Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 63(1): 108-116, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38113189

RESUMEN

Spin crossover (SCO) materials that possess switchable and cooperative fluorescence have long focused interest in photonic sensor devices to monitor the variations in the physicochemical parameters of the external environment. However, the lack of quantified cooperativity for the SCO transition operating in isolated molecules is detrimental to short-term technological applications. In this study, a pretwisted energy D-A system combining the deep-blue naphthalimide fluorophore (donor) and the FeN6 SCO chromophore (switchable acceptor) has been developed with the formula of Fe(naph-abpt)2(NCS)2·2DMF (1), where naph-abpt is N-[3,5-di(pyridin-2-yl)-4H-1,2,4-triazol-4-yl]-1,8-naphthalimide. Dual emission from the naphthalimide function based on its vibronic structure exhibits a different synergy effect with SCO, providing a new platform for ratiometric fluorescence thermosensing. Theoretical calculations and optical experimental results demonstrate an excellent correlation between luminescence intensity ratio signals and magnetic data of spin transition, promising a high sensitivity of the optical activity of the ligand to the spin state of the active iron(II) ions, with the maximum relative sensitivity as 0.7% K-1 around T1/2.

2.
Inorg Chem ; 57(16): 9880-9891, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30080034

RESUMEN

A series of bulky substituted bipyridine-related iron(II) complexes [Fe(H2Bpz2)2(L)] (pz = pyrazolyl) were prepared, where L = 5,5'-dimethyl-2,2'-bipyridine (bipy-CH3, 1), L = dimethyl-2,2'-bipyridyl-5,5'-dicarboxylate (MeObpydc, 2), L = diethyl-2,2'-bipyridyl-5,5'-dicarboxylate (EtObpydc, 3), or L = diisopropyl-2,2'-bipyridine-5,5'-dicarboxylate ( i-PrObpydc, 4). The crystal structures of five new iron(II) complexes were determined by X-ray diffraction: those of 1, 3, and 4 and two modifications of 3 (3B) and 4 (4B). Complexes 1 and 3B display incomplete spin crossover (SCO) behavior because of a freezing-in effect, whereas 3 and 4B undergo gradual and incomplete SCO behaviors. Complexes 2 and 4 show a completely gradual and steep SCO, respectively. Such different SCO behaviors can be attributed to an electronic substituent effect in the bipyridyl ligand conformation and a crystal packing effect. Importantly, the electronic substituent effect of the isopropyl acetate group and C-H···O supramolecular interactions in 4 contribute to a highly cooperative behavior, which leads to an abrupt thermally induced spin transition.

3.
Chemistry ; 21(40): 14099-106, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26272604

RESUMEN

Efficient modulation of single-molecule magnet (SMM) behavior was realized by deliberate structural modification of the Dy2 cores of [Dy2(a'povh)2(OAc)2(DMF)2] (1) and [Zn2Dy2(a'povh)2(OAc)6]⋅4 H2O (2; H2a'povh = N'-[amino(pyrimidin-2-yl)methylene]-o-vanilloyl hydrazine). Compound 1 having fourfold linkage between the two dysprosium ions shows high-performance SMM behavior with a thermal energy barrier of 322.1 K, whereas only slow relaxation is observed for compound 2 with only twofold connection between the dysprosium ions. This remarkable discrepancy is mainly because of strong axiality in 1 due to one pronounced covalent bond, as revealed by experimental and theoretical investigations. The significant antiferromagnetic interaction derived from bis(µ2-O) and two acetate bridging groups was found to be crucial in leading to a nonmagnetic ground state in 1, by suppressing zero-field quantum tunneling of magnetization.

4.
Inorg Chem ; 53(23): 12658-63, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25393944

RESUMEN

A defective cubane-shaped heterometallic trinuclear Co(III)2Dy(III) compound with only one magnetically interesting ion (Dy(III)) has been assembled by virtue of a multifunctional acylhydrazone ligand. Because of the nonaxial ground state of Dy(III) ion derived from a low-symmetrical crystal field, the title compound displays field-induced multiple relaxation processes which are of molecular and a dipolar-dipolar coupling origin, as revealed by combined experimental and theoretical investigations. The results demonstrate that such a mononuclear dysprosium(III) compound with a low-symmetrical environment of magnetic center appears to be a model system for further investigations to shed light on the complex relaxation mechanism of lanthanide-based single ion magnets.

5.
Inorg Chem ; 53(15): 8165-71, 2014 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-25025741

RESUMEN

Reaction of in situ prepared acylhydrazone ligand with Ln(NO3)3·6H2O and Cu(OAc)2·H2O resulted in the formation of novel isostructural octanuclear Cu6Ln2 compounds (Ln = Dy (1), Tb (2), Gd (3), Y (4)) with an unprecedented octametallic structure, which can be described as an oblate wheel built up from two structurally similar Cu3 fragments linked together by two nodelike mononuclear lanthanide units. A detailed magnetic analysis reveals that the strong antiferromagnetic Cu···Cu interactions via the Cu-N-N-Cu-N-N-Cu linkage and the anticipated ferromagnetic Cu···Gd coupling makes an overall high-spin ground state in favor of the observation of significant magnetic caloric and SMM-like properties in the isotropic and anisotropic derivatives.

6.
Inorg Chem ; 51(7): 4035-42, 2012 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-22432447

RESUMEN

Complexation of dysprosium(III) with the heterodonor chelating ligand o-vanillin picolinoylhydrazone (H(2)ovph) in the presence of a carbonato ligand affords two novel Dy(6) and Dy(8) clusters, namely, [Dy(6)(ovph)(4)(Hpvph)(2)Cl(4)(H(2)O)(2)(CO(3))(2)]·CH(3)OH·H(2)O·CH(3)CN (2) and [Dy(8)(ovph)(8)(CO(3))(4)(H(2)O)(8)]·12CH(3)CN·6H(2)O (3). Compound 2 is composed of three petals of the Dy(2) units linked by two carbonato ligands, forming a triangular prism arrangement, while compound 3 possesses an octanuclear core with an unprecedented tub conformation, in which Dy(ovph) fragments are attached to the sides of the carbonato core. The static and dynamic magnetic properties are reported and discussed. In the Dy(6) aggregate, three Dy(2) "skeletons", having been well preserved (see the scheme), contribute to the single-molecule-magnet behavior with a relatively slow tunneling rate, while the Dy(8) cluster only exhibits a rather small relaxation barrier.

7.
Inorg Chem ; 51(24): 13264-70, 2012 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-23215437

RESUMEN

The self-assembly of dysprosium(III) with the tailored chemical modification of the vanillin group affords two decorated Dy(3) compounds, namely, [Dy(3)(µ(3)-OH)(2)(Hpovh(-))(3)(NO(3))(3)(CH(3)OH)(2)H(2)O]·NO(3)·3CH(3)OH·2H(2)O (2) and [Dy(3)(µ(3)-OH)(2)(H(2)vovh(-))(3)Cl(2)(CH(3)OH)(H(2)O)(3)][Dy(3)(µ(3)-OH)(2)(H(2)vovh(-))(3)Cl(2)(H(2)O)(4)]·Cl(4)·2CH(3)OH·2CH(3)CN·7H(2)O (3), where H(2)povh = N-(pyridylmethylene)-o-vanilloylhydrazone and H(3)vovh = N-vanillidene-o-vanilloylhydrazone. Of particular interest is that those two title Dy(3) compounds maintain the peculiar vortex-spin structure of the ground nonmagnetic doublet. Complex 2 displays frequency-dependent slow magnetic relaxation, while 3 still inherits the single-molecule-magnet behavior as the parent Dy(3) prototype. The dissimilar dynamic magnetic behavior originates from the structural differences in light of the coordination environment of Dy(III) ions, which influence the local tensor of anisotropy and crystal-field splitting on each Dy site.

8.
Inorg Chem ; 51(10): 5693-8, 2012 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-22563719

RESUMEN

[Dy(III)(HBpz(3))(2)](2+) moieties (HBpz(3)(-) = hydrotris(pyrazolyl)borate) and a 3d transition-metal ion (Fe(III) or Co(III)) have been rationally assembled using an dithiooxalato dianion ligand into 3d-4f [MDy(3)(HBpz(3))(6)(dto)(3)]·4CH(3)CN·2CH(2)Cl(2) (M = Fe (1), Co (2) complexes. Single-crystal X-ray studies reveal that three eight-coordinated Dy(III) centers in a square antiprismatic coordination environment are connecting to a central octahedral trivalent Fe or Co ion forming a propeller-type complex. The dynamics of the magnetization in the two isostructural compounds, modulated by the nature of the central M(III) metal ion, are remarkably different despite their analogous direct current (dc) magnetic properties. The slow relaxation of the magnetization observed for 2 mainly originates from isolated Dy ions, since a diamagnetic Co(III) metal ion links the magnetic Dy(III) ions. In the case of 1, the magnetic interaction between S = 1/2 Fe(III) ion and the three Dy(III) magnetic centers, although weak, generates a complex energy spectrum of magnetic states with low-lying excited states that induce a smaller energy gap than for 2 and thus a faster relaxation of the magnetization.

9.
Inorg Chem ; 51(20): 10522-8, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22510150

RESUMEN

Self-assembly of polydentate Schiff base 2,6-diformyl-4-methylphenol di(benzoy1hydrazone) (H(3)L), with dysprosium thiocyanate and sodium azide, affords two novel trinuclear triangular circular helicate dysprosium(III) complexes, [Dy(3)(µ(3)-OCH(3))(2)(HL)(3)(SCN)]·4CH(3)OH·2CH(3)CN·2H(2)O (1) or [Dy(3)(µ(3)-N(3))(µ(3)-OH)(H(2)L)(3)(SCN)(3)](SCN)·3CH(3)OH·H(2)O (2), depending on the presence or absence of base. Single-crystal X-ray analyses show that two µ(3)-methoxy oxygens cap the Dy(3) triangle in complex 1 and that one µ(3)-OH and one µ(3)-N(3)(-) cap the Dy(3) triangle of complex 2, representing the first example of a µ(3)-N(3)(-)-capped lanthanide complex reported to date. Ac susceptibility measurements reveal that multiple relaxation processes and the onset of slow magnetization relaxation occur for complex 1 and 2, respectively. Theoretical calculations are required to elucidate the underlying mechanism; however, the different magnetic anisotropy of the respective structures, which is dictated by the coordination environment of Dy(III) ions and structural parameters of the triangles, is mostly responsible for the distinctive relaxation dynamics observed.

10.
Chem Commun (Camb) ; 58(12): 1954-1957, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35043804

RESUMEN

Vapor-triggered crystal-to-crystal transformation between a discrete trinuclear complex [Ni3(sih)2(py)8] and a two-dimensional (2D) coordination polymer [Ni3(sih)2(py)2]n·2DMF·2H2O was demonstrated. It provides an example of a solid-state coordination-induced spin state switch behavior attributed to the structural phase transition triggered by solvent signal. The reversible nature can be detected by both optical (spectral) and magnetic responses in cycles.

11.
Adv Sci (Weinh) ; 9(26): e2202979, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35859232

RESUMEN

Materials that coexist magnetic and electric properties on the molecular scale in single-molecule magnets (SMMs) with peculiar quantum behaviors have promise in molecular electronics and spintronics. Nevertheless, such molecular materials are limited in potentials because their magnetic signal cannot be transformed into an electrical signal through magnetoresistance or Hall effects for their high insulativity. The discovery of an entirely new material, ferroelectric SMMs (FE SMMs) is reported. This FE SMM also shows single-molecule magnetic behaviors, toroidal magnetic moments, and room-temperature ferroelectricity. The toroidal moment is formed by a vortex distribution of magnetic dipoles in triangular Dy3 clusters. The analysis of ac magnetic susceptibility reveals the coexistence of three distinct magnetic relaxation processes at low temperatures. The ferroelectricity is introduced by incorporating polar alcohol molecules in the structure, which is confirmed by the X-ray diffraction and optical second harmonic generation (SHG) measurements. Moreover, the dielectric measurements reveal a ferroelectric-to-ferroelectric phase transition around 150 K due to the symmetry change from Pc to Pna21 . The coexistence of toroidal moment and ferroelectricity along with quantum magnetism in the rare-earth single-molecule magnets yields a unique class of multiferroics.

12.
J Am Chem Soc ; 133(31): 11948-51, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21744848

RESUMEN

The high axiality and Ising exchange interaction efficiently suppress quantum tunneling of magnetization of an asymmetric dinuclear Dy(III) complex, as revealed by combined experimental and theoretical investigations. Two distinct regimes of blockage of magnetization, one originating from the blockage at individual Dy sites and the other due to the exchange interaction between the sites, are separated for the first time. The latter contribution is found to be crucial, allowing an increase of the relaxation time by 3 orders of magnitude.

13.
Chemistry ; 17(44): 12476-81, 2011 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-21935999

RESUMEN

Single-ion magnets 1 and 2 and their diamagnetic analogues 3 and 4 for magnetic-site dilution were obtained through substitution of the coordinated water molecules of [Ln(TTA)(3)(H(2)O)(2)] (Ln=Dy (1, 2), Y (3, 4); TTA=4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionate) by 2,2'-bipyridine (1, 3) and 1,10-phenanthroline (2, 4) capping ligands. Their structures and magnetic properties were investigated with the goal of identifying features relevant to modulating relaxation dynamics of single-ion magnets. The metal ions in all complexes adopt an approximately square-antiprismatic (SAP) O(6)N(2) coordination environment. The SAP polyhedrons for both 1 and 2 show slight longitudinal compression, while the coordination sphere of 1 deviates more from an ideal SAP than that of 2, as indicated by the skew angles of the SAP environment. The similar values of U(eff) for the two magnetically diluted samples imply nearly the same distribution of low-lying states for their Dy(III) centers, which is consistent with the slight axial contraction observed for 1 and 2 and further corroborated by ligand-field analysis. The fast quantum tunneling rate τ(QTM) of 1, which is about ten times faster than that of 2, can presumably be associated with the larger rotation of the SAP surroundings. This distortion may result in a significant transverse anisotropy terms, and thus strongly affect the dynamic behavior of the system.

14.
Inorg Chem ; 50(19): 9705-13, 2011 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-21902183

RESUMEN

Complexation of dysprosium(III) with the heterodonor chelating ligand o-vanillin picolinoylhydrazone (H(2)ovph) in the presence of different bases affords three new dinuclear dysprosium(III) coordination compounds, namely, [Dy(2)(ovph)(2)(NO(3))(2)(H(2)O)(2)]·2H(2)O (1), [Dy(2)(Hovph)(ovph)(NO(3))(2)(H(2)O)(4)]·NO(3)·2CH(3)OH·3H(2)O (2), and Na[Dy(2)(Hovph)(2)(µ(2)-OH)(OH)(H(2)O)(5)]·3Cl·3H(2)O (3), where the aroylhydrazone ligand adopts different coordination modes in respective structures depending on the reaction conditions, as revealed by single-crystal X-ray analyses to be due to their tautomeric maneuver. The magnetic properties of 1-3 are drastically distinct. Compounds 1 and 2 show single-molecule-magnet behavior, while no out-of-phase alternating-current signal is noticed for 3. The structural differences induced by the different coordinate fashions of the ligand may influence the strength of the local crystal field, the magnetic interactions between metal centers, and the local tensor of anisotropy on each Dy site and their relative orientations, therefore generating dissimilar dynamic magnetic behavior.

15.
Inorg Chem ; 50(18): 8688-90, 2011 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-21853965

RESUMEN

A unique hexanuclear dysprosium(III) compound with a new polydentate Schiff-base ligand shows complex slow relaxation of the magnetization most likely associated with the single-ion behavior of individual Dy(III) ions as well as the possible weak coupling between them.

16.
Inorg Chem ; 50(4): 1304-8, 2011 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-21254752

RESUMEN

Reactions of lanthanide(III) perchlorate (Ln = Dy, Tb, and Gd), nickel(II) acetate, and ditopic ligand 2-(benzothiazol-2-ylhydrazonomethyl)-6-methoxyphenol (H(2)L) in a mixture of methanol and acetone in the presence of NaOH resulted in the successful assembly of novel Ln(2)Ni(2) heterometallic clusters representing a new heterometallic 3d-4f motif. Single-crystal X-ray diffraction reveals that all compounds are isostructural, with the central core composed of distorted [Ln(2)Ni(2)O(4)] cubanes of the general formula [Ln(2)Ni(2)(µ(3)-OH)(2)(OH)(OAc)(4)(HL)(2)(MeOH)(3)](ClO(4))·3MeOH [Ln = Dy (1), Tb (2), and Gd (3)]. The magnetic properties of all compounds have been investigated. Magnetic analysis on compound 3 indicates ferromagnetic Gd···Ni exchange interactions competing with antiferromagnetic Ni···Ni interactions. Compound 1 displays slow relaxation of magnetization, which is largely attributed to the presence of the anisotropic Dy(III) ions, and thus represents a new discrete [Dy(2)Ni(2)] heterometallic cubane exhibiting probable single-molecule magnetic behavior.

17.
Dalton Trans ; 50(37): 12835-12842, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34309614

RESUMEN

Three new alkyl chain substituted complexes [Fe(H2Bpz2)2(Cn-bipy)] (pz = pyrazolyl, Cn-bipy = bipyridine alkyl chain diester, n = 3 (3), 4 (4) and 5 (5)) show versatile spin state switching behaviour with different "tail" lengths as revealed by structural and magnetic analyses. The most striking phenomenon is observed for 5 which undergoes an abrupt spin transition accompanied by thermal hysteresis of ca. 10 K, which is attributed to crystal packing effects derived from the competition between π⋯π and C-H⋯O interactions. Interestingly, each of the complexes exhibits similar gradual and complete spin crossover in methanol solution with a transition temperature around 249 K, as deduced from temperature-dependent UV-vis spectroscopy. This highlights the differences between the solid state (ligand field; crystal packing) and solution (ligand field; solvation) effects on spin crossover. This work demonstrates that the length of the complex's alkyl chain substituents on the complex can have a large impact on the transition temperature and profile of solid state spin crossover, offering a potential path to the fabrication of soft matter spin crossover materials.

18.
J Am Chem Soc ; 132(25): 8538-9, 2010 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-20527747

RESUMEN

A well-defined two-step relaxation, described by the sum of two modified Debye functions, is observed in a new alkoxido-bridged linear tetranuclear Dy(III) aggregate showing single-molecule magnet behavior with a remarkably large energy barrier. This compound represents a model molecular aggregate with a clear two-step relaxation evidenced by frequency-dependent susceptibility, which therefore may stimulate further investigations regarding the relaxation dynamics of lanthanide-based systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA