Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Enzyme Inhib Med Chem ; 38(1): 2276665, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37919954

RESUMEN

Structural tailoring of the flavone framework (position 7) via organopalladium-catalyzed C-C bond formation was attempted in this study. The impact of substituents with varied electronic effects (phenyl ring, position 2 of the benzopyran scaffold) on the antitumor properties was also assessed. Resultantly, the efforts yielded a furyl arm bearing benzopyran possessing a 4-fluoro phenyl ring (position 2) (14) that manifested a magnificent antitumor profile against the Ishikawa cell lines mediated through dual inhibition of PARP and tubulin [(IC50 (PARP1) = 74 nM, IC50 (PARP2) = 109 nM) and tubulin (IC50 = 1.4 µM)]. Further investigations confirmed the ability of 14 to induce apoptosis as well as autophagy and cause cell cycle arrest at the G2/M phase. Overall, the outcome of the study culminated in a tractable dual PARP-tubulin inhibitor endowed with an impressive activity profile against endometrial cancer.


Asunto(s)
Antineoplásicos , Neoplasias Endometriales , Flavonas , Humanos , Femenino , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/química , Tubulina (Proteína)/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/patología , Flavonas/farmacología , Benzopiranos , Proliferación Celular
2.
Pharm Dev Technol ; 28(5): 460-478, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37092801

RESUMEN

Lung cancer ranks second position among the cancer-related deaths. Osimertinib mesylate (OSM) is a tyrosine-kinase-inhibitor which can effectively treat non-small cell lung cancer (NSCLC), but still there are certain limitations and side effects which could be circumvented by polymeric nanoparticles approach. Hence, this research was aimed to develop drug-loaded biodegradable polycaprolactone nanoparticles (PCL-NPs) such as OSM-loaded PCL-NPs (PCL-OSM-NPs) and chitosan fabricated OSM-loaded PCL-NPs (CS-PCL-OSM-NPs) to achieve active-targeting of OSM in the cancerous lung tissue. Thus, CS-PCL-OSM-NPs enhance the anticancer efficacy due to active targeting nature and thereby reduces off-target side effects of OSM in the NSCLC treatment. Blank PCL-NPs, PCL-OSM-NPs, and CS-PCL-OSM-NPs were prepared by nanoprecipitation method. Optimized blank PCL-NPs, PCL-OSM-NPs, and CS-PCL-OSM-NPs exhibited the mean particle size of 90.2 ± 4.7 nm, 167.7 ± 2.9 nm, and 233.7 ± 4.8 nm respectively. The encapsulation efficiency % (%EE) of PCL-OSM-NPs was found to be 68.4 ± 3.2%. In vitro drug release study demonstrated sustained release profile of 69.5 ± 5% and 65.7 ± 1.5% for OSM from both the PCL-OSM-NPs and CS-PCL-OSM-NPs, respectively. The PCL-OSM-NPs and CS-PCL-OSM-NPs demonstrated the inhibition of 82.2 ± 0.5% and 81.9 ± 0.2% in A549 cancer cells respectively which clearly signified the improved efficacy. Moreover, the PCL-OSM-NPs and CS-PCL-OSM-NPs exhibited significantly less hemolysis than OSM indicating safety of the formulation. These findings indicate that biohemocompatible CS-PCL-OSM-NPs is an attractive option to treat NSCLC with enhanced anticancer activity and reduced side effects.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Quitosano , Neoplasias Pulmonares , Nanopartículas , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Poliésteres , Pulmón , Portadores de Fármacos
3.
Pharm Res ; 39(11): 2761-2780, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36171346

RESUMEN

PURPOSE: Cancer is one of the most common and fatal disease, chemotherapy is the major treatment against many cancer types. The anti-apoptotic BCL-2 protein's expression was increased in many cancer types and Venetoclax (VLX; BCL-2 inhibitor) is a small molecule, which selectively inhibits this specified protein. In order to increase the clinical performance of this promising inhibitor as a repurposed drug, polymeric mixed micelles formulations approach was explored. METHODS: The Venetoclax loaded polymeric mixed micelles (VPMM) were prepared by using Pluronic® F-127 and alpha tocopherol polyethylene glycol 1000 succinate (TPGS) as excipients by thin film hydration method and characteristics. The percentage drug loading capacity, entrapment efficiency and in-vitro drug release studies were performed using HPLC method. The cytotoxicity assay, cell uptake and anticancer activities were evaluated in two different cancer cells i.e. MCF-7 (breast cancer) and A-549 (lung cancer). RESULTS: Particle size, polydispersity index and zeta potential of the VPMM was found to be 72.88 ± 0.09 nm, 0.078 ± 0.009 and -4.29 ± 0.24 mV, respectively. The entrapment efficiency and %drug loading were found to be 80.12 ± 0.23% and 2.13% ± 0.14%, respectively. The IC50 of VLX was found to be 4.78, 1.30, 0.94 µg/ml at 24, 48 and 72 h, respectively in MCF-7 cells and 1.24, 0.68, and 0.314 µg/ml at 24, 48, and 72 h, respectively in A549 cells. Whereas, IC50 of VPMM was found to be 0.42, 0.29, 0.09 µg/ml at 24, 48 and 72 h, respectively in MCF-7 cells and 0.85, 0.13, 0.008 µg/ml at 24, 48 and 72 h in A549 cells, respectively, indicating VPMM showing better anti-cancer activity compared to VLX. The VPMM showed better cytotoxicity which was further proven by other assays and explained the anti-cancer activity is shown through the generation of ROS, nuclear damage,apoptotic cell death and expression of caspase-3,7, and 9 activities in apoptotic cells. CONCLUSION: The current investigation revealed that the Venetoclax loaded polymeric mixed micelles (VPMM) revealed the enhanced therapeutic efficacy against breast and lung cancer in vitro models.


Asunto(s)
Neoplasias Pulmonares , Micelas , Humanos , Línea Celular Tumoral , Polietilenglicoles , Polímeros , Tamaño de la Partícula , Proteínas Proto-Oncogénicas c-bcl-2 , Portadores de Fármacos , Vitamina E
4.
Virol J ; 18(1): 223, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34794463

RESUMEN

BACKGROUND: B-cell proliferative disorders, such as post-transplant lymphoproliferative disease (PTLD), are increased among persons afflicted by T-cell compromise. Most are Epstein-Barr virus (EBV) + and can first present with a focal lesion. Direct introduction of oncolytic viruses into localized tumors provides theoretical advantages over chemotherapy, immunotherapy and radiation therapy by reducing systemic toxicity. Despite extensive study as a vehicle for gene therapy, adeno-associated viruses (AAV) have rarely been applied to human cancer research due to technical and theoretical obstacles. Moreover, human B-cells have historically been described as resistant to AAV infection. Nonetheless, advances using different recombinant (r)AAV serotypes with unique tropisms to deliver cytotoxic therapy suggested a localized anti-tumor approach was feasible. METHODS: As a prelude to the development of a therapeutic vehicle, the ability of fifteen distinct EGFP-bearing rAAV serotypes to transduce human B-cells, including primary, immortalized, and B-cell tumor lines ± EBV was assessed by confocal microscopy, flow cytometry and subsequently cell viability assay. RESULTS: Rank order analysis revealed augmented transduction by rAAV6.2 and closely related virions. EBV infection of EBV-negative B-cell tumor lines and EBV immortalization of primary B-cells increased susceptibility to rAAV6.2 transduction. As a proof of concept, transduction by rAAV6.2 encoding herpes simplex virus type 1 (HSV1)-thymidine kinase (TK) eliminated TK-negative rhabdomyosarcoma cells and diminished viability of transduced B-cell lines upon incubation with ganciclovir. CONCLUSIONS: rAAV serotypes differentially transduce human B-cell lines reversing the dogma that human B-cells are refractory to AAV infection. EBV + B-cells display increased susceptibility to rAAV6.2 infection, uncovering a new method for improved nucleic acid transfer into transfection-resistant B-cell lines. The introduction of a functional suicide gene into the rAAV6.2 genome identifies a candidate vector for the development of rAAV-based oncolytic therapy targeting focal EBV-bearing B-lymphoproliferative disorders.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Trastornos Linfoproliferativos , Dependovirus/genética , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/terapia , Herpesvirus Humano 4/genética , Humanos , Serogrupo
5.
AAPS PharmSciTech ; 18(3): 759-768, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27287243

RESUMEN

Chitosan is a widely employed polysaccharide with positive zeta-potential and better tissue/cell adhesion. Its hydrophilicity, high viscosity, and insolubility at physiological pH are major hurdles in proper utilization of this macromolecule. Therefore, it was conjugated with biocompatible stearic acid and the conjugate was employed to develop polymeric micelles for delivery of tamoxifen to breast cancer cells. The conjugate was characterized by FT-IR and NMR, and the nanocarrier was characterized for micromeritics, surface charge, drug loading, and morphological attributes. The efficacy was evaluated by in vitro MTT studies, safety by erythrocyte compatibility, and biodistribution by in vivo pharmacokinetic studies. Despite better drug loading and sustained drug release, cytotoxicity on MCF-7 breast cancer cells was substantially enhanced and the pharmacokinetic profile was significantly modified. The AUC was enhanced manifolds along with reduced clearance. The findings are unique and provide an alternative to the conventional lipid-based nanocarriers for better dose delivery, tissue adhesion, and desired pharmacokinetic modulation.


Asunto(s)
Quitosano/química , Polímeros/química , Ácidos Esteáricos/química , Tamoxifeno/administración & dosificación , Tamoxifeno/química , Animales , Línea Celular Tumoral , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/efectos adversos , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Humanos , Lípidos/química , Células MCF-7 , Micelas , Ratas Wistar , Tamoxifeno/efectos adversos , Tamoxifeno/farmacocinética , Distribución Tisular/efectos de los fármacos
6.
Mol Pharm ; 13(7): 2423-32, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27182646

RESUMEN

Nanotechnology-based drug products are emerging as promising agents to enhance the safety and efficacy of established chemotherapeutic molecules. Carbon nanotubes (CNTs), especially multiwalled CNTs (MWCNTs), have been explored for this potential owing to their safety and other desired attributes. Docetaxel (DTX) is an indispensable anticancer agent, which has wide applicability in variety of cancers. However, the potential of DTX is still not completely harvested due to problems like poor aqueous solubility, low tissue permeability, poor bioavailability, high first pass metabolism, and dose-related toxicity. Hence, it was proposed to attach DTX to MWCNTs and coadminister it along with piperine with an aim to enhance the tissue permeation, anticancer activity, and bioavailability. The Fourier transform infrared, UV, and NMR spectroscopic data confirmed successful conjugation of DTX to MWCNTs and adsorption of piperine onto MWCNTs. The codelivery MWCNT-based system offered drug release moderation and better cancer cell toxicity than that of plain DTX as well as DTX-CNT conjugate. The pharmacokinetic profile of DTX was exceptionally improved by the conjugation, in general, and coadministration with piperine, in specific vis-à-vis plain drug. Hence, the dual approach of MWCNTs conjugation and piperine coadministration can serve as a beneficial option for enhancement of the performance of DTX in cancer chemotherapy.


Asunto(s)
Alcaloides/química , Alcaloides/farmacocinética , Antineoplásicos/farmacocinética , Benzodioxoles/química , Benzodioxoles/farmacocinética , Nanotubos de Carbono/química , Piperidinas/química , Piperidinas/farmacocinética , Alcamidas Poliinsaturadas/química , Alcamidas Poliinsaturadas/farmacocinética , Taxoides/química , Taxoides/farmacocinética , Antineoplásicos/química , Línea Celular Tumoral , Docetaxel , Sistemas de Liberación de Medicamentos/métodos , Humanos , Células MCF-7 , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Rastreo , Nanomedicina , Nanotecnología/métodos , Nanotubos de Carbono/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier
7.
Phys Chem Chem Phys ; 18(34): 23961-70, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27523253

RESUMEN

In the present study, the emphasis is laid on the self aggregation behavior of copper based inorganic-organic hybrids in aqueous media. The two complexes, cationic hexadecyl pyridinium trichloro cuprate (1 : 1), [Cp](+)[CuCl3](-), and bishexadecylpyridinium tetrachloro cuprate (2 : 1), [Cp2](2+)[CuCl4](2-), were synthesized using the ligand insertion method. The complexes were characterized using elemental analysis, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), nuclear magnetic resonance (NMR) and thermogravimetric analysis. The copper complexes were found to be thermally stable, and in the solid state, they possessed the perovskite arrangement with [Cp2](2+)[CuCl4](2-) exhibiting superior stability and crystallinity. The self aggregation behavior of the prepared complexes was analyzed in solution phase (in aqueous medium) using surface tension, conductivity, XRD and small angle neutron scattering (SANS). The results show that the presence of copper as a co-ion in both the stoichiometries results in lower critical micellization concentrations than their precursor. Micellization was thermodynamically spontaneous and micelles formed were ellipsoidal in shape and underwent a prolate ellipsoidal growth with an increase in the concentration of metallosurfactant, as estimated from the SANS. Furthermore, these metallosurfactants were investigated for biocompatibility (using hemolytic assay), antimicrobial activity (fungus and bacteria) and cytotoxicity using human cancerous cells. The hemolysis activity was found to depend on the aggregated state of the metallosurfactants, displaying the highest activity in the monomeric state, and the minimum for post micellar concentrations. The surfactants were found to enhance the antibacterial activity by twofold or more, with the addition of metal in both the stoichiometries. On the contrary, for anticancer and antifungal activities, barely any regular trend or generalization could be obtained. Nevertheless, the copper complexes exhibited high IC50 values for fR2 (healthy cells) signifying their higher safety in comparison to the cancerous cells.

8.
J Cell Biochem ; 116(6): 985-97, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25561006

RESUMEN

In this study, we for the first time explored the cellular and molecular mechanism of anticancer properties of fascaplysin, a marine sponge-derived alkaloid. Our study demonstrated that fascaplysin induced a cooperative interaction between apoptotic and autophagic pathways to induce cytotoxicity in HL-60 cells. Fascaplysin treatment not only activated pro-apoptotic events like PARP-1 cleavage and caspase activation but also triggered autophagy signaling as shown by the increased expression of LC3-II, ATG7and beclin. Interestingly, it was found that use of pan-caspase inhibitor completely reversed the fascaplysin mediated cell death as analyzed by MTT and cell cycle assays. It was observed that cell death as well as the expression of pro-death proteins was partially reversed, when key autophagy mediators ATG7 was silenced by siRNA in fascaplysin treated cells. Cooperative involvement of autophagy and apoptotic signaling in cytotoxicity was confirmed when combined silencing of pro-apototic (PARP-1) and autophagic (ATG-7) signaling by respective siRNA's lead to substantial rescue of cell death induced by fascaplysin. Although, apoptosis and autophagy are two independent cell death pathways, our findings provide detailed insight by which both the pathways acted cooperatively to elicit fascaplysin induced cell death in HL-60 cells. Our findings provide molecular insight into the anti-cancer potential of fascaplysin by showing that both autophagic and apoptotic signaling can work together in the induction of cell death.


Asunto(s)
Autofagia/efectos de los fármacos , Indoles/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis/efectos de los fármacos , Células HL-60 , Células HeLa , Humanos
9.
J Biomol Struct Dyn ; 42(3): 1469-1484, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37272883

RESUMEN

Drug repurposing is proved to be a groundbreaking concept in the field of cancer research, accelerating the pace of de novo drug discovery by investigating the anti-cancer activity of the already approved drugs. On the other hand, it got highly benefitted from the advancement in the in-silico tools and techniques, which are used to build up the initial "proof of concept" based on the drug-target interaction. Acalabrutinib (ACL) is a well-known drug for the treatment of hematological malignancies. But, the therapeutic ability of ACL against solid tumors is still unexplored. Thereby, the activity of ACL on breast cancer and lung cancer was evaluated utilizing different computational methods. A series of proteins such as VEGFR1, ALK, BCL2, CXCR-4, mTOR, AKT, PI3K, HER-2, and Estrogen receptors were selected based on their involvement in the progression of the breast as well as lung cancer. A multi-level computational study starting from protein-ligand docking to molecular dynamic (MD) simulations were performed to detect the binding potential of ACL towards the selected proteins. Results of the study led to the identification of ACL as a ligand that showed a high docking score and binding energy with HER-2, mTOR, and VEGFR-1 successively. Whereas, the MD simulations study has also shown good docked complex stability of ACL with HER2 and VEGFR1. Our findings suggest that interaction with those receptors can lead to preventive action on both breast and lung cancer, thus it can be concluded that ACL could be a potential molecule for the same purpose.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Neoplasias Pulmonares , Pirazinas , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ligandos , Benzamidas , Simulación de Dinámica Molecular , Serina-Treonina Quinasas TOR , Simulación del Acoplamiento Molecular
10.
Drug Deliv Transl Res ; 14(5): 1277-1300, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37953430

RESUMEN

Breast cancer is reported as one of the most prevalent non-cutaneous malignancies in women. Venetoclax (VEN) is an approved BCl-2 inhibitor for the treatment of chronic myeloid leukemia with very limited oral bioavailability and exhibits an enormous impact on breast cancer. In the current investigation, venetoclax-loaded self-nanoemulsifying drug delivery systems (VEN-SNEDDS) were designed and fabricated to improve the aqueous solubility, permeability, and anticancer efficacy of VEN. Various surface-active parameters of the reconstituted SNEDDS were determined to scrutinize the performance of the selected surfactant mixture. Central composite design (CCD) was used to optimize the VEN-SNEDDS. The globule size of reconstituted VEN-SNEDDS was 71.3 ± 2.8 nm with a polydispersity index of 0.113 ± 0.01. VEN-SNEDDS displayed approximately 3-4 fold, 6-7 fold, and 5-6 fold reduced IC50 as compared to free VEN in MDA-MB-231, MCF-7, and T47 D cells, respectively. VEN-SNEDDS showed greater cellular uptake, apoptosis, reactive oxygen species generation, and higher BAX/BCL2 ratio with decreased caspase 3 and 8 and BCL-2 levels in the MDA-MB-231 cells compared to pure VEN. VEN-SNEDDS exhibited approximately fivefold enhancement in Cmax and an improved oral bioavailability compared to VEN suspension in in vivo pharmacokinetic studies.


Asunto(s)
Neoplasias de la Mama , Compuestos Bicíclicos Heterocíclicos con Puentes , Nanopartículas , Sulfonamidas , Humanos , Femenino , Emulsiones , Sistemas de Liberación de Medicamentos , Solubilidad , Tensoactivos , Disponibilidad Biológica , Neoplasias de la Mama/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2 , Administración Oral , Tamaño de la Partícula
11.
Carbohydr Polym ; 326: 121644, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38142105

RESUMEN

In the last decade, investigators have put significant efforts to develop several diagnostic and therapeutic strategies against cancer. Many novel nanoplatforms, including lipidic, metallic, and inorganic nanocarriers, have shown massive potential at preclinical and clinical stages for cancer diagnosis and treatment. Each of these nano-systems is distinct with its own benefits and limitations. The need to overcome the limitations of single-component nano-systems, improve their morphological and biological features, and achieve multiple functionalities has resulted in the emergence of hybrid nanoparticles (HNPs). These HNPs integrate multicomponent nano-systems with diagnostic and therapeutic functions into a single nano-system serving as promising nanotools for cancer theragnostic applications. Chitosan (CS) being a mucoadhesive, biodegradable, and biocompatible biopolymer, has emerged as an essential element for the development of HNPs offering several advantages over conventional nanoparticles including pH-dependent drug delivery, sustained drug release, and enhanced nanoparticle stability. In addition, the free protonable amino groups in the CS backbone offer flexibility to its structure, making it easy for the modification and functionalization of CS, resulting in better drug targetability and cell uptake. This review discusses in detail the existing different oncology-directed CS-based HNPs including their morphological characteristics, in-vitro/in-vivo outcomes, toxicity concerns, hurdles in clinical translation, and future prospects.


Asunto(s)
Quitosano , Nanopartículas , Neoplasias , Humanos , Quitosano/química , Sistemas de Liberación de Medicamentos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Nanopartículas/química , Portadores de Fármacos/química
12.
Nat Prod Res ; : 1-6, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38163964

RESUMEN

In this recent investigation, the focus centred on exploring the potential phytoconstituents within the bark of Dysoxylum malabaricum. A profiling strategy employing LC-HRMS (Liquid Chromatography-High Resolution Mass Spectrometry) was implemented for the rapid identification of compounds from the bark extract. The crude extract underwent fractionation, resulting in the isolation of four previously known compounds (1-4) and a novel cycloartane triterpenoid named Mahamanalactone A (5). Compound 5 represents a cycloartane triterpenoid with a modified ring-A, featuring £-caprolactone fusion at positions 4 and 5, distinguishing it from other reported compounds where £-caprolactone is typically fused at positions 3 and 4. Cytotoxicity assessment revealed that the newly identified compound 5 exhibited a moderate cytotoxic profile (IC50 29 to 78 µM) against a panel of cancer cell lines.

13.
Adv Biol (Weinh) ; 8(6): e2300487, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581078

RESUMEN

Various cancer models have been developed to aid the understanding of the underlying mechanisms of tumor development and evaluate the effectiveness of various anticancer drugs in preclinical studies. These models accurately reproduce the critical stages of tumor initiation and development to mimic the tumor microenvironment better. Using these models for target validation, tumor response evaluation, resistance modeling, and toxicity comprehension can significantly enhance the drug development process. Herein, various in vivo or animal models are presented, typically consisting of several mice and in vitro models ranging in complexity from transwell models to spheroids and CRISPR-Cas9 technologies. While in vitro models have been used for decades and dominate the early stages of drug development, they are still limited primary to simplistic tests based on testing on a single cell type cultivated in Petri dishes. Recent advancements in developing new cancer therapies necessitate the generation of complicated animal models that accurately mimic the tumor's complexity and microenvironment. Mice make effective tumor models as they are affordable, have a short reproductive cycle, exhibit rapid tumor growth, and are simple to manipulate genetically. Human cancer mouse models are crucial to understanding the neoplastic process and basic and clinical research improvements. The following review summarizes different in vitro and in vivo metastasis models, their advantages and disadvantages, and their ability to serve as a model for cancer research.


Asunto(s)
Neoplasias , Animales , Humanos , Neoplasias/patología , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Ratones , Microambiente Tumoral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
14.
Int J Pharm ; 657: 124109, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38626846

RESUMEN

Breast cancer continues to pose a substantial global health challenge, emphasizing the critical need for the advancement of novel therapeutic approaches. Key players in the regulation of apoptosis, a fundamental process in cell death, are the B-cell lymphoma 2 (Bcl-2) family proteins, namely Bcl-2 and Bax. These proteins have garnered attention as highly promising targets for the treatment of breast cancer. Targeting the overexpressed anti-apoptotic Bcl-2 protein in breast cancer, Gefitinib (GEF), an EGFR (Epidermal Growth Factor Receptor) inhibitor, emerges as a potential solution. This study focuses on designing Gefitinib-loaded polymeric mixed micelles (GPMM) using poloxamer 407 and TPGS (D-alpha tocopherol PEG1000 succinate) for breast cancer therapy. In silico analyses unveil strong interactions between GEF- Bcl-2 and TPGS-Pgp-2 receptors, indicating efficacy against breast cancer. Molecular dynamics simulations offer insights into GEF and TPGS interactions within the micelles. Formulation optimization via Design of Experiment ensures particle size and entrapment efficiency within acceptable ranges. Characterization tools such as zeta sizer, ATR-FTIR, XRD, TEM, AFM, NMR, TGA, and DSC confirms particle size, structure, functional groups, and thermodynamic events. The optimized micelles exhibit a particle size of 22.34 ± 0.18 nm, PDI of 0.038 ± 0.009, and zeta potential of -0.772 ± 0.12 mV. HPLC determines 95.67 ± 0.34% entrapment efficiency and 1.05 ± 0.12% drug loading capacity. In-vitro studies with MDA-MB-231 cell lines demonstrate enhanced cytotoxicity of GPMM compared to free GEF, suggesting its potential in breast cancer therapy. Cell cycle analysis reveals apoptosis induction through key apoptotic proteins. Western blot results confirm GPMM's ability to trigger apoptosis in MDA-MB-231 cells by activating caspase-3, Bax, Bcl-2, and Parp. In conclusion, these polymeric mixed micelles show promise in selectively targeting cancer cells, warranting future in-vivo studies for optimized clinical application against breast cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Gefitinib , Micelas , Poloxámero , Vitamina E , Humanos , Poloxámero/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Vitamina E/química , Femenino , Gefitinib/administración & dosificación , Gefitinib/farmacología , Gefitinib/química , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacología , Simulación de Dinámica Molecular , Línea Celular Tumoral , Portadores de Fármacos/química , Simulación por Computador , Tamaño de la Partícula , Supervivencia Celular/efectos de los fármacos , Animales , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Polietilenglicoles/química , Liberación de Fármacos , Apoptosis/efectos de los fármacos
15.
Nat Prod Res ; : 1-9, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38333925

RESUMEN

The compound 2,3-dehydrosilychristin, a flavonolignan linked to silychristin and silymarin, remains intriguing due to its challenging isolation from silymarin. While silymarin has been the exclusive source of flavonolignans - silybin, silychristin and silydianin - 2,3-dehydrosilychristin is reported in this study from Vitex negundo Linn. leaves. 2,3-Dehydrosilychristin (7) and 14 other compounds were isolated through focused extraction. Its subsequent pharmacological evaluation demonstrated potent antioxidant and in-vitro anti-inflammatory effects, notably inhibiting cytokines TNF-α, IL-6, IL-8 and VEGF. In in-vivo assessments, 2,3-dehydrosilychristin (7) revealed remarkable hepatoprotective potential by reducing liver enzyme levels AST and ALT. These findings expand the potential of 2,3-dehydrosilychristin and suggest bioprospecting Vitex species as alternate sources of bioactive flavonolignans.

16.
Apoptosis ; 18(5): 605-17, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23494480

RESUMEN

This study describes the mechanism of trolox and tiron induced potentiation of cytotoxicity caused by Ery5, an analog of magnolol, in human myeloid leukemia HL-60 cells. Ery5 induced cytotoxicity in HL-60 cells by involving activation of bax and cleavage of caspase 3, which contributed towards activation of both apoptotic and autophagic pathways. Trolox and tiron, even at non-toxic concentrations, contributed to the cytotoxicity of Ery5 by activation of autophagic proteins like ATG7, ATG12 and LC3-II. Z-VAD-fmk mediated reduction in the cytotoxicity and expression of autophagic proteins, further suggested that autophagy induced by Ery5 is largely dependent upon caspases. Interestingly, Ery5 induced autophagy was accompanied by the downregulation of PI3K/AKT pathway whereas, trolox and tiron strongly enhanced this effect. In addition to that treatment of cells with Ery5, trolox and tiron individually, displayed a marked upregulation of Bax. The involvement of Bax in trolox and tiron induced enhancement of the cytotoxicity of Ery5 was confirmed, when siRNA induced silencing of Bax led to increased viability of the cells and exerted a strong inhibitory effect on LC3-II accumulation and p62 degradation in case of cells treated by the combination of Ery5 with trolox or tiron. Additionally, an important role of PARP in Ery5 mediated cell death has been suggested by PARP silencing experiments, however, potentiation of autophagic cytotoxicity by trolox and tiron did not seem to be dependent on PARP-1. Therefore, Bax seems to play a vital role in trolox and tiron mediated potentiation of autophagic cell death by Ery5 in HL-60 cells.


Asunto(s)
Sal Disódica del Ácido 1,2-Dihidroxibenceno-3,5-Disulfónico/farmacología , Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Compuestos de Bifenilo/farmacología , Cromanos/farmacología , Lignanos/farmacología , Fenoles/farmacología , Proteínas Proto-Oncogénicas c-ret/genética , Proteína X Asociada a bcl-2/genética , Clorometilcetonas de Aminoácidos/farmacología , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Apoptosis/genética , Autofagia/genética , Proteína 12 Relacionada con la Autofagia , Proteína 7 Relacionada con la Autofagia , Compuestos de Bifenilo/síntesis química , Caspasas/genética , Caspasas/metabolismo , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HL-60 , Humanos , Lignanos/síntesis química , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Fenoles/síntesis química , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-ret/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/antagonistas & inhibidores , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/antagonistas & inhibidores , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo , Proteína X Asociada a bcl-2/metabolismo
17.
Mol Pharm ; 10(1): 225-35, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23237302

RESUMEN

A pentacyclic triterpenediol (TPD) from Boswellia serrata has significant cytotoxic and apoptotic potential in a large number of human cancer cell lines. To enhance its anticancer potential, it was successfully formulated into solid lipid nanoparticles (SLNs) by the microemulsion method with 75% drug entrapment efficiency. SEM and TEM studies indicated that TPD-SLNs were regular, solid, and spherical particles in the range of 100-200 nm, and the system indicated that they were more or less stable upon storing up to six months. TPD loaded SLNs showed significantly higher cytotoxic/antitumor potential than the parent drug. TPD-SLNs have 40-60% higher cytotoxic and apoptotic potential than the parent drug in terms of IC(50), extent of apoptosis, DNA damage, and expression of pro-apoptotic proteins like TNF-R1, cytochrome-c, and PARP cleavage in HL-60 cells. Moreover, blank SLNs did not have any cytotoxic effect on the cancer as well as in normal mouse peritoneal macrophages. The in vivo antitumor potential of TPD-SLNs was significantly higher than that of TPD alone in Sarcoma-180 solid tumor bearing mice. Therefore, SLNs of TPD successfully increased the apoptotic and anticancer potential of TPD at comparable doses (both in vitro and in vivo). This work provides new insight into improvising the therapeutic efficacy of TPD by adopting novel delivery strategies such as solid lipid nanoparticles.


Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/química , Boswellia/química , Lípidos/administración & dosificación , Nanopartículas/administración & dosificación , Nanopartículas/química , Triterpenos Pentacíclicos/administración & dosificación , Triterpenos Pentacíclicos/química , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Química Farmacéutica/métodos , Citocromos c/metabolismo , Daño del ADN/efectos de los fármacos , Emulsiones/química , Emulsiones/farmacología , Células HL-60 , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Tamaño de la Partícula , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Poli(ADP-Ribosa) Polimerasas/metabolismo , Sarcoma 180/tratamiento farmacológico , Sarcoma 180/metabolismo , Proteína de Dominio de Muerte Asociada a Receptor de TNF/metabolismo
18.
BMC Complement Altern Med ; 13: 78, 2013 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-23565827

RESUMEN

BACKGROUND: In Cameroon, the use of edible plants is an integral part of dietary behavior. However, evidence of the antimicrobial as well as the cytotoxic effects of many of them has not been investigated. In the present study, aqueous and methanol extracts from barks, seeds, leaves and roots of three Cameroonian edible plants namely Garcina lucida, Fagara heitzii and Hymenocardia lyrata were evaluated for their cytotoxic and antimicrobial activities. METHODS: Antibacterial and antifungal activities were assessed by the broth micro-dilution method meanwhile the cytotoxicity was performed using sulphorhodamine B assay (SRB) against the human leukemia THP-1, the alveolar epithelial A549, prostate cancer PC-3, breast adenocarcinoma MCF-7 and cervical cancer HeLa cell lines. RESULTS: The minimum inhibitory concentration (MIC) values of the seven tested extracts ranged from 62.5 µg/ml to 1000 µg/ml. The methanol (MeOH) extract from the roots of H. lyrata showed the highest antibacterial activity against Gram-positive bacteria S. aureus and S. epidermitis. The best antifungal activity was obtained with the MeOH extract from the leaves of G. lucida against C. tropicalis (MIC value of 62.5 µg/ml). The in vitro antiproliferative activity revealed that, extract from the bark of F. heitzii and extract from H. lyrata roots had significant cytotoxic activity on THP-1 (IC50 8.4 µg/ml) and PC-3 (IC50 9.5 µg/ml) respectively. CONCLUSION: Our findings suggest that Cameroonian spices herein studied could be potentially useful for the development of therapeutic agents against bacterial infections as well as for prostate and leukemia cancer.


Asunto(s)
Antibacterianos/farmacología , Citotoxinas/farmacología , Extractos Vegetales/farmacología , Plantas Comestibles/química , Antibacterianos/análisis , Antiinfecciosos/farmacología , Camerún , Línea Celular , Citotoxinas/análisis , Bacterias Grampositivas/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/análisis , Especias/análisis
19.
BMC Complement Altern Med ; 13: 223, 2013 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-24016040

RESUMEN

BACKGROUND: The use of edible plants is an integral part of dietary behavior in the West region of Cameroon. Dorstenia psilurus (Moraceae) is widely used as spice and as medicinal plant for the treatment of several diseases in Cameroon. The aim of this study is to investigate the cytotoxic and apoptotic potential of methanol extract of D. psilurus in human promyelocytic leukemia (HL-60) cells and prostate cancer (PC-3) cells. METHODS: Cytotoxicity of D. psilurus extract was tested in HL-60 and PC-3 cells using 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay and flow cytometric methods RESULTS: The methanol extract of D. psilurus have significant in vitro cytotoxic activity in HL-60 cells and PC-3 cells with IC50 value of 12 ± 1.54 µg/ml and 18 ± 0.45 µg/ml respectively after 48 h. The mechanism of antiproliferative activity showed that after 24 h, D. psilurus extract induces apoptosis on HL-60 cells by the generation of reactive oxygen species (ROS) along with concurrent loss of mitochondrial membrane potential, modification in the DNA distribution and enhance of G2/M phase cell cycle. CONCLUSION: The extract induces apoptosis of HL-60 cells associated with ROS production, loss of mitochondrial membrane potential and apoptotic DNA fragmentation.


Asunto(s)
Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Moraceae/química , Extractos Vegetales/farmacología , Camerún , Proliferación Celular , Forma de la Célula , Células HL-60 , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo
20.
Drug Deliv Transl Res ; 13(6): 1621-1653, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36795198

RESUMEN

Breast cancer (BC) is the most frequently diagnosed malignancy in women worldwide. Almost 70-80% of cases of BC are curable at the early non-metastatic stage. BC is a heterogeneous disease with different molecular subtypes. Around 70% of breast tumors exhibit estrogen-receptor (ER) expression and endocrine therapy is used for the treatment of these patients. However, there are high chances of recurrence in the endocrine therapy regimen. Though chemotherapy and radiation therapy have substantially improved survival rates and treatment outcomes in BC patients, there is an increased possibility of the development of resistance and dose-limiting toxicities. Conventional treatment approaches often suffer from low bioavailability, adverse effects due to the non-specific action of chemotherapeutics, and low antitumor efficacy. Nanomedicine has emerged as a conspicuous strategy for delivering anticancer therapeutics in BC management. It has revolutionized the area of cancer therapy by increasing the bioavailability of the therapeutics and improving their anticancer efficacy with reduced toxicities on healthy tissues. In this article, we have highlighted various mechanisms and pathways involved in the progression of ER-positive BC. Further, different nanocarriers delivering drugs, genes, and natural therapeutic agents for surmounting BC are the spotlights of this article.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/uso terapéutico , Nanomedicina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA