a job that doctors could not tackle quickly in plastic surgery. To solve this problem, it has become an important direction to use biocompatible biodegradable biomaterials as scaffolds or dressing loaded with a variety of active substances or cells, to construct a wound repair system integrating materials, cells, and growth factors. In terms of wound healing, composite biodegradable biomaterials show strong biocompatibility and the ability to promote wound healing. This review describes the multifaceted integration of biomaterials with drugs, stem cells, and active agents. In wounds, stem cells and their secreted exosomes regulate immune responses and inflammation. They promote angiogenesis, accelerate skin cell proliferation and re-epithelialization, and regulate collagen remodeling that inhibits scar hyperplasia. In the process of continuous combination with new materials, a series of materials that can be well matched with active ingredients such as cells or drugs are derived for precise delivery and controlled release of drugs. The ultimate goal of material development is clinical transformation. At present, the types of materials for clinical application are still relatively single, and the bottleneck is that the functions of emerging materials have not yet reached a stable and effective degree. The development of biomaterials that can be further translated into clinical practice will become the focus of research.

4.
Int J Oral Sci ; 14(1): 4, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35067679

RESUMEN

Distraction osteogenesis (DO) is widely used for bone tissue engineering technology. Immune regulations play important roles in the process of DO like other bone regeneration mechanisms. Compared with others, the immune regulation processes of DO have their distinct features. In this review, we summarized the immune-related events including changes in and effects of immune cells, immune-related cytokines, and signaling pathways at different periods in the process of DO. We aim to elucidated our understanding and unknowns about the immunomodulatory role of DO. The goal of this is to use the known knowledge to further modify existing methods of DO, and to develop novel DO strategies in our unknown areas through more detailed studies of the work we have done.


Asunto(s)
Osteogénesis por Distracción , Regeneración Ósea/fisiología , Huesos , Osteogénesis/fisiología , Osteogénesis por Distracción/métodos , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA