Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 212(2): 346-354, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38054905

RESUMEN

TNF-α and IFN-γ are two inflammatory cytokines that play critical roles in immune responses, but they can also negatively affect cell proliferation and viability. In particular, the combination of the two cytokines (TNF-α/IFN-γ) synergistically causes cytotoxicity in many cell types. We recently reported that mouse embryonic stem cells (ESCs) isolated from the blastocyst stage embryo do not respond to TNF-α and have limited response to IFN-γ, thereby avoiding TNF-α/IFN-γ cytotoxicity. The current study expanded our investigation to mouse trophoblast stem cells (TSCs) and their differentiated trophoblasts (TSC-TBs), the precursors and the differentiated cells of the placenta, respectively. In this study, we report that the combination of TNF-α/IFN-γ does not show the cytotoxicity to TSCs and TSC-TBs that otherwise effectively kills fibroblasts, similar to ESCs. Although ESCs, TSCs, and TSC-TBs are dramatically different in their growth rate, morphology, and physiological functions, they nevertheless share a similarity in being able to avoid TNF-α/IFN-γ cytotoxicity. We propose that this unique immune property may serve as a protective mechanism that limits cytokine cytotoxicity in the blastocyst. With molecular and cellular approaches and genome-wide transcriptomic analysis, we have demonstrated that the attenuated NF-κB and STAT1 transcription activation is a limiting factor that restricts the effect of TNF-α/IFN-γ on TSCs and TSC-TBs.


Asunto(s)
Citocinas , Factor de Necrosis Tumoral alfa , Animales , Femenino , Ratones , Embarazo , Citocinas/metabolismo , Interferón gamma , FN-kappa B/metabolismo , Trofoblastos/fisiología , Factor de Necrosis Tumoral alfa/metabolismo
2.
J Cell Mol Med ; 28(3): e18088, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38146591

RESUMEN

Lysosomal dysfunction can drive carcinogenesis. Lysosomal-associated membrane protein 3 (LAMP3), is a member of the Lysosome Associated Membrane Proteins and is involved in the malignant phenotype such as tumour metastasis and drug resistance, while the mechanisms that regulate the malignant progression of tumour remain vague. Our study aims to provide a more systematic and comprehensive understanding of the role of LAMP3 in the progression of various cancers by various databases.We explored the role of LAMP3 in pan-cancer using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) database. Multiple online web platforms and software were used for data analysis, including HPA, TIMER, TISIDB, GEPIA, UALCAN, Kaplan-Meier plotter, DAVID and TIGER. The immunohistochemistry was used to quantify the LAMP3 and PD-L1 expression levels in cancer.High LAMP3 expression was found in most cancers and differentially expressed across molecular and immune subtypes. The expression of LAMP3 was involved in the immune-associated processes of Antigen processing and presentation, Th17 cell differentiation, Th1 and Th2 cell differentiation, and the immune-associated pathways of T cell receptor and B cell receptor signalling pathways in most cancers. It also correlated with genetic markers of immunomodulators in various cancers. LAMP3 and PD-L1 expression in BRCA and HNSC tissues was higher than that in corresponding adjacent normal tissues by immunohistochemistry. There is a significant correlation between the expression of LAMP3 and PD-L1.Our study elucidates that LAMP3 has different expression patterns and genetic alteration patterns in different tumours. It is a potential biomarker for immune-related cancer diagnosis, prognosis and efficacy prediction.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Humanos , Proteína 3 de la Membrana Asociada a Lisosoma , Pronóstico , Proteínas de Membrana de los Lisosomas
3.
Langmuir ; 40(2): 1364-1372, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38175958

RESUMEN

Ostwald ripening, the dominant mechanism of droplet size growth for an O/W nanoemulsion at high surfactant concentrations, depends on micelles in the water phase and high aqueous solubility of oil, especially for spontaneously formed nanoemulsions. In our study, O/W nanoemulsions were formed spontaneously by mixing a water phase with an oil phase containing fatty alcohol polyoxypropylene polyoxyethylene ether (APE). By monitoring periodically the droplet size of the nanoemulsions via dynamic light scattering, we demonstrated that the formed O/W nanoemulsions are stable against Ostwald ripening, i.e., droplet growth. In contrast, the nanoemulsion droplets grew with the addition of micelles, demonstrating the pivotal role of the presence of micelles in the water phase in the occurrence of Ostwald ripening. The influence of the initial phase of APE, the oil or water phase in which APE is present, on the micelle formation is discussed by the partition coefficient and interfacial adsorption of APE between the oil and water phase using a surface and interfacial tensiometer. In addition, the spontaneously formed O/W nanoemulsion, which is stable against Ostwald ripening, can be used as a nanocarrier for the delivery of water-insoluble pesticides. These results provide a novel approach for the preparation of stable nanoemulsions and contribute to elucidating the mechanism of instability of nanoemulsions.

4.
RNA Biol ; 21(1): 1-12, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38032240

RESUMEN

NAD can be inserted co-transcriptionally via non-canonical initiation to form NAD-RNA. However, that mechanism is unlikely for CoA-linked RNAs due to low intracellular concentration of the required initiator nucleotide, 3'-dephospho-CoA (dpCoA). We report here that phosphopantetheine adenylyltransferase (PPAT), an enzyme of CoA biosynthetic pathway, accepts RNA transcripts as its acceptor substrate and transfers 4'-phosphopantetheine to yield CoA-RNA post-transcriptionally. Synthetic natural (RNAI) and small artificial RNAs were used to identify the features of RNA that are needed for it to serve as PPAT substrate. RNAs with 4-10 unpaired nucleotides at the 5' terminus served as PPAT substrates, but RNAs having <4 unpaired nucleotides did not undergo capping. No capping was observed when the +1A was changed to G or when 5' triphosphate was removed by RNA pyrophosphohydrolase (RppH), suggesting the enzyme recognizes pppA-RNA as an ATP analog. PPAT binding affinities were equivalent for transcripts with +1A, +1 G, or 5'OH (+1A), indicating that productive enzymatic recognition is driven more by local positioning effects than by overall binding affinity. Capping rates were independent of the number of unpaired nucleotides in the range of 4-10 nucleotides. Capping was strongly inhibited by ATP, reducing CoA-RNA production ~70% when equimolar ATP and substrate RNA were present. Dual bacterial expression of candidate RNAs with different 5' structures followed by CoA-RNA CaptureSeq revealed 12-fold enrichment of the better PPAT substrate, consistent with in vivo CoA-capping of RNA transcripts by PPAT. These results suggest post-transcriptional RNA capping as a possible mechanism for the biogenesis of CoA-RNAs in bacteria.


Asunto(s)
Coenzima A , NAD , Coenzima A/metabolismo , Nucleotidiltransferasas/química , Adenosina Trifosfato
5.
J Immunol ; 208(10): 2259-2266, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35577384

RESUMEN

Embryonic stem cells (ESCs) represent a unique cell population in the blastocyst stage embryo. They have been intensively studied as a promising cell source for regenerative medicine. Recent studies have revealed that both human and mouse ESCs are deficient in expressing IFNs and have attenuated inflammatory responses. Apparently, the ability to express IFNs and respond to certain inflammatory cytokines is not "innate" to ESCs but rather is developmentally acquired by somatic cells during differentiation. Accumulating evidence supports a hypothesis that the attenuated innate immune response may serve as a protective mechanism allowing ESCs to avoid immunological cytotoxicity. This review describes our current understanding of the molecular basis that shapes the immune properties of ESCs. We highlight the recent findings on Dicer and dsRNA-activated protein kinase R as novel regulators of ESC fate and antiviral immunity and discuss how ESCs use alternative mechanisms to accommodate their stem cell properties.


Asunto(s)
Antivirales , Células Madre Embrionarias , Animales , Antivirales/metabolismo , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Inmunidad Innata , Ratones , Células Madre Embrionarias de Ratones
6.
J Immunol ; 208(12): 2761-2770, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35649628

RESUMEN

The blastocyst is the preimplantation stage embryo that consists of two major components: the inner cell mass (ICM) and the trophectoderm (TE). The ICM gives rise to the fetus and some extraembryonic tissues whereas the TE contributes to development of the placenta. Previous studies have demonstrated that both human and mouse embryonic stem cells (ESCs) derived from the ICM are deficient in expressing type I IFNs in response to viral infection. In this study, we investigated the IFN response in mouse trophoblast stem cells (TSCs) and their in vitro differentiated trophoblasts (TSC-TBs). In this study, we report that, unlike ESCs, TSCs have a functional IFN system. They can express type I IFNs in response to viral stimuli and express IFN-stimulated genes in response to type I IFNs. TSC-TBs have a further developed IFN system and acquired the ability to express specialized type III IFN-λ. Furthermore, TSCs and TSC-TBs can provide ESCs with antiviral activity against Chikungunya, West Nile, and Zika virus infection, as demonstrated with a novel coculture model that simulates the temporal and spatial relationship between the ICM and the TE in a blastocyst. Taken together, our data demonstrate that mouse ESCs can respond to type I IFNs and gain IFN-based antiviral protection from TSCs and TSC-TBs via paracrine signaling mechanisms even though they themselves are unable to express type I IFNs.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Animales , Antivirales/metabolismo , Diferenciación Celular , Células Madre Embrionarias , Femenino , Humanos , Ratones , Comunicación Paracrina , Embarazo , Trofoblastos
7.
Cancer Cell Int ; 23(1): 285, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37986192

RESUMEN

BACKGROUND: TSTA3 gene encoding GDP-L-fucose synthase has recently been proved to be closely related to the prognosis of patients with various tumors. However, its role in lung cancer is still unclear. The purpose of this study is to explore the expression level, prognostic effect, potential function and mechanism of TSTA3 in lung cancer. METHODS: Based on TCGA database, Kaplan-Meier and COX regression was used to analyze the relationship between TSTA3 expression and prognosis of lung cancer patients. Immunohistochemistry was used to determine the TSTA3 protein expression in lung cancer and normal tissues. The function of TSTA3 in lung squamous cell carcinoma (LUSC) cell was determined by CCK8, colony formation, transwell assay in vitro and subcutaneous xenografts in vivo. Transcriptome analysis, Lyso-Tracker Red staining and rescue experiment were used to explore the possible underlying mechanism. RESULTS: The expression of TSTA3 was significantly increased in lung cancer, especially in LUSC, and was significantly correlated with the malignant characteristics of LUSC. COX regression analysis showed that the high expression of TSTA3 was an independent prognostic factor in LUSC patients. This was also confirmed by immunohistochemical staining. Compared with the control group, the proliferation, colony formation, invasion and migration ability of LUSC cells with TSTA3 overexpression was enhanced. Similarly, the ability of cell proliferation, colony formation, invasion and migration were weakened after transient knockdown of TSTA3. In vivo experiment showed that compared with control group, TSTA3 overexpression significantly promoted the growth of tumor and shortened survival time. In addition, transcriptome sequencing analysis showed that the differentially expressed genes between TSTA3 overexpression and control group was mainly concentrated in the lysosome pathway. Further study found that TSTA3 might affect the proliferation, invasion and migration of LUSC by regulating the expression of lysosome-associated membrane protein 2 (LAMP2) in LUSC. CONCLUSION: The expression level of TSTA3 in LUSC is significantly higher than that in normal tissues. High expression of TSTA3 is associated with poor prognosis of LUSC patients. TSTA3 may affect the proliferation, invasion and migration of LUSC by regulating LAMP2.

8.
Cell Biol Toxicol ; 39(3): 885-906, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-34637036

RESUMEN

Vitamin D3 is believed to be a contributing factor to innate immunity. Vitamin D receptor (VDR) has a positive effect on inhibiting nuclear factor κB (NF-κB)-mediated inflammation. The underlying molecular mechanisms remain unclear, particularly in mollusks. Consequently, this study will investigate the process of vitamin D3/VDR regulating NF-κB pathway and further explore their functions on inflammation, autophagy, and apoptosis in abalone Haliotis discus hannai. Results showed that knockdown of VDR by using siRNA and dsRNA of VDR in vitro and in vivo led to more intense response of NF-κB signaling to lipopolysaccharide and higher level of apoptosis and autophagy. In addition, 1,25(OH)2D3 stimulation after VDR silencing could partially alleviate apoptosis and induce autophagy. Overexpression of VDR restricted the K48-polyubiquitin chain-dependent inhibitor of κB (IκB) ubiquitination and apoptosis-associated speck-like protein containing CARD (ASC) oligomerization. Besides, VDR silencing resulted in increase of ASC speck formation. In further mechanistic studies, we showed that VDR can directly bind to IκB and IKK1 in vitro and in vivo. In the feeding trial, H&E staining, TUNEL, and electron microscope results showed that vitamin D3 deficiency (0 IU/kg) could recruit more basophilic cells and increase more TUNEL-positive apoptotic cells and lipid droplets (LDs) than vitamin D3 supplement (1000 IU/kg and 5000 IU/kg). In summary, abalone VDR plays a negative regulator role in NF-κB-mediated inflammation via interacting with IκB and inhibiting ubiquitin-dependent degradation of IκB. Vitamin D3 in combination with VDR is essential to establish a delicate balance between autophagy and apoptosis in response to inflammation.


Asunto(s)
FN-kappa B , Receptores de Calcitriol , Humanos , FN-kappa B/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Colecalciferol/farmacología , Inflamación/genética , Apoptosis
9.
Med Sci Monit ; 29: e938574, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36775942

RESUMEN

BACKGROUND This single-center study of 15 patients with chronic tension-type headache aimed to compare the cranio-cervical extensor muscles between patients with chronic tension-type headache and healthy individuals and to explore the relationship between changes in cranio-cervical extensor muscles and quality of life (QoL). MATERIAL AND METHODS We recruited 15 patients with chronic tension-type headache and 15 healthy individuals. Patients with chronic tension-type headache were diagnosed by 2 neurologists according to the diagnostic criteria in the International Classification of Headache Disorders, 3rd edition (ICHD-3). Morphological changes in the cranio-cervical extensor muscle were detected using magnetic resonance imaging (MRI). QoL and the degree of neck dysfunction were assessed using the Headache Impact Test-6 (HIT-6) and Neck Disability Index (NDI), respectively. RESULTS The relative cross-sectional areas (rCSAs) of the rectus capitis posterior minor (RCPmin) were lower in patients with chronic tension-type headache than in healthy individuals. The HIT-6 scores (r=-0.93, P<0.001 and r=-0.85, P<0.001 for RCPmin right side and left side, respectively) and NDI scores (r=-0.75, P<0.001 and r=-0.70, P<0.001 for RCPmin right side and left side, respectively) were negatively associated with the rCSA of RCPmin in the chronic tension-type headache group. CONCLUSIONS Most patients with chronic tension-type headache experience RCPmin atrophy. The more evident the RCPmin atrophy, the worse the QoL of the patients with chronic tension-type headache.


Asunto(s)
Cefalea de Tipo Tensional , Humanos , Calidad de Vida , Músculo Esquelético/patología , Cefalea , Atrofia/patología
10.
Med Sci Monit ; 29: e940589, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37026421

RESUMEN

The authors requested to correct the spelling of labels in Figure 3. The correct spelling should be "Healthy persons". The other elements of the figure remain the same, and the interpretation of the results remain unchanged. Reference: Xiaoman Min, Yongjun Huo, Ning Sun, Hongwei Zhi, Haitao Li, Sishuo Zhang, Wenqiang Cui, Yanlin Guo, Hongyun Wu: Relationship Between Changes in Cranio-Cervical Extensor Muscles and Quality of Life: A Single-Center Study of 15 Patients with Chronic Tension-Type Headache. Med Sci Monit, 2023; 29: e938574. DOI: 10.12659/MSM.938574.


Asunto(s)
Cefalea de Tipo Tensional , Humanos , Calidad de Vida , Cuello , Músculo Esquelético
11.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36768731

RESUMEN

Farnesoid X receptor, also known as the bile acid receptor, belongs to the nuclear receptor (NR) superfamily of ligand-regulated transcription factors, which performs its functions by regulating the transcription of target genes. FXR is highly expressed in the liver, small intestine, kidney and adrenal gland, maintaining homeostasis of bile acid, glucose and lipids by regulating a diverse array of target genes. It also participates in several pathophysiological processes, such as inflammation, immune responses and fibrosis. The kidney is a key organ that manages water and solute homeostasis for the whole body, and kidney injury or dysfunction is associated with high morbidity and mortality. In the kidney, FXR plays an important role in renal water reabsorption and is thought to perform protective functions in acute kidney disease and chronic kidney disease, especially diabetic kidney disease. In this review, we summarize the recent advances in the understanding of the physiological and pathophysiological function of FXR in the kidney.


Asunto(s)
Nefropatías Diabéticas , Riñón , Humanos , Ácidos y Sales Biliares , Hígado , Factores de Transcripción , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo
12.
J Biol Chem ; 296: 100264, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33837743

RESUMEN

Recent studies have demonstrated that embryonic stem cells (ESCs) are deficient in expressing type I interferons (IFN), the cytokines that play key roles in antiviral responses. However, the underlying molecular mechanisms and biological implications of this finding are poorly understood. In this study, we developed a synthetic RNA-based assay that can simultaneously assess multiple forms of antiviral responses. Dicer is an enzyme essential for RNA interference (RNAi), which is used as a major antiviral mechanism in invertebrates. RNAi activity is detected in wild-type ESCs but is abolished in Dicer knockout ESCs (D-/-ESCs) as expected. Surprisingly, D-/-ESCs have gained the ability to express IFN, which is otherwise deficient in wild-type ESCs. Furthermore, D-/-ESCs have constitutively active double-stranded RNA (dsRNA)-activated protein kinase (PKR), an enzyme that is also involved in antiviral response. D-/-ESCs show increased sensitivity to the cytotoxicity resulting from RNA transfection. The effects of dsRNA can be partly replicated with a synthetic B2RNA corresponding to the retrotransposon B2 short interspersed nuclear element. B2RNA has secondary structure features of dsRNA and accumulates in D-/-ESCs, suggesting that B2RNA could be a cellular RNA that activates PKR and contributes to the decreased cell proliferation and viability of D-/-ESCs. Treatment of D-/-ESCs with a PKR inhibitor and IFNß-neutralizing antibodies increased cell proliferation rate and cell viability. Based on these findings, we propose that, in ESCs, Dicer acts as a repressor of antiviral responses and plays a key role in the maintenance of proliferation, viability, and pluripotency of ESCs.


Asunto(s)
ARN Helicasas DEAD-box/genética , Interferón Tipo I/genética , Interferón gamma/genética , Células Madre Embrionarias de Ratones/efectos de los fármacos , Ribonucleasa III/genética , eIF-2 Quinasa/genética , Animales , Antivirales/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN/efectos de los fármacos , ARN Bicatenario/efectos de los fármacos , ARN Bicatenario/genética , Retroelementos/genética , eIF-2 Quinasa/antagonistas & inhibidores
13.
J Transl Med ; 20(1): 285, 2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35752862

RESUMEN

BACKGROUND: Aberrant glycosylation has been recognized as a hallmark of cancer and N-glycosylation is one of the main types of glycosylation in eukaryotes. Although N-glycoproteomics has made contributions to the discovery of biomarkers in a variety of cancers, less is known about the abnormal glycosylation signatures in esophageal squamous cell carcinoma (ESCC). METHODS: In this study, we reported the proteomics and N-glycoproteomic site-mapping analysis of eight pairs of ESCC tissues and adjacent normal tissues. With zic-HILIC enrichment, TMT-based isobaric labeling, LC-MS/MS analysis, differentially expressed N-glycosylation was quantitatively characterized. Lectin affinity enrichment combined with western blot was used to validate the potential biomarkers in ESCC. RESULTS: A series of differentially expressed glycoproteins (e.g., LAMP2, PLOD2) and enriched signaling pathways (e.g., metabolism-related pathway, ECM-receptor interaction, focal adhesion) were identified. Besides that, seven significantly enriched motifs were found from the identified N-glycosylation sites. Three clusters were identified after conducting the dynamic profiling analysis of glycoprotein change during lymph node metastasis progression. Further validation found that the elevated fucosylation level of ITGB1, CD276 contributed to the occurrence and development of ESCC, which might be the potential biomarkers in ESCC. CONCLUSION: In summary, we characterized the N-glycosylation and N-glycoprotein alterations associated with ESCC. The typical changes in glycoprotein expression and glycosylation occupancy identified in our study will not only be used as ESCC biomarkers but also improve the understanding of ESCC biology.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Antígenos B7 , Biomarcadores , Biomarcadores de Tumor/metabolismo , Cromatografía Liquida , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/patología , Glicoproteínas/metabolismo , Humanos , Espectrometría de Masas en Tándem
14.
Br J Nutr ; 127(11): 1601-1612, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34256876

RESUMEN

The effect and the mechanism of high glucose on fish muscle cells are not fully understood. In the present study, muscle cells of olive flounder (Paralichthys olivaceus) were treated with high glucose (33 mM) in vitro. Cells were incubated in three kinds of medium containing 5 mM glucose, 5 mM glucose and 28 mM mannitol (as an isotonic contrast) or 33 mM glucose named the Control group, the Mannitol group and the high glucose (HG) group, respectively. Results showed that high glucose increased the ADP:ATP ratio and the reactive oxygen species (ROS) level, decreased mitochondrial membrane potential (MMP), induced the release of cytochrome C (CytC) and cell apoptosis. High glucose also led to cell glycogen accumulation by increasing the glucose uptake ability and affecting the mRNA expressions of glycogen synthase and glycogen phosphorylase. Meanwhile, it activated AMP-activated protein kinase (AMPK), inhibited the activity of mammalian target of rapamycin (mTOR) signalling pathway and the expressions of myogenic regulatory factors (MRF). The expressions of myostatin-1 (mstn-1) and E3 ubiquitin ligases including muscle RING-finger protein 1 (murf-1) and muscle atrophy F-box protein (mafbx) were also increased by the high glucose treatment. No difference was found between the Mannitol group and the Control group. These results demonstrate that high glucose has the effects of inducing apoptosis, increasing glycogen accumulation and inhibiting protein synthesis on muscle cells of olive flounder. The mitochondria-mediated apoptotic signalling pathway, AMPK and mTOR pathways participated in these biological effects.


Asunto(s)
Lenguado , Animales , Lenguado/genética , Lenguado/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Glucosa/metabolismo , Glucógeno/metabolismo , Células Musculares/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis , Mamíferos/metabolismo
15.
Int J Psychol ; 56(5): 783-790, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33855703

RESUMEN

Distraction tasks are known to affect the unconscious-thought (UT) effect. However, the relationship between two task types, namely distraction and target tasks, and their effect on UT effect have not been examined in previous studies. In this study, we assessed whether simultaneously performing dissimilar distraction and target tasks are beneficial to information processing by UT. In Experiment 1, the target task was an Alternate Use Task (speech task). For the similar-task test, the UT group was assigned the speech 1-back task (speech task) as the distraction task; for the dissimilar-task test, the UT group was assigned the spatial 1-back task (spatial task) as the distraction task. The results of the experiment revealed that under dissimilar tasks, the UT group not only provided more answers but also provided answers that were more novel. For Experiment 2, the target task was changed to Creative Mental Synthesis Task (spatial task) to replicate the results of Experiment 1. The results demonstrated that the dissimilarity between the distraction and target tasks facilitates the UT.


Asunto(s)
Sesgo Atencional , Habla , Pensamiento , Inconsciencia/psicología , Femenino , Humanos , Masculino
16.
Reproduction ; 160(4): 547-560, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32698161

RESUMEN

Recent studies have demonstrated that embryonic stem cells (ESCs) have an underdeveloped innate immune system, but the biological implications of this finding are poorly understood. In this study, we compared the responses of mouse ESCs (mESCs) and mESC differentiated fibroblasts (mESC-FBs) to tumor necrosis factor α (TNFα) and interferons (IFNs). Our data revealed that TNFα, IFNα, IFNß, or IFNγ alone do not cause apparent effects on mESCs and mESC-FBs, but the combination of TNFα and IFNγ (TNFα/IFNγ) showed toxicity to mESC-FBs as indicated by cell cycle inhibition and reduced cell viability, correlating with the expression of inducible nitric oxide synthase (iNOS). However, none of these effects were observed in mESCs that were treated with TNFα/IFNγ. Furthermore, mESC-FBs, but not mESCs, are vulnerable to cytotoxicity resulting from lipopolysaccharide (LPS)-activated macrophages. The insensitivity of mESCs to cytotoxicity in all cases is correlated with their lack of responses to TNFα and IFNγ. Similar to mESCs, human ESCs (hESCs) and iPSCs (hiPSCs) do not respond to TNFα and are not susceptible to the cytotoxicity of TNFα, IFNß, or IFNγ alone or in combination that significantly affects human foreskin fibroblast (hFBs) and Hela cells. However, unlike mESCs, hESCs and hiPSCs can respond to IFNγ, but this does not cause significant cytotoxicity in hESCs and hiPSCs. Our findings in both mouse and human PSCs together support the hypothesis that attenuated innate immune responses could be a protective mechanism that limits immunologic cytotoxicity resulting from inflammatory and immune responses.


Asunto(s)
Citotoxicidad Inmunológica/efectos de los fármacos , Células Madre Embrionarias/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Interferón gamma/farmacología , Células Madre Pluripotentes/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Animales , Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/inmunología , Fibroblastos/citología , Fibroblastos/inmunología , Células HeLa , Humanos , Ratones , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/inmunología
17.
Fish Shellfish Immunol ; 106: 241-251, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32781210

RESUMEN

A 120-day feeding trial was conducted to investigate the effects of relative higher and lower dietary protein levels on the growth, immunity and anti-stress of abalone Haliotis discus hannai fed diets with 17.64% (low), 30.49% (normal) and 43.27% (high) of proteins, respectively. The results showed that compared with 30.49% of dietary protein, 17.64% and 43.27% of dietary protein levels significantly decreased the weight gain rate and the activities of α-amylase, trypsin, alanine aminotransferase and aspartate aminotransferase in the hepatopancreas and serum of abalone (P < 0.05). Abalone fed 30.49% of dietary protein had the highest activity of superoxidase, acid phosphatase, alkaline phosphatase, lysozyme and the total anti-oxidative capacity, and the lowest content of malondialdehyde in the serum and hepatopancreas (P < 0.05). The gene expressions of TOR, S6k, Bcl-2, IκB, NfκB, TNF-α and Nrf2 were significantly up-regulated in the group with 30.49% of dietary protein (P < 0.05). Pathological abnormalities in hepatocyte cells of abalone were found in the groups with 17.64% and 43.27% of dietary protein. Meanwhile, accumulative mortalities of abalone after the Vibrio parahaemolyticus challenge test and heat stress test were significantly increased within these two groups (P < 0.05). In conclusion, the excessive (43.27) or deficient (17.64) dietary protein levels depressed the growth and immunity of abalone. Combined with the stress tests results, 17.63% or 43.27% of dietary protein contents are not recommended to the abalone facing the stress of vibriosis or high-water temperature (≥28 °C).


Asunto(s)
Proteínas en la Dieta/metabolismo , Gastrópodos/inmunología , Regulación de la Expresión Génica , Inmunidad Innata , Transducción de Señal , Alimentación Animal/análisis , Crianza de Animales Domésticos , Animales , Dieta , Proteínas en la Dieta/administración & dosificación , Gastrópodos/genética , Gastrópodos/crecimiento & desarrollo , Gastrópodos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Vibrio parahaemolyticus/fisiología
18.
Toxicol Appl Pharmacol ; 381: 114730, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31445928

RESUMEN

Vinyl chloride (VC) is a common industrial organochlorine, shown to cause hepatic angiosarcoma and hepatic steatosis. However, the role of endoplasmic reticulum stress (ERS) and oxidative stress (OS) in hepatic steatosis after subchronic exposure to VC in mice, is unclear. Based on body weight, forty healthy SPF male C57BL/6 J mice were randomly divided into a control group and three VC exposure groups (57.3, 286.7, and 1433.6 ppm) (n = 10 each). VC was administered by static inhalation in a 50 L sealed plexiglass inhalation chamber for 2 h per day, five days per week for 16 weeks. Serum and liver tissues were analyzed for liver enzymes and lipids. Hepatic cytochrome P450 2E1 (CYP2E1) and OS related indicators malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) were measured. The mRNA expressions of ERS downstream genes, including glycoregulatory protein-78 (GRP-78), sterol regulatory element binding protein-1 (SREBP-1), Acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS) were detected by real-time PCR (RT-PCR) and their protein levels examined by western blotting. The CYP2E1 levels increased after VC administration in a dose-dependent manner. MDA levels increased (P < .05) and SOD and GSH levels decreased (P < .05) in the liver of each group with the increase in the dose of VC. ERS and expressions of downstream genes (GRP-78, SREBP-1, ACC, and FAS) were enhanced after VC administration. These results suggested that OS and ERS could be induced by VC, which may lead to an increase in fatty acid synthesis in the liver, further aggravating hepatic steatosis.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Hígado Graso/inducido químicamente , Estrés Oxidativo/efectos de los fármacos , Cloruro de Vinilo/toxicidad , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Administración por Inhalación , Animales , Citocromo P-450 CYP2E1/metabolismo , Chaperón BiP del Retículo Endoplásmico , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso/patología , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Receptor fas/genética , Receptor fas/metabolismo
19.
Langmuir ; 35(42): 13663-13670, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31549513

RESUMEN

Cellulose nanocrystals (CNCs) with excellent biodegradability are promising biomaterials for use as responsive Pickering emulsifiers. However, the high hydrophilicity of CNCs limits their emulsification ability. Some existing studies have utilized complicated covalent modification procedures to increase the hydrophobicity of CNCs. To simplify the modification process, we prepared hydrophobically modified CNCs (CNCs-M2005) via simple and controllable electrostatic interactions with thermosensitive M2005. The obtained CNCs-M2005 exhibited temperature and CO2 dual-responsive properties. Subsequently, stable oil/water Pickering emulsions were prepared using the partially hydrophobic CNCs-M2005 at 20 °C. However, demulsification occurred when the temperature increased to 60 °C. This temperature-induced demulsification resulted from the dehydration of polyethylene oxide and polypropylene oxide, causing the aggregation of the CNCs-M2005, as shown by dynamic light scattering and transmission electron microscopy experiments. In addition, demulsification was also achieved after bubbling CO2, which was attributed to the dissociation of the partially hydrophobic CNCs-M2005. The temperature and CO2 dual-responsive biosafe Pickering emulsions open up opportunity for the design of intelligent food, cosmetic, and drug delivery systems.

20.
Fish Shellfish Immunol ; 93: 669-682, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31408728

RESUMEN

Iron is an important mineral element for fish. In this study, we investigated the influences of dietary iron deficiency on intestinal immune function as well as underlying signaling of on-growing grass carp (Ctenopharyngodon idella). Fish were fed with six graded level of dietary iron for sixty days, and a fourteen days' challenge test under infection of Aeromonas hydrophila thereafter. Results showed that compared with optimal iron level, iron deficiency increased enteritis morbidity, decreased lysozyme (LZ) and acid phosphatase (ACP) activities, complement 3 (C3), C4 and immunoglobulin M (IgM) concentrations and down-regulated mRNA levels of hepcidin, liver expressed antimicrobial peptide 2A (LEAP-2A), LEAP-2B, Mucin2, ß-defensin-1, anti-inflammatory cytokines transforming growth factor ß1 (TGF-ß1), TGF-ß2, interleukin 4/13A (IL-4/13A), IL-4/13B, IL-10, IL-11 and IL-15, inhibitor of κBα (IκBα), target of rapamycin (TOR) and ribosomal protein S6 kinase 1 (S6K1), whereas up-regulated mRNA levels of pro-inflammatory cytokines IL-1ß, interferon γ2 (IFN-γ2), IL-8, IL-12p35, IL-12p40 and IL-17D, nuclear factor kappa B (NF-κB) p65, IκB kinases α (IKKα), IKKß and eIF4E-binding protein (4E-BP) in intestine of on-growing grass carp, indicating that iron deficiency impaired intestinal immune function of fish under infection of A. hydrophila. Besides, iron excess also increased enteritis morbidity and impaired immune function of fish under infection of A. hydrophila. In addition, the effect of ferrous fumarate on intestinal immune function of on-growing grass carp is more efficient than ferrous sulfate. Finally, based on ability against enteritis, LZ activities in mid intestine and distal intestine, we recommended adding 83.37, 86.71 and 85.39 mg iron/kg into diet, respectively.


Asunto(s)
Carpas/inmunología , Enfermedades de los Peces/inmunología , Proteínas de Peces/metabolismo , Intestinos/inmunología , Deficiencias de Hierro , Transducción de Señal/efectos de los fármacos , Aeromonas hydrophila/fisiología , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Citocinas/metabolismo , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Intestinos/efectos de los fármacos , Hierro de la Dieta/metabolismo , FN-kappa B/metabolismo , Distribución Aleatoria , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA