Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mutagenesis ; 38(2): 100-108, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-36932659

RESUMEN

Telomere length (TL), which is maintained by human telomerase reverse transcriptase (hTERT; component of telomerase) and/or TRF1/TRF2 (core components of shelterin) via different mechanisms, is essential for chromosomal stability and cell survival. Folates comprise a group of essential B9 vitamin that involve in DNA synthesis and methylation. This study aimed to evaluate the effects of folic acid (FA) and 5-methyltetrahydrofolate (5-MeTHF) on TL, chromosome stability, and cell survival of telomerase-negative BJ and telomerase-positive A375 cells in vitro. BJ and A375 cells were cultured in modified medium with FA or 5-MeTHF (22.6 or 2260 nM) for 28 days. TL and mRNA expression were determined by RT-qPCR. Chromosome instability (CIN) and cell death were measured by CBMN-Cyt assay. Results showed that abnormal TL elongation was observed in FA- and 5-MeTHF-deficient BJ cells. The TL of A375 cells showed no obvious alterations under the FA-deficient condition but was significantly elongated under the 5-MeTHF-deficient condition. In both BJ and A375 cells, FA and 5-MeTHF deficiency caused decreased TRF1, TRF2, and hTERT expression, increased CIN and cell death; while a high concentration of 5-MeTHF induced elongated TL, elevated CIN, increased TRF1 and TRF2 expression, and decreased hTERT expression, when compared with the FA counterpart. These findings concluded that folate deficiency induced TL instability in both telomerase-negative and -positive cells, and FA was more efficient in maintaining TL and chromosome stability compared with 5-MeTHF.


Asunto(s)
Melanoma , Telomerasa , Humanos , Ácido Fólico/farmacología , Telomerasa/genética , Telomerasa/metabolismo , Telómero/metabolismo , Inestabilidad Cromosómica , Fibroblastos/metabolismo
2.
Mutagenesis ; 38(3): 160-168, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-36966355

RESUMEN

Telomere length (TL), which is maintained by human telomerase reverse transcriptase (hTERT; component of telomerase) and/or TRF1/TRF2 (core components of shelterin) via different mechanisms, is essential for chromosomal stability and cell survival. Folates comprise a group of essential B9 vitamin that involve in DNA synthesis and methylation. This study aimed to evaluate the effects of folic acid (FA) and 5-methyltetrahydrofolate (5-MeTHF) on TL, chromosome stability, and cell survival of telomerase-negative BJ and telomerase-positive A375 cells in vitro. BJ and A375 cells were cultured in modified medium with FA or 5-MeTHF (22.6 or 2260 nM) for 28 days. TL and mRNA expression were determined by RT-qPCR. Chromosome instability (CIN) and cell death were measured by CBMN-Cyt assay. Results showed that abnormal TL elongation was observed in FA and 5-MeTHF deficient BJ cells. The TL of A375 cells showed no obvious alterations under the FA-deficient condition but was significantly elongated under the 5-MeTHF-deficient condition. In both BJ and A375 cells, FA and 5-MeTHF deficiency caused decreased TRF1, TRF2, and hTERT expression, increased CIN and cell death; while a high concentration of 5-MeTHF induced elongated TL, elevated CIN, increased TRF1 and TRF2 expression and decreased hTERT expression, when compared with the FA counterpart. These findings concluded that folate deficiency induced TL instability in both telomerase-negative and -positive cells, and FA was more efficient in maintaining TL and chromosome stability compared with 5-MeTHF.


Asunto(s)
Melanoma , Telomerasa , Humanos , Ácido Fólico/farmacología , Telomerasa/genética , Telomerasa/metabolismo , Telómero/metabolismo , Inestabilidad Cromosómica , Fibroblastos/metabolismo
3.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(4): 485-498, 2023 Aug 25.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-37643982

RESUMEN

Alzheimer's disease (AD) is a multifactorial and heterogenic disorder. MiRNA is a class of non-coding RNAs with 19-22 nucleotides in length that can regulate the expression of target genes in the post-transcriptional level. It has been found that the miRNAome in AD patients is significantly altered in brain tissues, cerebrospinal fluid and blood circulation, as compared to healthy subjects. Experimental studies have suggested that expression changes in miRNA could drive AD onset and development via different mechanisms. Therefore, targeting miRNA expression to regulate the key genes involved in AD progression is anticipated to be a promising approach for AD prevention and treatment. Rodent AD models have demonstrated that targeting miRNAs could block biogenesis and toxicity of amyloid ß, inhibit the production and hyper-phosphorylation of τ protein, prevent neuronal apoptosis and promote neurogenesis, maintain neural synaptic and calcium homeostasis, as well as mitigate neuroinflammation mediated by microglia. In addition, animal and human studies support the view that miRNAs are critical players contributing to the beneficial effects of cell therapy and lifestyle intervention to AD. This article reviews the most recent advances in the roles, mechanisms and applications of targeting miRNA in AD prevention and treatment based on rodent AD models and human intervention studies. The potential opportunities and challenges in clinical application of targeting miRNA for AD patients are also discussed.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Animales , Humanos , MicroARNs/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/prevención & control , Péptidos beta-Amiloides , Apoptosis , Microglía
4.
Curr Issues Mol Biol ; 44(2): 952-962, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35723348

RESUMEN

microRNAs are small endogenous noncoding RNAs that have emerged as key negative regulators that target gene expression through RISC. Our previous study showed that the methylenetetrahydrofolate reductase gene (MTHFR) plays a key role in one carbon metabolism, which is downregulated by miR-22-3p and miR-149-5p, and that it could exert a potential anti-cancer effect. Whether miR-22-3p/miR-149-5p can regulate MTHFR to exert anti-cancer effects has become the focus of our research. Normal (HL-7702 cells) and cancerous (QGY-7703/HepG2 cells) human hepatocellular cells were transfected with 100 nM hsa-miR-22-3p/hsa-miR-149-5p mimic or controls. After 24, 48, and 72 h, cell proliferation ability was tested using CCK-8. The changes in MTHFR expression at both the transcriptional and translational levels were determined by RT-qPCR and Western blotting, respectively. Cancerous cell invasion and migration ability were confirmed by means of a transwell assay. We found that ectopic miR-22-3p/miR-149-5p inhibits hepatocellular carcinoma cell proliferation but does not inhibit normal human hepatocyte proliferation. The transfection of ectopic miR-22-3p/miR-149-5p downregulated the MTHFR expression in QGY-7703 and HepG2 but not in HL-7702. QGY-7703 and HepG2 migration and invasion were inhibited by ectopic miR-22-3p/miR-149-5p. Additionally, we found that ectopic miR-22-3p/miR-149-5p significantly increased the expression of TP53INP1 and PDCD4 in QGY-7703. The results of the study suggest that miRNA-22-3p and miRNA-149-5p inhibit tumor growth and metastasis properties may be by regulating MTHFR and that they exert anticancer effects in hepatocellular carcinoma cells.

5.
Mutagenesis ; 37(1): 34-43, 2022 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-34791379

RESUMEN

Obese subjects have a high baseline of genotoxic stress, but the underlying mechanism is poorly understood. Given that obesity is associated with high bile acids (BA) and low folate, we aimed to determine the interactive effect of folate deficient or supplementation to the genotoxicity and cytotoxicity of BA in human colon and liver cells. NCM460 and L-02 cells were cultured in folate-deficient (22.6 nM) and replete (2260 nM) Roswell Park Memorial Institute (RPMI)-1640 medium with or without 50 µM deoxycholic acid (DCA) or lithocholic acid (LCA) for 7 days. Moreover, these cells were cultured in folate supplemented (5.65, 11.3 and 22.6 µM) and standard (2.26 µM) medium with 200 µM DCA or LCA for 7 days. Genotoxicity and cytotoxicity were measured using the cytokinesis-block micronucleus cytome assay. Our results showed that under folate-replete condition, 50 µM DCA or LCA significantly increased the rate of micronuclei (MN) in NCM460 and L-02 cells. Significantly, the MN-inducing effect of 50 µM DCA or LCA was further enhanced by folate deficiency. Interestingly, folate supplementation exerted a dose-dependent manner to significantly decrease the rates of MN, nucleoplasmic bridges, nuclear buds, apoptosis, and necrosis induced by 200 µM DCA or LCA in NCM460 and L-02 cells. In conclusion, the genotoxicity of moderate BA (50 µM) was exacerbated by folate deficiency and folate supplementation could efficiently protect cells against the genotoxicity and cytotoxicity of high BA (200 µM).


Asunto(s)
Ácidos y Sales Biliares , Daño del ADN , Colon , Ácido Fólico/farmacología , Humanos , Hígado , Pruebas de Micronúcleos/métodos
6.
Int J Cancer ; 148(4): 812-824, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-32949152

RESUMEN

Micronuclei, small spatially-separated, nucleus-like structures, are a common feature of human cancer cells. There are considerable heterogeneities in the sources, structures and genetic activities of micronuclei. Accumulating evidence suggests that micronuclei and main nuclei represent separate entities with respect to DNA replication, DNA damage sensing and repairing capacity because micronuclei are not monitored by the same checkpoints nor covered by the same nuclear envelope as the main nuclei. Thus, micronuclei are spatially restricted "mutation factories." Several large-scale DNA sequencing and bioinformatics studies over the last few years have revealed that most micronuclei display a mutational signature of chromothripsis immediately after their generation and the underlying molecular mechanisms have been dissected extensively. Clonal expansion of the micronucleated cells is context-dependent and is associated with chromothripsis and several other mutational signatures including extrachromosomal circular DNA, kataegis and chromoanasynthesis. These results suggest what was once thought to be merely a passive indicator of chromosomal instability is now being recognized as a strong mutator phenotype that may drive intratumoral genetic heterogeneity. Herein, we revisit the actionable determinants that contribute to the bursts of mutagenesis in micronuclei and present the growing number of evidence which suggests that micronuclei have distinct short- and long-term mutational and functional effects to cancer genomes. We also pose challenges for studying the long-term effects of micronucleation in the upcoming years.


Asunto(s)
Núcleo Celular/genética , Daño del ADN , Inestabilidad Genómica/genética , Micronúcleos con Defecto Cromosómico , Mutación , Neoplasias/genética , Cromotripsis , Humanos , Mitosis/genética , Neoplasias/patología , Proteína p53 Supresora de Tumor/genética
7.
Chromosoma ; 129(3-4): 181-200, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32671520

RESUMEN

Micronuclei are extra-nuclear bodies mainly derived from ana-telophase lagging chromosomes/chromatins (LCs) that are not incorporated into primary nuclei at mitotic exit. Unlike primary nuclei, most micronuclei are enclosed by nuclear envelope (NE) that is highly susceptible to spontaneous and irreparable rupture. Ruptured micronuclei act as triggers of chromothripsis-like chaotic chromosomal rearrangements and cGAS-mediated innate immunity and inflammation, raising the view that micronuclei play active roles in human aging and tumorigenesis. Thus, understanding the ways in which micronuclear envelope (mNE) goes awry acquires increased importance. Here, we review the data to present a general framework for this question. We firstly describe NE reassembly after mitosis and NE repair during interphase. Simultaneously, we briefly discuss how mNE is organized and how mNE rupture controls the fate of micronuclei and micronucleated cells. As a focus of this review, we highlight current knowledge about why mNE is rupture-prone and irreparable. For this, we survey observations from a series of elegant studies to provide a systematic overview. We conclude that the birth of rupture-prone and irreparable micronuclei may be the cumulative effects of their intracellular geographic origins, biophysical properties, and specific mNE features. We propose that DNA damage and immunogenicity in micronuclei increase stepwise from altered mNE components, mNE rupture, and refractory to repair. Throughout our discussion, we note interesting issues in mNE fragility that have yet to be resolved.


Asunto(s)
Núcleo Celular/genética , Fenómenos Fisiológicos Celulares , Daño del ADN , Micronúcleos con Defecto Cromosómico , Autofagia , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Cromatina , Cromosomas , Lamina Tipo B/metabolismo , Mitosis , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteolisis
8.
Mutagenesis ; 36(1): 95-107, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33450026

RESUMEN

Bulbus of Fritillaria cirrhosa D. Don (BFC), an outstanding antitussive and expectorant herbal drug used in China and many other countries, has potential but less understood genotoxicity. Previously, we have reported that aqueous extract of BFC compromised the spindle assembly checkpoint and cytokinesis in NCM460 cells. Here, we found that one remarkable observation in BFC-treated NCM460 cells was multipolar mitosis, a trait classically compromises the fidelity of chromosome segregation. More detailed investigation revealed that BFC-induced spindle multipolarity in metaphases and ana-telophases in a dose- and time-dependent manner, suggesting BFC-induced multipolar spindle conformation was not transient. The frequency of multipolar metaphase correlated well to that of multipolar ana-telophases, indicating that BFC-induced multipolar metaphases often persisted through anaphase. Unexpectedly, BFC blocked the proliferation of binucleated cells, suggesting spindle multipolarity was not downstream of BFC-induced cytokinesis failure. Exposure of BFC to early mitotic cells, rather than S/G2 cells, contributed greatly to spindle multipolarity, indicating BFC might disrupt centrosome integrity rather than induce centrosome overduplication. The immunofluorescence results showed that the centrosomes were severely fragmented by a short-term treatment of BFC and the extent of centrosome fragmentation in early mitotic cells was larger than this in S/G2 cells. Consistently, several genes (e.g. p53, Rb centrin-2, Plk-4, Plk-1 and Aurora-A) involved in regulating centrosome integrity were significantly deregulated by BFC. Together, our results suggest that BFC causes multipolar spindles primarily by inducing centrosome fragmentation. Coupling these results to our previous observations, we recommend the risk/benefit ratio should be considered in the practical use of BFC.


Asunto(s)
Centrosoma/metabolismo , Colon/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Fritillaria/química , Mitosis , Extractos Vegetales/farmacología , Huso Acromático/efectos de los fármacos , Centrosoma/efectos de los fármacos , Colon/metabolismo , Células Epiteliales/metabolismo , Humanos
9.
Hum Genet ; 139(4): 421-446, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32020362

RESUMEN

Y chromosome (ChrY), the male-specific sex chromosome, has been considered as a genetic wasteland. Aging-related mosaic loss of ChrY (LOY) has been known for more than half a century, but it was constantly considered as a neutral karyotype related to normal aging. These views have been challenged with genome-wide association studies identifying mosaic LOY in human somatic cells is the most commonly acquired mutation in male's genome and is associated with a wide spectrum of human diseases including cancer, Alzheimer's disease, and cardiovascular disease. These previously undescribed clinical significances deeply modify our perception on ChrY and open up a range of new questions. Here, we review the latest advances in our knowledge of the biological origins and clinical consequences of mosaic LOY. We highlight the association of mosaic LOY to pathogenic conditions and evaluate the cause-and-consequence relationships between mosaic LOY and pathogenesis. The known risk factors of mosaic LOY including age, genetic variants, ChrY structural aberrations and environmental stressors are discussed. In light of evidence from pioneering and more recent studies, we propose the micronucleation hypothesis and centromere-dysfunction and telomere-attrition models to explain how mosaic LOY occurs and why ChrY is prone to lose. We believe it is importantly and timely to extend mosaic LOY research from epidemiological associations to mechanistic studies. In this regard, we outline important gaps and assess several future directions from a biological and clinical perspective. An improved understanding of mosaic LOY will open new pathways to modify and increase healthy aging in males.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Cardiovasculares , Cromosomas Humanos Y , Mosaicismo , Neoplasias , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Cromosomas Humanos Y/genética , Cromosomas Humanos Y/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Neoplasias/genética , Neoplasias/metabolismo
10.
Mutagenesis ; 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33043986

RESUMEN

Glutamine (Gln) is a non-essential amino acid central for generating building blocks and cellular energy in tumours and rapidly proliferating non-transformed cells. However, the influence of Gln on regulating chromosomal stability of transformed and non-transformed cells remain poorly understand. We hypothesised that Gln is required for maintaining a homeostatic level of chromosomal stability. To this end, transformed cells HeLa and A375 and non-transformed cells NCM460 and HUVEC cells were intervened with varying concentrations of Gln (10, 1, 0.1 and 0.01 mM), with or without cisplatin (0.1 µg/ml), for 24 h. The cytokinesis-block micronucleus (MN) assay was used to determine chromosomal instability (CIN), the extent of which is reflected by the frequency of MN, nucleoplasmic bridge (NPB) and nuclear bud (NB). We demonstrated an unexpected decrease in the spontaneous rate of MN, but not NPB and NB, after Gln restriction in HeLa and A375 cells. Gln restriction reduced cisplatin-induced MN, but not NPB and NB, in HeLa and A375 cells. We further revealed that Gln restriction suppressed the proliferation of HeLa cells with high CIN induced by nocodazole, partially explaining why Gln restriction decreased the frequency of spontaneous and cisplatin-induced MN in transformed cells. In contrast, Gln restriction increased MN and NB, but not NPB, in NCM460 cells. In HUVEC cells, Gln restriction increased MN, NPB and NB. Meanwhile, Gln restriction sensitised NCM460 cells to cisplatin-induced genotoxicity. A similar but more pronounced pattern was observed in HUVEC cells. Collectively, these results suggest that the in vitro influences of Gln metabolism on CIN depend on cellular contexts: Transformed cells require high Gln to fine tune their CIN in an optimal rate to maximise genomic heterogeneity and fitness, whereas non-transformed cells need high Gln to prevent CIN.

11.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 49(4): 487-499, 2020 Aug 25.
Artículo en Zh | MEDLINE | ID: mdl-32985163

RESUMEN

Alzheimer's disease (AD) is an aging-related neurodegenerative disease and is associated with the accumulation of amyloid-ß (Aß) peptides in patient brains. AD can be classified into the familial type and sporadic type. Presenilin-1 (PS1) is the major risk gene for familial AD (fAD) because its mutations comprised over 80%of the total mutations causing fAD. PS1 is the catalytic subunit of the enzyme γ-secretase, which is responsible for the proteolytic cleavage of amyloid precursor protein (APP) to produce Aß. Although novel fAD-causing mutations in PS1 are being reported increasingly, the molecular mechanisms underlying how these mutations induce fAD remain elusive. Since over 90%of the fAD-causing mutations in PS1 leads to a reduction of γ-secretase activity, the PS1 loss-of-function mutation hypothesis has been emerged, which suggests that the loss of PS1 functions may be the root cause of AD. Recently, increasing number of evidence supports this hypothesis. First, PS1 loss-of-function mutations increase the production of long-length Aß by disturbing the cleavage sites of γ-secretase APP, thereby increasing the ratio of Aß42/Aß40; Second, PS1 loss-of-function mutations dysregulate endoplasmic reticulum calcium homeostasis in neurons; Third, PS1 loss-of-function mutations inhibit the autophagy activity of neurons, resulting in the abnormal accumulation of cleaved products from APP; Fourth, PS1 loss-of-function mutations alter the endocytosis and transcytosis processes in neurons, leading to neuratrophy; Fifth, PS1 loss-of-function mutations activate brain immune cells (astrocytes and microglia), which mount a strong neuroinflammation response; Last, PS1 loss-of-function mutations reduce the rates of glycolysis and the production of lactic acid, disrupting the balance of neuronal energy supply. In this article we summary the research progress on the PS1 loss-of-function hypothesis and pose several topics which would guide studies of this field in future.


Asunto(s)
Enfermedad de Alzheimer , Mutación , Presenilina-1 , Enfermedad de Alzheimer/genética , Humanos , Presenilina-1/genética
12.
Biochem Biophys Res Commun ; 503(2): 697-702, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-29909006

RESUMEN

Titanium dioxide nanoparticles (TiO2-NPs) have raised serious attention for their widely use and potential adverse effects on human mainly due to producing ROS. However, the influence of TiO2-NPs on telomere maintaining has not been studied clearly. Shelterin plays core roles in telomere length (TL) regulation. Abnormal TL are associated with chromosome instability (CIN) and high risk of diseases. This study investigated whether TiO2-NPs affect TL to induce CIN through ROS generation and the possible mechanisms. Human hepatocyte L-02 and hepatocarcinoma cells QGY were exposed to TiO2-NPs (0, 40, 80 µg/mL) for 72 h. The intracellular hydrogen dioxide (H2O2) concentration were measured. The TL, Nrf-2, and three core shelterin components (TRF1, TRF2, and POT1) transcription level were determined by quantitative real-time PCR. CIN was measured by cytokinesis-block micronucleus assay. TiO2-NPs exposure increased intracellular H2O2 in both L-02 and QGY cells, and induced Nrf-2, TRF1, TRF2, POT1 downregulated transcription compared with control (P < 0.001) in L-02 but all upregulated (P < 0.05) in QGY. Significant TL shortening (P < 0.001) and CIN increase (P < 0.01) in L-02 cells were observed but not in QGY cells. The differentially responses of the tested components of shelterin and Nrf-2 to oxidative stress induced by TiO2-NPs led to the weakened telomere protection in normal cells and effective telomere maintenance in cancer cells, respectively. The upregulation of Nrf-2 and shelterin could protect TL and chromosome stability against TiO2-NPs exposure.


Asunto(s)
Hepatocitos/metabolismo , Neoplasias Hepáticas/metabolismo , Nanopartículas/efectos adversos , Estrés Oxidativo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Titanio/efectos adversos , Línea Celular , Línea Celular Tumoral , Inestabilidad Cromosómica , Regulación hacia Abajo , Hepatocitos/patología , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Complejo Shelterina , Telómero/patología , Acortamiento del Telómero , Proteínas de Unión a Telómeros/genética , Regulación hacia Arriba
13.
Mutagenesis ; 33(4): 271-281, 2018 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-30085224

RESUMEN

Homeostasis of chromosomal instability (CIN) facilitates the origin and evolution of abnormal karyotypes that are critical for the survival and proliferation of cancer cells, but excessive CIN can result in cellular toxicity. Geraniin is a multifunctional ellagitannin found in some species of Geranium and Phyllanthus. We employed the cytokinesis-block micronucleus cytome assay to evaluate the CIN, nuclear division index (NDI) and apoptosis induced by geraniin in human colorectal adenocarcinoma cells (Colo205 and Colo320) and human colon mucosal epithelial cells (NCM460). Cells were exposed to 25, 50 or 100 µg/ml geraniin for 24, 48 or 72 h. 0.05 µg/ml mitomycin C was used as a positive control and media as a negative control. The results showed that, compared to negative controls, geraniin significantly reduced NDI (P < 0.01) and increased CIN (P < 0.01) and apoptosis (P < 0.05) in Colo205 and Colo320 cells in a dose- and time-dependent manner. Conversely, geraniin significantly increased NDI (P < 0.05) and decreased CIN (P < 0.001) and apoptosis (P < 0.01) in NCM460 cells. Moreover, CIN was positively associated with apoptosis (r = 0.437, P < 0.001) and negatively associated with NDI (r = -0.744, P < 0.001) in these cells. Together, our results highlight that the induction of catastrophic CIN may underlie the antitumor potential of geraniin. Our data also suggest that geraniin can decrease the risk of oncogenic transformation via decreasing CIN in normal cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Inestabilidad Cromosómica/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Glucósidos/farmacología , Taninos Hidrolizables/farmacología , Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Persona de Mediana Edad
14.
Molecules ; 23(4)2018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-29596305

RESUMEN

The tea catechin epigallocatechin-3-gallate (EGCG) proved to be the most potent physiologically active tea compound in vitro. It possesses antioxidant as well as pro-oxidant properties. EGCG has the effect of inducing apoptosis of tumor cells and inhibiting cell proliferation. Whether this effect is associated with the antioxidant or pro-oxidative effects of EGCG affecting the genome stability of normal and cancer cells has not been confirmed. Here, we selected Human normal colon epithelial cells NCM460 and colon adenocarcinoma cells COLO205 to investigate the effects of EGCG (0−40 µg/mL) on the genome stability and cell growth status. Chromosomal instability (CIN), nuclear division index (NDI), and apoptosis was measured by cytokinesis-block micronucleus assay (CBMN), and the expression of core genes in mismatch repair (hMLMLH1 and hMSH2) was examined by RT-qPCR. We found that EGCG significantly reduced CIN and apoptosis rate of NCM460 at all concentrations (5−40 µg/mL) and treatment time, EGCG at 5 µg/mL promoted cell division; EGCG could significantly induce chromosome instability in COLO205 cells and trigger apoptosis and inhibition of cell division. These results suggest that EGCG exhibits different genetic and cytological effects in normal and colon cancer cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Catequina/análogos & derivados , Inestabilidad Cromosómica/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Reparación de la Incompatibilidad de ADN/efectos de los fármacos , Catequina/química , Catequina/farmacología , Línea Celular Tumoral , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Humanos , Té/química
15.
Mutagenesis ; 32(6): 547-560, 2017 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-29165592

RESUMEN

Folates comprise the essential B9 vitamin that act as cofactors and cosubstrates in one-carbon metabolism for both biosynthesis and methylation of DNA and RNA. Folate deficiency (FD) has been shown to induce chromosomal instability (CIN), yet the underlying mechanisms are poorly understood. Here, we used human NCM460 colon mucosal cells as a model to investigate the effect of FD on spindle assembly checkpoint (SAC), a cell-cycle regulatory pathway preventing CIN during mitosis. Cells were maintained in medium containing 1.36 (FD) and 2260 nM (control, FC) folate for 21 days. CIN was measured by cytokinesis-block micronucleus assay; mitotic infidelity was determined by aberrant mitosis analysis; SAC activity was assessed by nocodazole-challenge assay, and the expression of core SAC genes was examined by real-time quantitative PCR (RT-qPCR). We found that, relative to FC, FD significantly induced CIN in a time-dependent way (P < 0.01). Mitotic cells cultured in FD medium had significant higher frequencies of misalignment, misegregation and spindle multipolarity than those cultured in FC medium (P < 0.01). FD-induced SAC impairment and overriding, resulting premature mitotic exit and cell multinucleation (P < 0.05). Moreover, FD deregulated the expression of several key SAC genes (P < 0.01). Overall, these data are the first to demonstrate that FD substantially compromises SAC network which predisposes cells to mitotic aberrations and CIN. These results establish a new link between folate metabolism and SAC signalling, two pathways that are highly relevant for tumorigenesis.


Asunto(s)
Inestabilidad Cromosómica , Colon/patología , Deficiencia de Ácido Fólico/patología , Puntos de Control de la Fase M del Ciclo Celular , Mitosis , Biomarcadores/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Inestabilidad Cromosómica/efectos de los fármacos , Inestabilidad Cromosómica/genética , Ensayo de Unidades Formadoras de Colonias , Ácido Fólico/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase M del Ciclo Celular/genética , Modelos Biológicos
17.
Int J Mol Sci ; 17(9)2016 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-27598149

RESUMEN

The fruit of Phyllanthus emblica Linn. (PE) has been widely consumed as a functional food and folk medicine in Southeast Asia due to its remarkable nutritional and pharmacological effects. Previous research showed PE delays mitotic progress and increases genomic instability (GIN) in human colorectal cancer cells. This study aimed to investigate the similar effects of PE by the biomarkers related to spindle assembly checkpoint (SAC), mitotic aberrations and GIN in human NCM460 normal colon epithelial cells. Cells were treated with PE and harvested differently according to the biomarkers observed. Frequencies of micronuclei (MN), nucleoplasmic bridge (NPB) and nuclear bud (NB) in cytokinesis-block micronucleus assay were used as indicators of GIN. Mitotic aberrations were assessed by the biomarkers of chromosome misalignment, multipolar division, chromosome lagging and chromatin bridge. SAC activity was determined by anaphase-to- metaphase ratio (AMR) and the expression of core SAC gene budding uninhibited by benzimidazoles related 1 (BubR1). Compared with the control, PE-treated cells showed (1) decreased incidences of MN, NPB and NB (p < 0.01); (2) decreased frequencies of all mitotic aberration biomarkers (p < 0.01); and (3) decreased AMR (p < 0.01) and increased BubR1 expression (p < 0.001). The results revealed PE has the potential to protect human normal colon epithelial cells from mitotic and genomic damages partially by enhancing the function of SAC.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Inestabilidad Genómica/efectos de los fármacos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Phyllanthus/química , Extractos Vegetales/farmacología , Línea Celular , Colon/citología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Frutas/química , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
18.
Front Aging Neurosci ; 16: 1346978, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38501059

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid beta (Aß) in brain. Mounting evidence has revealed critical roles of microRNAs (miRNAs) in AD pathogenesis; however, the miRNAs directly targeting presenilin1 (PSEN1), which encodes the catalytic core subunit of γ-secretase that limits the production of Aß from amyloid precursor protein (APP), are extremely understudied. The present study aimed to identify miRNAs targeting PSEN1 and its effect on Aß production. This study first predicted 5 candidate miRNAs that may target PSEN1,through websites such as TargetScan, miRDB, and miRwalk. Subsequently, the targeting specificity of the candidate miRNAs towards PS1 was validated using dual-luciferase reporter assays. To investigate the regulatory effect of miR-3940-5p on gene expression based on its targeting of PS1, miR-3940-5p mimics or inhibitors were transiently transfected into SH-SY5Y cells. Changes in PSEN1 transcription and translation in the tested cells were detected using RT-qPCR and Western Blot, respectively. Finally, to explore whether miR-3940-5p affects Aß production, SH-SY5Y APPswe cells overexpressing the Swedish mutant type of APP were transiently transfected with miR-3940-5p mimics, and the expression level of Aß was detected using ELISA. The results are as follows: The dual-luciferase reporter assays validated the targeting specificity of miR-3940-5p for PSEN1. Overexpression of miR-3940-5p significantly reduced the mRNA and protein levels of PSEN1 in SH-SY5Y cells. Conversely, inhibition of miR-3940-5p led to an increase in PSEN1 mRNA levels. Transfection of miR-3940-5p mimics into SH-SY5Y-APPswe cells resulted in a significant reduction in Aß42 and Aß40. Lentiviral-mediated overexpression of miR-3940-5p significantly decreased the expression of PSEN1 and did not significantly affect the expression of other predicted target genes. Furthermore, stable overexpression of miR-3940-5p in SH-SY5Y-APPswe cells mediated by lentivirus significantly reduced the expression of PSEN1 and the production of Aß42 and Aß40. Therefore, our study demonstrates for the first time the functional importance of miR-3940-5p in antagonizing Aß production through specific and direct targeting of PSEN1.

19.
Aging Cell ; 23(5): e14121, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38450924

RESUMEN

Although studies have demonstrated that genome instability is accumulated in patients with Alzheimer's disease (AD), the specific types of genome instability linked to AD pathogenesis remain poorly understood. Here, we report the first characterization of the age- and sex-related trajectories of telomere length (TL) and micronuclei in APP/PS1 mice model and wild-type (WT) controls (C57BL/6). TL was measured in brain (prefrontal cortex, cerebellum, pituitary gland, and hippocampus), colon and skin, and MN was measured in bone marrow in 6- to 14-month-old mice. Variation in TL was attributable to tissue type, age, genotype and, to a lesser extent, sex. Compared to WT, APP/PS1 had a significantly shorter baseline TL across all examined tissues. TL was inversely associated with age in both genotypes and TL shortening was accelerated in brain of APP/PS1. Age-related increase of micronuclei was observed in both genotypes but was accelerated in APP/PS1. We integrated TL and micronuclei data with data on cognition performance and brain amyloidosis. TL and micronuclei were linearly correlated with cognition performance or Aß40 and Aß42 levels in both genotypes but to a greater extent in APP/PS1. These associations in APP/PS1 mice were dominantly driven by females. Together, our findings provide foundational knowledge to infer the TL and micronuclei trajectories in APP/PS1 mice during disease progression, and strongly support that TL attrition and micronucleation are tightly associated with AD pathogenesis in a female-biased manner.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Disfunción Cognitiva , Modelos Animales de Enfermedad , Ratones Transgénicos , Animales , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Ratones , Amiloidosis/patología , Amiloidosis/metabolismo , Amiloidosis/genética , Femenino , Disfunción Cognitiva/patología , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Masculino , Encéfalo/patología , Encéfalo/metabolismo , Telómero/metabolismo , Telómero/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Caracteres Sexuales , Ratones Endogámicos C57BL , Presenilina-1/genética , Presenilina-1/metabolismo , Micronúcleos con Defecto Cromosómico
20.
Int J Vitam Nutr Res ; 83(5): 271-80, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-25305222

RESUMEN

Phyllanthus emblica L. (PE) is an edible fruit indigenous to Southeast Asia. It has been considered as a potent functional food due to its numerous pharmacological applications, such as anti-oxidant, antimicrobial, anti-diabetic and protection for multiple organs. The aim of this study was to evaluate the effects of a water extract of PE fruit on genomic damage and cell death in the human colon adenocarcinoma cell line COLO320 using the cytokinesis-block micronucleus cytome assay. Cells were exposed to RPMI-1640 medium containing 0, 20, 40, 80, or 160 µg/mL PE for 24, 48, 72, or 96 hours. The results showed that PE induced a significant decrease in necrosis (p < 0.001) and nuclear division index (NDI) (p < 0.001) in a dose- and time-dependent manner, and there was a highly significant correlation between the reduction of necrosis and NDI (r = 0.820, p < 0.001). Dose- and time-dependent increases (p < 0.001) in the frequency of chromosomal instability (CIN) were observed after PE exposure, and the frequency of CIN was negatively correlated with NDI (r = - 0.640, p < 0.001). PE also significantly increased apoptosis (p < 0.001), and there was a significant correlation of apoptosis with CIN (r = 0.566, p < 0.001). In conclusion, PE suppresses necrosis and delays mitotic progression, which results in massive CIN followed by apoptosis in COLO320 cells.


Asunto(s)
Inestabilidad Cromosómica/efectos de los fármacos , Frutas , Phyllanthus emblica , Fitoterapia/métodos , Extractos Vegetales/farmacología , Apoptosis/efectos de los fármacos , Células Cultivadas , Neoplasias del Colon , Humanos , Pruebas de Micronúcleos/métodos , Necrosis/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA