RESUMEN
Mutation and prevalence of pathogenic viruses prompt the development of broad-spectrum antiviral strategies. Viperin is a potent antiviral protein that inhibits a broad range of viruses. Unexpectedly, we found that Viperin protein production in epithelium is defective in response to both viruses and interferons (IFNs). We further revealed that viruses and IFNs stimulate expression of the acetyltransferase HAT1, which induces Lys197-acetylation on Viperin. Viperin acetylation in turn recruits UBE4A that stimulates K6-linked polyubiquitination at Lys206 of Viperin, leading to Viperin protein degradation. Importantly, UBE4A deficiency restores Viperin protein production in epithelium. We then designed interfering peptides (IPs) to inhibit UBE4A binding with Viperin. We found that VIP-IP3 rescues Viperin protein production in epithelium and therefore enhances cellular antiviral activity. VIP-IP3 renders mice more resistant to viral infection. These findings could provide strategies for both enhancing host broad-spectrum antiviral response and improving the efficacy of IFN-based antiviral therapy.
Asunto(s)
Células Epiteliales/metabolismo , Células Epiteliales/virología , Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Acetilación , Animales , Línea Celular , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Células Epiteliales/enzimología , Humanos , Interferones/farmacología , Ratones , Ratones Endogámicos C57BL , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Péptidos/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , UbiquitinaciónRESUMEN
Maize phenotypes are plastic, determined by the complex interplay of genetics and environmental variables. Uncovering the genes responsible and understanding how their effects change across a large geographic region are challenging. In this study, we conducted systematic analysis to identify environmental indices that strongly influence 19 traits (including flowering time, plant architecture, and yield component traits) measured in the maize nested association mapping (NAM) population grown in 11 environments. Identified environmental indices based on day length, temperature, moisture, and combinations of these are biologically meaningful. Next, we leveraged a total of more than 20 million SNP and SV markers derived from recent de novo sequencing of the NAM founders for trait prediction and dissection. When combined with identified environmental indices, genomic prediction enables accurate performance predictions. Genome-wide association studies (GWASs) detected genetic loci associated with the plastic response to the identified environmental indices for all examined traits. By systematically uncovering the major environmental and genomic factors underlying phenotypic plasticity in a wide variety of traits and depositing our results as a track on the MaizeGDB genome browser, we provide a community resource as well as a comprehensive analytical framework to facilitate continuing complex trait dissection and prediction in maize and other crops. Our findings also provide a conceptual framework for the genetic architecture of phenotypic plasticity by accommodating two alternative models, regulatory gene model and allelic sensitivity model, as special cases of a continuum.
Asunto(s)
Genoma de Planta , Estudio de Asociación del Genoma Completo , Fenotipo , Polimorfismo de Nucleótido Simple , Zea mays , Zea mays/genética , Estudio de Asociación del Genoma Completo/métodos , Sitios de Carácter Cuantitativo , Interacción Gen-Ambiente , Ambiente , Genómica/métodosRESUMEN
CD4+ T cells are central mediators of protective immunity to blood-stage malaria, particularly for their capacity in orchestrating germinal center reaction and generating parasite-specific high-affinity antibodies. T follicular helper (Tfh) cells are predominant CD4+ effector T cell subset implicated in these processes, yet the factors and detailed mechanisms that assist Tfh cell development and function during Plasmodium infection are largely undefined. Here we provide evidence that receptor for activated C kinase 1 (RACK1), an adaptor protein of various intracellular signals, is not only important for CD4+ T cell expansion as previously implied but also plays a prominent role in Tfh cell differentiation and function during blood-stage Plasmodium yoelii 17XNL infection. Consequently, RACK1 in CD4+ T cells contributes significantly to germinal center formation, parasite-specific IgG production, and host resistance to the infection. Mechanistic exploration detects specific interaction of RACK1 with STAT3 in P. yoelii 17XNL-responsive CD4+ T cells, ablation of RACK1 leads to defective STAT3 phosphorylation, accompanied by substantially lower amount of STAT3 protein in CD4+ T cells, whereas retroviral overexpression of RACK1 or STAT3 in RACK1-deficient CD4+ T cells greatly restores STAT3 activity and Bcl-6 expression under the Tfh polarization condition. Further analyses suggest RACK1 positively regulates STAT3 stability by inhibiting the ubiquitin-proteasomal degradation process, thus promoting optimal STAT3 activity and Bcl-6 induction during Tfh cell differentiation. These findings uncover a novel mechanism by which RACK1 participates in posttranslational regulation of STAT3, Tfh cell differentiation, and subsequent development of anti-Plasmodium humoral immunity.
Asunto(s)
Diferenciación Celular , Malaria , Plasmodium yoelii , Receptores de Cinasa C Activada , Factor de Transcripción STAT3 , Células T Auxiliares Foliculares , Animales , Receptores de Cinasa C Activada/metabolismo , Factor de Transcripción STAT3/metabolismo , Malaria/inmunología , Malaria/parasitología , Ratones , Plasmodium yoelii/inmunología , Células T Auxiliares Foliculares/inmunología , Células T Auxiliares Foliculares/metabolismo , Ratones Endogámicos C57BL , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Ratones Noqueados , Centro Germinal/inmunologíaRESUMEN
OBJECTIVE: Despite the high prevalence, mild traumatic brain injury (mTBI)-induced chronic headache and cognitive deficits are poorly understood and lack effective treatments. Low-dose interleukin-2 (LD-IL-2) treatment soon after mTBI or overexpressing IL-2 in brain astrocytes prior to injury protects mice from developing post-traumatic headache (PTH)-related behaviors and cognitive decline. The present study addresses a clinically relevant knowledge gap: whether LD-IL-2 treatment long after the initial injury is still effective for chronic PTH and cognitive deficits. METHODS: mTBI was induced by a noninvasive closed-head weight drop method. LD-IL-2 was administered 4-6 weeks post-mTBI to assess its effects on chronic PTH-related facial mechanical hypersensitivity as well as mTBI-induced impairment in novel object recognition and object location tests. Endogenous regulatory T (Treg) cells were depleted to investigate the mechanism of action of LD-IL-2. RESULTS: Delayed LD-IL-2 treatment abolished chronic PTH-related behaviors. It also completely reversed mTBI-induced cognitive impairment in both male and female mice. Treg cell depletion not only prolonged PTH-related behaviors but also abolished the effects of LD-IL-2. Interestingly, LD-IL-2 treatment significantly increased the number of Treg cells in dura but not in brain tissues. INTERPRETATION: These results suggest that the beneficial effects of LD-IL-2 treatment are mediated through the expansion of meningeal Treg cells. Collectively, our study identifies Treg as a cellular target and LD-IL-2 as a promising therapy for both chronic PTH and mTBI-induced cognitive impairment for both males and females, with a wide therapeutic time window and the potential of reducing polypharmacy in mTBI treatment. ANN NEUROL 2024;96:508-525.
Asunto(s)
Conmoción Encefálica , Disfunción Cognitiva , Modelos Animales de Enfermedad , Interleucina-2 , Animales , Ratones , Masculino , Femenino , Disfunción Cognitiva/etiología , Disfunción Cognitiva/tratamiento farmacológico , Conmoción Encefálica/complicaciones , Conmoción Encefálica/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Ratones Endogámicos C57BL , Cefalea Postraumática/etiología , Cefalea Postraumática/tratamiento farmacológico , Dolor/etiología , Dolor/tratamiento farmacológicoRESUMEN
Testis has an indispensable function in male reproduction of domestic animals. Numerous genes and metabolites were related to testicular development and spermatogenesis. However, little is known about the biological regulation pathways associated with fecundity in male Tibetan sheep. In this study, Testes were collected from Huoba Tibetan sheep (HB, 4614 m) and Gangba Tibetan sheep (GB, 4401 m) at extreme high altitude, and Alpine Merino sheep (AM, 2500 m, control group) at medium-high altitude, investigating the genes and metabolites levels of them. The histological analysis of testicular tissue using hematoxylin-eosin (HE) staining was performed for Tibetan sheep and Alpine Merino sheep, and the testes of them were analyzed by transcriptomics and metabolomics to explore the potential mechanism of testicular development and spermatogenesis. The statistical results showed that the cross-sectional area of testicular seminiferous tubules, diameter of seminiferous tubules, and spermatogenic epithelium thickness were significantly smaller in HB and GB than in AM (P < 0.05). Overall, 5648 differentially expressed genes (DEGs) and 336 differential metabolites (DMs) were identified in three sheep breeds, which were significantly enriched in spermatogenesis and other related pathways. According to integrated metabolomic and transcriptomic analysis, glycolysis/gluconeogenesis, AMPK signaling pathway, and TCA cycle, were predicted to have dramatic effects on the spermatogenesis of Tibetan sheep. Several genes (including Wnt2, Rab3a, Sox9, Hspa8, and Slc38a2) and metabolites (including L-histidinol, Glucose, Fumaric acid, Malic acid, and Galactose) were significantly enriched in pathways related to testicular development and spermatogenesis, and might affect the reproduction of Tibetan sheep by regulating the acrosome reaction, meiotic gene expression, and the production of sex hormones. Our results provide further understanding of the key genes and metabolites involved in testicular development and spermatogenesis in Tibetan sheep.
RESUMEN
BACKGROUND: Balanced lipid metabolism can improve the growth performance and meat quality of livestock. The m6A methylation-related genes METTL3 and FTO play important roles in animal lipid metabolism; however, the mechanism through which they regulate lipid metabolism in sheep is unclear. RESULTS: We established lipid deposition models of hepatocytes and preadipocytes in Hu sheep. In the hepatocyte lipid deposition model, the genes expression levels of FABP4, Accα, ATGL and METTL3, METTL14, and FTO-were significantly up-regulated after lipid deposition (P < 0.05). Transcriptomic and metabolomic analyses showed that lipid deposition had a significant effect on MAPK, steroid biosynthesis, and glycerophospholipid metabolism pathway in hepatocytes. The m6A methylation level decreased but the difference was not significant after METTL3 interference, and the expression levels of FABP4 and ATGL increased significantly (P < 0.05); the m6A methylation level significantly increased following METTL3 overexpression, and LPL and ATGL expression levels significantly decreased (P < 0.05), indicating that overexpression of METTL3 inhibited the expression of lipid deposition-related genes in a m6A-dependent manner. The m6A methylation level was significantly increased, ATGL expression was significantly decreased (P < 0.05), and LPL, FABP4, and Accα expression was not significantly changed following FTO interference (P > 0.05); the m6A methylation level was significantly decreased after FTO overexpression, and LPL, FABP4, and ATGL expression was significantly increased (P < 0.05), indicating that FTO overexpression increased the expression of lipid deposition-related genes in a m6A-dependent manner. Transcriptomic and metabolomic analyses showed that m6A methylation modification mainly regulated lipid metabolism through triglyceride metabolism, adipocytokine signaling, MAPK signaling, and fat digestion and absorption in hepatocytes. In the lipid deposition model of preadipocytes, the regulation of gene expression is the same as that in hepatocytes. CONCLUSIONS: METTL3 significantly inhibited the expression of lipid deposition-related genes, whereas FTO overexpression promoted lipid deposition. Our study provides a theoretical basis and reference for accurately regulating animal lipid deposition by mastering METTL3 and FTO genes to promote high-quality animal husbandry.
RESUMEN
BACKGROUND: Fibre diameter is an important economic trait of wool fibre. As the fibre diameter decreases, the economic value of wool increases. Therefore, understanding the mechanism of wool fibre diameter regulation is important in improving the value of wool. RESULTS: In this study, we used non-targeted metabolome and reference transcriptome data to detect differences in metabolites and genes in groups of Alpine Merino sheep with different wool fibre diameter gradients, and integrated metabolome and transcriptome data to identify key genes and metabolites that regulate wool fibre diameter. We found 464 differentially abundant metabolites (DAMs) and 901 differentially expressed genes (DEGs) in four comparisons of groups with different wool fibre diameters. Approximately 25% of the differentially abundant metabolites were lipid and lipid-like molecules. These molecules were predicted to be associated with skin development and keratin filament by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses. Key genes, including COL5A2, COL5A3, CREB3L4, COL1A1, and SFRP4, were identified by gene set enrichment analysis. CONCLUSIONS: Key genes regulating wool fibre diameter were identified, the effects of lipid molecules on wool performance were investigated, and potential synergies between genes and metabolites were postulated, providing a theoretical framework for fine wool sheep breeding.
Asunto(s)
Metaboloma , Transcriptoma , Fibra de Lana , Animales , Ovinos/genética , Ovinos/metabolismo , Lana/metabolismoRESUMEN
Skeletal muscle quality and yield are important production traits in livestock, and improving skeletal muscle quality while increasing its yield is an important goal of economic breeding. The proliferation and differentiation process of sheep myoblasts directly affects the growth and development of their muscles, thereby affecting the yield of mutton. Myomesin 3 (Myom3), as a functional gene related to muscle growth, currently lacks research on its function in myoblasts. This study aims to investigate the effect of the Myom3 gene on the proliferation and differentiation of sheep myoblasts and its potential molecular mechanisms. The results showed that inhibitor of Myom3 in the proliferation phase of myoblasts resulted in significant downregulation of the proliferation marker gene paired box 7 (Pax7) and myogenic regulatory factors (MRFs; Myf5, Myod1, Myog, P < 0.01), a significant decrease in the EdU-positive cell rate (P < 0.05), and a significant increase in the cell apoptosis rate (P < 0.01), which inhibited the proliferation of myoblasts and promoted their apoptosis. During the differentiation phase of myoblasts, the inhibitor of Myom3 resulted in significant downregulation of the Pax7 gene, upregulation of MRFs (Myod1, Myog, P < 0.05), and a significant increase in fusion index (P < 0.05), promoting the differentiation of myoblasts. Further transcriptome sequencing revealed that differentially expressed genes in the Myom3 interference group were mainly enriched in the MAPK signaling pathway, TNF signaling pathway, and IL-17 signaling pathway. In summary, the inhibitor of Myom3 inhibits myoblast proliferation and promotes myoblast differentiation. Therefore, Myom3 has a potential regulatory effect on the growth and development of sheep muscles, and in-depth functional research can be used for molecular breeding practices in sheep.
Asunto(s)
Diferenciación Celular , Proliferación Celular , Mioblastos , Animales , Mioblastos/metabolismo , Mioblastos/citología , Ovinos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Células Cultivadas , Apoptosis , Factor de Transcripción PAX7/metabolismo , Factor de Transcripción PAX7/genéticaRESUMEN
BACKGROUND: Increasing evidence suggests that circular RNA (circRNA) plays a regulatory role in the progression of renal cell carcinoma (RCC). However, the precise function and underlying mechanism of circSCNN1A in RCC progression still remain unclear. METHODS: The expression levels of circSCNN1A, microRNA-590-5p (miR-590-5p), claudin 8 (CLDN8), cyclin D1, matrix metalloprotein 2 (MMP2), MMP9, E-cadherin, N-cadherin and vimentin were detected by a quantitative real-time polymerase chain reaction and Western blotting analysis. Immunohistochemistry assay was performed to analyze the positive expression rate of CLDN8. Cell proliferation was investigated by cell colony formation, 5-Ethynyl-2'-deoxyuridine and DNA content quantitation assays. Cell migration and invasion were assessed by wound-healing and transwell invasion assays. Interactions among circSCNN1A, miR-590-5p and CLDN8 were identified by dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay. Xenograft mouse model assay was conducted to verify the effect of circSCNN1A on tumor formation in vivo. RESULTS: CircSCNN1A and CLDN8 expression were significantly downregulated, while miR-590-5p was upregulated in both RCC tissues and cells. CircSCNN1A overexpression inhibited RCC cell proliferation, migration and invasion, accompanied by decreases of cyclin D1, MMP2, MMP9, N-cadherin and vimentin expression and an increase of E-cadherin expression. CircSCNN1A acted as a miR-590-5p sponge and regulated RCC cell processes by binding to miR-590-5p. CLDN8, a target gene of miR-590-5p, was involved in the regulation of the biological behaviors of RCC cells by miR-590-5p. In addition, circSCNN1A induced CLDN8 production by interacting with miR-590-5p. Further, circSCNN1A suppressed tumor formation in vivo. CONCLUSION: CircSCNN1A inhibited RCC cell proliferation, migration and invasion by regulating the miR-590-5p/CLDN8 pathway.
Asunto(s)
Carcinoma de Células Renales , Movimiento Celular , Proliferación Celular , Claudinas , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales , MicroARNs , Invasividad Neoplásica , ARN Circular , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Animales , Movimiento Celular/genética , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Ratones , Línea Celular Tumoral , ARN Circular/genética , ARN Circular/metabolismo , Claudinas/genética , Claudinas/metabolismo , Ratones Desnudos , Femenino , MasculinoRESUMEN
BACKGROUND: The Alpine Merino is a new breed of fine-wool sheep adapted to the cold and arid climate of the plateau in the world. It has been popularized in Northwest China due to its superior adaptability as well as excellent production performance. Those traits related to body weight, wool yield, and wool fiber characteristics, which are economically essential traits in Alpine Merino sheep, are controlled by QTL (Quantitative Trait Loci). Therefore, the identification of QTL and genetic markers for these key economic traits is a critical step in establishing a MAS (Marker-Assisted Selection) breeding program. RESULTS: In this study, we constructed the high-density genetic linkage map of Alpine Merino sheep by sequencing 110 F1 generation individuals using WGR (Whole Genome Resequencing) technology. 14,942 SNPs (Single Nucleotide Polymorphism) were identified and genotyped. The map spanned 2,697.86 cM, with an average genetic marker interval of 1.44 cM. A total of 1,871 high-quality SNP markers were distributed across 27 linkage groups, with an average of 69 markers per LG (Linkage Group). Among them, the smallest genetic distance is 19.62 cM for LG2, while the largest is 237.19 cM for LG19. The average genetic distance between markers in LGs ranged from 0.24 cM (LG2) to 3.57 cM (LG17). The marker density in the LGs ranged from LG14 (39 markers) to LG1 (150 markers). CONCLUSIONS: The first genetic map of Alpine Merino sheep we constructed included 14,942 SNPs, while 46 QTLs associated with body weight, wool yield and wool fiber traits were identified, laying the foundation for genetic studies and molecular marker-assisted breeding. Notably, there were QTL intervals for overlapping traits on LG4 and LG8, providing potential opportunities for multi-trait co-breeding and further theoretical support for selection and breeding of ultra-fine and meaty Alpine Merino sheep.
Asunto(s)
Peso Corporal , Mapeo Cromosómico , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Lana , Animales , Peso Corporal/genética , Lana/crecimiento & desarrollo , Ovinos/genética , Ligamiento Genético , Marcadores Genéticos , Secuenciación Completa del Genoma , Fenotipo , Oveja Doméstica/genética , GenotipoRESUMEN
BACKGROUND: Gangba sheep as a famous breed of Tibetan sheep, its wool color is mainly white and black. Gangba wool is economically important as a high-quality raw material for Tibetan blankets and Tibetan serge. However, relatively few studies have been conducted on the wool color of Tibetan sheep. RESULTS: To fill this research gap, this study conducted an in-depth analysis of two populations of Gangba sheep (black and white wool color) using whole genome resequencing to identify genetic variation associated with wool color. Utilizing PCA, Genetic Admixture, and N-J Tree analyses, the present study revealed a consistent genetic relationship and structure between black and white wool colored Gangba sheep populations, which is consistent with their breed history. Analysis of selection signatures using multiple methods (FST, π ratio, Tajima's D), 370 candidate genes were screened in the black wool group (GBB vs GBW); among them, MC1R, MLPH, SPIRE2, RAB17, SMARCA4, IRF4, CAV1, USP7, TP53, MYO6, MITF, MC2R, TET2, NF1, JAK1, GABRR1 genes are mainly associated with melanin synthesis, melanin delivery, and distribution. The enrichment results of the candidate genes identified 35 GO entries and 19 KEGG pathways associated with the formation of the black phenotype. 311 candidate genes were screened in the white wool group (GBW vs GBB); among them, REST, POU2F1, ADCY10, CCNB1, EP300, BRD4, GLI3, and SDHA genes were mainly associated with interfering with the differentiation of neural crest cells into melanocytes, affecting the proliferation of melanocytes, and inhibiting melanin synthesis. 31 GO entries and 22 KEGG pathways were associated with the formation of the white phenotype. CONCLUSIONS: This study provides important information for understanding the genetic mechanism of wool color in Gangba, and provides genetic knowledge for improving and optimizing the wool color of Tibetan sheep. Genetic improvement and selective breeding to produce wool of specific colors can meet the demand for a diversity of wool products in the Tibetan wool textile market.
Asunto(s)
Polimorfismo de Nucleótido Simple , Lana , Animales , Ovinos/genética , Selección Genética , Pigmentación/genética , Estudio de Asociación del Genoma CompletoRESUMEN
BACKGROUND: The Tibetan sheep is one of the three major primitive sheep breeds in China, representing a unique and high-quality genetic resource in the Qinghai-Tibet Plateau and neighboring high-altitude regions, exhibiting exceptional adaptability to high-altitude climatic environments. However, research on the genetic relationships among different populations of Tibetan sheep at the whole-genome level remains insufficient. This study aims to explore the population structure and historical dynamics among 11 Tibetan sheep populations, accurately assess the genetic diversity within the populations, and providing a theoretical basis for the development of targeted genetic breeding strategies for Tibetan sheep. RESULTS: In this study, a total of 10,884,454 high-quality SNPs were obtained. All Tibetan sheep populations exhibited varying degrees of linkage disequilibrium, with similar decay rates; among them, the WT population showed the fastest decay, while the TS population exhibited the slowest decay rate. Analyses using Tajima's D and π indicated that the genetic diversity levels of the Tibetan sheep populations are generally low. Fst results revealed that most populations exhibited moderate to low levels of genetic differentiation. The effective population size among Tibetan sheep populations showed an increasing trend over time. The evolutionary relationships among Tibetan sheep populations reflect the correlation between their geographical locations and genomic genetic distances, while also indirectly confirming the impact of historical activities such as early human migration, admixture, fusion, and expansion on the population sizes and distributions of Tibetan sheep. CONCLUSIONS: The results indicate that the genetic diversity levels and genetic differentiation among Tibetan sheep populations are relatively low. In this study, we identified the genetic characteristics of Tibetan sheep populations, which exhibit low levels of diversity, genetic differentiation, and a strong population structure. A deeper genomic exploration of the population structure and diversity status of Tibetan sheep populations will provide theoretical support for subsequent genetic breeding and diversity conservation efforts.
Asunto(s)
Variación Genética , Genética de Población , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Animales , Tibet , Ovinos/genética , Filogenia , GenómicaRESUMEN
Recent studies have shown a role of inflammation in muscle atrophy and sarcopenia. However, no anti-inflammatory pharmacotherapy has been established for the treatment of sarcopenia. Here, we investigate the potential role of PPARα and its ligands on inflammatory response and PGC-1α gene expression in LPS-treated C2C12 myotubes. Knockdown of PPARα, whose expression was upregulated upon differentiation, augmented IL-6 or TNFα gene expression. Conversely, PPARα overexpression or its activation by ligands suppressed 2-h LPS-induced cytokine expression, with pemafibrate attenuating NF-κB or STAT3 phosphorylation. Of note, reduction of PGC-1α gene expression by LPS treatment for 24 hours was partially reversed by fenofibrate. Our data demonstrate a critical inhibitory role of PPARα in inflammatory response of C2C12 myotubes and suggest a future possibility of PPARα ligands as a candidate for anti-inflammatory therapy against sarcopenia.
Asunto(s)
PPAR alfa , Sarcopenia , Antiinflamatorios/metabolismo , Lipopolisacáridos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , FN-kappa B/metabolismo , PPAR alfa/metabolismo , Sarcopenia/metabolismo , Animales , RatonesRESUMEN
Phenotypic plasticity is the property of a genotype to produce different phenotypes under different environmental conditions. Understanding genetic and environmental factors behind phenotypic plasticity helps answer some longstanding biology questions and improve phenotype prediction. In this study, we investigated the phenotypic plasticity of flowering time and plant height with a set of diverse sorghum lines evaluated across 14 natural field environments. An environmental index was identified to quantitatively connect the environments. Reaction norms were then obtained with the identified indices for genetic dissection of phenotypic plasticity and performance prediction. Genome-wide association studies (GWAS) detected different sets of loci for reaction-norm parameters (intercept and slope), including 10 new genomic regions in addition to known maturity (Ma1) and dwarfing genes (Dw1, Dw2, Dw3, Dw4 and qHT7.1). Cross-validations under multiple scenarios showed promising results in predicting diverse germplasm in dynamic environments. Additional experiments conducted at four new environments, including one from a site outside of the geographical region of the initial environments, further validated the predictions. Our findings indicate that identifying the environmental index enriches our understanding of gene-environmental interplay underlying phenotypic plasticity, and that genomic prediction with the environmental dimension facilitates prediction-guided breeding for future environments.
RESUMEN
Phenotypic plasticity is an important topic in biology and evolution. However, how to generate broadly applicable insights from individual studies remains a challenge. Here, with flowering time observed from a large geographical region for sorghum and rice genetic populations, we examine the consistency of parameter estimation for reaction norms of genotypes across different subsets of environments and searched for potential strategies to inform the study design. Both sample size and environmental mean range of the subset affected the consistency. The subset with either a large range of environmental mean or a large sample size resulted in genetic parameters consistent with the overall pattern. Furthermore, high accuracy through genomic prediction was obtained for reaction norm parameters of untested genotypes using models built from tested genotypes under the subsets of environments with either a large range or a large sample size. With 1428 and 1674 simulated settings, our analyses suggested that the distribution of environmental index values of a site should be considered in designing experiments. Overall, we showed that environmental context was critical, and considerations should be given to better cover the intended range of the environmental variable. Our findings have implications for the genetic architecture of complex traits, plant-environment interaction, and climate adaptation.
Asunto(s)
Oryza , Sorghum , Fenotipo , Oryza/genética , Sorghum/genética , Genotipo , Adaptación FisiológicaRESUMEN
BACKGROUND: Extracellular vesicles (EVs) have been revealed to facilitate the development of oral squamous cavity cell carcinoma (OCSCC), while its supporting role in lymph node metastases is under continuous investigation. This study aimed to examine the function of cancer-associated fibroblasts (CAF)-derived EVs (CAF-EVs) during lymph node metastasis in OCSCC and the mechanisms. METHODS: CAF were isolated from OCSCC tissues of patients, and CAF-EVs were extracted and identified. EdU, colony formation, wound healing, and Transwell assays were performed. The OCSCC cells before and after CAF-EVs treatment were injected into mice to probe the effects of CAF-EVs on tumor growth and lymph node metastasis, respectively. The effect of CAF-EVs treatment on transcriptome changes in OCSCC cells was analyzed. Clinical data of patients with OCSCC were analyzed to determine the prognostic significance of the selected genes. Finally, loss-of-function assays were conducted to corroborate the involvement of polycomb complex protein BMI-1 (BMI1) and integrin beta1 (ITGB1). RESULTS: CAF-EVs promoted the malignant behavior of OCSCC cells and accelerated tumor growth and lymph node metastasis in mice. CAF-EVs significantly increased the expression of BMI1 and ITGB1, and the expression of BMI1 and ITGB1 was negatively correlated with the overall survival and relapse-free survival of OCSCC patients. Knockdown of BMI1 or ITGB1 in OCSCC cells abated the promoting effects of CAF-EVs in vitro and in vivo. CONCLUSION: CAF-EVs elicited the metastasis-promoting properties in OCSCC by elevating BMI1 and ITGB1, suggesting that BMI1 and ITGB1 could be potential biomarkers and therapeutic targets for OCSCC.
Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma de Células Escamosas , Vesículas Extracelulares , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Animales , Humanos , Ratones , Neoplasias de Cabeza y Cuello/metabolismo , Integrina beta1/genética , Metástasis Linfática/genética , Neoplasias de la Boca/metabolismo , Recurrencia Local de Neoplasia , Complejo Represivo Polycomb 1/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismoRESUMEN
Atom transfer radical polymerization (ATRP) is one of the most widely used methods for modifying surfaces with functional polymer films and has received considerable attention in recent years. Here, we report an electrochemically mediated surface-initiated ATRP to graft polymer brushes onto solid substrates catalyzed by ppm amounts of CuII/TPMA in water/MeOH solution. We systematically investigated the type and concentrations of copper/ligand and applied potentials correlated to the polymerization kinetics and polymer brush thickness. Gradient polymer brushes and various types of polymer brushes are prepared. Block copolymerization of 2-hydroxyethyl methacrylate (HEMA) and 3-sulfopropyl methacrylate potassium salt (PSPMA) (poly(HEMA-b-SPMA)) with ultralow ppm eATRP indicates the remarkable preservation of chain end functionality and a pronounced "living" characteristic feature of ppm-level eATRP in aqueous solution for surface polymerization.
RESUMEN
Herein, a visible-light-promoted radical cascade cyclization of heterocyclic ketene aminals (HKAs) and thiocyanates was developed to access functionalized fused 2-iminothiazolines. This novel cascade reaction can be realized under only visible-light irradiation without the help of external photocatalysts, oxidants, and additives. These multicomponent cascade reactions demonstrate excellent selectivity for the Z-isomers and ensure the formation of the products only in their isomeric form. Preliminary mechanism investigations demonstrated that HKAs and thiocyanates can form electron donor-acceptor complexes for harvesting the energy of visible light to activate substrates and generate reactive radicals. This protocol can be used for synthesizing various natural-like products such as fused 2-iminothiazolines. This approach demonstrates multiple advantages such as commercially available substrates, convenient operation, environmentally friendly, mild conditions, and an efficient multicomponent reaction (2A + B).
RESUMEN
Migraine, especially chronic migraine, is highly debilitating and still lacks effective treatment. The persistent headache arises from activation and sensitization of primary afferent neurons in the trigeminovascular pathway, but the underlying mechanisms remain incompletely understood. Animal studies indicate that signalling through chemokine C-C motif ligand 2 (CCL2) and C-C motif chemokine receptor 2 (CCR2) mediates the development of chronic pain after tissue or nerve injury. Some migraine patients had elevated CCL2 levels in CSF or cranial periosteum. However, whether the CCL2-CCR2 signalling pathway contributes to chronic migraine is not clear. Here, we modelled chronic headache with repeated administration of nitroglycerin (NTG, a reliable migraine trigger in migraineurs) and found that both Ccl2 and Ccr2 mRNA were upregulated in dura and trigeminal ganglion (TG) tissues that are implicated in migraine pathophysiology. In Ccl2 and Ccr2 global knockout mice, repeated NTG administration did not evoke acute or persistent facial skin hypersensitivity as in wild-type mice. Intraperitoneal injection of CCL2 neutralizing antibodies inhibited chronic headache-related behaviours induced by repeated NTG administration and repetitive restraint stress, suggesting that the peripheral CCL2-CCR2 signalling mediates headache chronification. We found that CCL2 was mainly expressed in TG neurons and cells associated with dura blood vessels, whereas CCR2 was expressed in subsets of macrophages and T cells in TG and dura but not in TG neurons under both control and disease states. Deletion of Ccr2 gene in primary afferent neurons did not alter NTG-induced sensitization, but eliminating CCR2 expression in either T cells or myeloid cells abolished NTG-induced behaviours, indicating that both CCL2-CCR2 signalling in T cells and macrophages are required to establish chronic headache-related sensitization. At cellular level, repeated NTG administration increased the number of TG neurons that responded to calcitonin-gene-related peptide (CGRP) and pituitary adenylate cyclase activating polypeptide (PACAP) as well as the production of CGRP in wild-type but not Ccr2 global knockout mice. Lastly, co-administration of CCL2 and CGRP neutralizing antibodies was more effective in reversing NTG-induced behaviours than individual antibodies. Taken together, these results suggest that migraine triggers activate CCL2-CCR2 signalling in macrophages and T cells. This consequently enhances both CGRP and PACAP signalling in TG neurons, ultimately leading to persistent neuronal sensitization underlying chronic headache. Our work not only identifies the peripheral CCL2 and CCR2 as potential targets for chronic migraine therapy, but also provides proof-of-concept that inhibition of both peripheral CGRP and CCL2-CCR2 signalling is more effective than targeting either pathway alone.
Asunto(s)
Quimiocina CCL2 , Trastornos Migrañosos , Receptores CCR2 , Animales , Ratones , Péptido Relacionado con Gen de Calcitonina/metabolismo , Cefalea , Ratones Noqueados , Trastornos Migrañosos/genética , Trastornos Migrañosos/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Receptores de QuimiocinaRESUMEN
A total of 37 characteristic terpenylated coumarins (1-25), including 17 undescribed compounds (1-5, 6a/6b, 7-10, 11a/11b-13a/13b), have been isolated from the root of Ferula ferulaeoides. Meanwhile, twelve pairs of enantiomers (6a/6b, 11a/11b-15a/15b, 17a/17b, 18a/18b, 20a/20b-22a/22b, and 25a/25b) were chirally purified. The structures of these new compounds were elucidated using HRESIMS, UV, NMR, and calculated 13C NMR with a custom DP4 + analysis. The absolute configurations of all the compounds were determined for the first time using electronic circular dichroism (ECD). Then, their inhibitory effects on nitric oxide (NO) production were evaluated with LPS-induced BV-2 microglia. Compared with the positive control minocycline (IC50 = 59.3 µM), ferulaferone B (2) exhibited stronger inhibitory potency with an IC50 value of 12.4 µM. The immunofluorescence investigation indicated that ferulaferone B (2) could inhibit Iba-1 expression in LPS-stimulated BV-2 microglia.