Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cancer ; 23(1): 78, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643157

RESUMEN

BACKGROUND: The identification of novel therapeutic strategies to overcome resistance to the MEK inhibitor trametinib in mutant KRAS lung adenocarcinoma (LUAD) is a challenge. This study analyzes the effects of trametinib on Id1 protein, a key factor involved in the KRAS oncogenic pathway, and investigates the role of Id1 in the acquired resistance to trametinib as well as the synergistic anticancer effect of trametinib combined with immunotherapy in KRAS-mutant LUAD. METHODS: We evaluated the effects of trametinib on KRAS-mutant LUAD by Western blot, RNA-seq and different syngeneic mouse models. Genetic modulation of Id1 expression was performed in KRAS-mutant LUAD cells by lentiviral or retroviral transductions of specific vectors. Cell viability was assessed by cell proliferation and colony formation assays. PD-L1 expression and apoptosis were measured by flow cytometry. The anti-tumor efficacy of the combined treatment with trametinib and PD-1 blockade was investigated in KRAS-mutant LUAD mouse models, and the effects on the tumor immune infiltrate were analyzed by flow cytometry and immunohistochemistry. RESULTS: We found that trametinib activates the proteasome-ubiquitin system to downregulate Id1 in KRAS-mutant LUAD tumors. Moreover, we found that Id1 plays a major role in the acquired resistance to trametinib treatment in KRAS-mutant LUAD cells. Using two preclinical syngeneic KRAS-mutant LUAD mouse models, we found that trametinib synergizes with PD-1/PD-L1 blockade to hamper lung cancer progression and increase survival. This anti-tumor activity depended on trametinib-mediated Id1 reduction and was associated with a less immunosuppressive tumor microenvironment and increased PD-L1 expression on tumor cells. CONCLUSIONS: Our data demonstrate that Id1 expression is involved in the resistance to trametinib and in the synergistic effect of trametinib with anti-PD-1 therapy in KRAS-mutant LUAD tumors. These findings suggest a potential therapeutic approach for immunotherapy-refractory KRAS-mutant lung cancers.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Piridonas , Pirimidinonas , Ratones , Animales , Receptor de Muerte Celular Programada 1 , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Regulación hacia Abajo , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Antígeno B7-H1/metabolismo , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Adenocarcinoma/genética , Modelos Animales de Enfermedad , Línea Celular Tumoral , Microambiente Tumoral
2.
Mol Cancer ; 22(1): 86, 2023 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-37210549

RESUMEN

BACKGROUND: The discovery of functionally relevant KRAS effectors in lung and pancreatic ductal adenocarcinoma (LUAD and PDAC) may yield novel molecular targets or mechanisms amenable to inhibition strategies. Phospholipids availability has been appreciated as a mechanism to modulate KRAS oncogenic potential. Thus, phospholipid transporters may play a functional role in KRAS-driven oncogenesis. Here, we identified and systematically studied the phospholipid transporter PITPNC1 and its controlled network in LUAD and PDAC. METHODS: Genetic modulation of KRAS expression as well as pharmacological inhibition of canonical effectors was completed. PITPNC1 genetic depletion was performed in in vitro and in vivo LUAD and PDAC models. PITPNC1-deficient cells were RNA sequenced, and Gene Ontology and enrichment analyses were applied to the output data. Protein-based biochemical and subcellular localization assays were run to investigate PITPNC1-regulated pathways. A drug repurposing approach was used to predict surrogate PITPNC1 inhibitors that were tested in combination with KRASG12C inhibitors in 2D, 3D, and in vivo models. RESULTS: PITPNC1 was increased in human LUAD and PDAC, and associated with poor patients' survival. PITPNC1 was regulated by KRAS through MEK1/2 and JNK1/2. Functional experiments showed PITPNC1 requirement for cell proliferation, cell cycle progression and tumour growth. Furthermore, PITPNC1 overexpression enhanced lung colonization and liver metastasis. PITPNC1 regulated a transcriptional signature which highly overlapped with that of KRAS, and controlled mTOR localization via enhanced MYC protein stability to prevent autophagy. JAK2 inhibitors were predicted as putative PITPNC1 inhibitors with antiproliferative effect and their combination with KRASG12C inhibitors elicited a substantial anti-tumour effect in LUAD and PDAC. CONCLUSIONS: Our data highlight the functional and clinical relevance of PITPNC1 in LUAD and PDAC. Moreover, PITPNC1 constitutes a new mechanism linking KRAS to MYC, and controls a druggable transcriptional network for combinatorial treatments.


Asunto(s)
Carcinoma Ductal Pancreático , Proteínas de Transporte de Membrana , Neoplasias Pancreáticas , Humanos , Autofagia/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/genética , Pulmón/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Neoplasias Pancreáticas
3.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36361992

RESUMEN

Around 15% of cancer cases are attributable to infectious agents. Epidemiological studies suggest that an association between leishmaniasis and cancer does exist. Recently, the homologue of PES1 in Leishmania major (LmjPES) was described to be involved in parasite infectivity. Mammalian PES1 protein has been implicated in cellular processes like cell cycle regulation. Its BRCT domain has been identified as a key factor in DNA damage-responsive checkpoints. This work aimed to elucidate the hypothetical oncogenic implication of BRCT domain from LmjPES in host cells. We generated a lentivirus carrying this BRCT domain sequence (lentiBRCT) and a lentivirus expressing the luciferase protein (lentiLuc), as control. Then, HEK293T and NIH/3T3 mammalian cells were infected with these lentiviruses. We observed that the expression of BRCT domain from LmjPES conferred to mammal cells in vitro a greater replication rate and higher survival. In in vivo experiments, we observed faster tumor growth in mice inoculated with lentiBRCT respect to lentiLuc HEK293T infected cells. Moreover, the lentiBRCT infected cells were less sensitive to the genotoxic drugs. Accordingly, gene expression profiling analysis revealed that BRCT domain from LmjPES protein altered the expression of proliferation- (DTX3L, CPA4, BHLHE41, BMP2, DHRS2, S100A1 and PARP9), survival- (BMP2 and CARD9) and chemoresistance-related genes (DPYD, Dok3, DTX3L, PARP9 and DHRS2). Altogether, our results reinforced the idea that in eukaryotes, horizontal gene transfer might be also achieved by parasitism like Leishmania infection driving therefore to some crucial biological changes such as proliferation and drug resistance.


Asunto(s)
Carcinogénesis , Resistencia a Antineoplásicos , Leishmania major , Proteínas de Unión al ARN , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Células HEK293 , Leishmania major/genética , Leishmania major/metabolismo , Mamíferos/metabolismo , Oncogenes , Proteínas/metabolismo , Proteínas de Unión al ARN/genética , Leishmaniasis/complicaciones , Resistencia a Antineoplásicos/genética , Carcinogénesis/genética
4.
J Hepatol ; 75(2): 363-376, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33887357

RESUMEN

BACKGROUND & AIMS: Cholangiocarcinoma (CCA) is a neoplasia of the biliary tract driven by genetic, epigenetic and transcriptional mechanisms. Herein, we investigated the role of the transcription factor FOSL1, as well as its downstream transcriptional effectors, in the development and progression of CCA. METHODS: FOSL1 was investigated in human CCA clinical samples. Genetic inhibition of FOSL1 in human and mouse CCA cell lines was performed in in vitro and in vivo models using constitutive and inducible short-hairpin RNAs. Conditional FOSL1 ablation was done using a genetically engineered mouse (GEM) model of CCA (mutant KRAS and Trp53 knockout). Follow-up RNA and chromatin immunoprecipitation (ChIP) sequencing analyses were carried out and downstream targets were validated using genetic and pharmacological inhibition. RESULTS: An inter-species analysis of FOSL1 in CCA was conducted. First, FOSL1 was found to be highly upregulated in human and mouse CCA, and associated with poor patient survival. Pharmacological inhibition of different signalling pathways in CCA cells converged on the regulation of FOSL1 expression. Functional experiments showed that FOSL1 is required for cell proliferation and cell cycle progression in vitro, and for tumour growth and tumour maintenance in both orthotopic and subcutaneous xenograft models. Likewise, FOSL1 genetic abrogation in a GEM model of CCA extended mouse survival by decreasing the oncogenic potential of transformed cholangiocytes. RNA and ChIP sequencing studies identified direct and indirect transcriptional effectors such as HMGCS1 and AURKA, whose genetic and pharmacological inhibition phenocopied FOSL1 loss. CONCLUSIONS: Our data illustrate the functional and clinical relevance of FOSL1 in CCA and unveil potential targets amenable to pharmacological inhibition that could enable the implementation of novel therapeutic strategies. LAY SUMMARY: Understanding the molecular mechanisms involved in cholangiocarcinoma (bile duct cancer) development and progression stands as a critical step for the development of novel therapies. Through an inter-species approach, this study provides evidence of the clinical and functional role of the transcription factor FOSL1 in cholangiocarcinoma. Moreover, we report that downstream effectors of FOSL1 are susceptible to pharmacological inhibition, thus providing new opportunities for therapeutic intervention.


Asunto(s)
Colangiocarcinoma/genética , Hidroximetilglutaril-CoA Sintasa/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/efectos adversos , Anciano , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/etiología , Femenino , Humanos , Hidroximetilglutaril-CoA Sintasa/genética , Masculino , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-fos/genética , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética
5.
Bioinformatics ; 36(4): 1279-1280, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31529040

RESUMEN

SUMMARY: The protein detection and quantification using high-throughput proteomic technologies is still challenging due to the stochastic nature of the peptide selection in the mass spectrometer, the difficulties in the statistical analysis of the results and the presence of degenerated peptides. However, considering in the analysis only those peptides that could be detected by mass spectrometry, also called proteotypic peptides, increases the accuracy of the results. Several approaches have been applied to predict peptide detectability based on the physicochemical properties of the peptides. In this manuscript, we present DeepMSPeptide, a bioinformatic tool that uses a deep learning method to predict proteotypic peptides exclusively based on the peptide amino acid sequences. AVAILABILITY AND IMPLEMENTATION: DeepMSPeptide is available at https://github.com/vsegurar/DeepMSPeptide. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Aprendizaje Profundo , Proteómica , Espectrometría de Masas , Péptidos , Proteínas
6.
Bioinformatics ; 36(1): 205-211, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31243428

RESUMEN

MOTIVATION: The principal lines of research in MS/MS based Proteomics have been directed toward the molecular characterization of the proteins including their biological functions and their implications in human diseases. Recent advances in this field have also allowed the first attempts to apply these techniques to the clinical practice. Nowadays, the main progress in Computational Proteomics is based on the integration of genomic, transcriptomic and proteomic experimental data, what is known as Proteogenomics. This methodology is being especially useful for the discovery of new clinical biomarkers, small open reading frames and microproteins, although their validation is still challenging. RESULTS: We detected novel peptides following a proteogenomic workflow based on the MiTranscriptome human assembly and shotgun experiments. The annotation approach generated three custom databases with the corresponding peptides of known and novel transcripts of both protein coding genes and non-coding genes. In addition, we used a peptide detectability filter to improve the computational performance of the proteomic searches, the statistical analysis and the robustness of the results. These innovative additional filters are specially relevant when noisy next generation sequencing experiments are used to generate the databases. This resource, MiTPeptideDB, was validated using 43 cell lines for which RNA-Seq experiments and shotgun experiments were available. AVAILABILITY AND IMPLEMENTATION: MiTPeptideDB is available at http://bit.ly/MiTPeptideDB. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Péptidos , Proteogenómica , Línea Celular , Humanos , Péptidos/genética , Proteogenómica/métodos , Espectrometría de Masas en Tándem
7.
Blood ; 133(22): 2401-2412, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-30975638

RESUMEN

Refractory or relapsed diffuse large B-cell lymphoma (DLBCL) often associates with the activated B-cell-like (ABC) subtype and genetic alterations that drive constitutive NF-κB activation and impair B-cell terminal differentiation. Here, we show that DNA damage response by p53 is a central mechanism suppressing the pathogenic cooperation of IKK2ca-enforced canonical NF-κB and impaired differentiation resulting from Blimp1 loss in ABC-DLBCL lymphomagenesis. We provide evidences that the interplay between these genetic alterations and the tumor microenvironment select for additional molecular addictions that promote lymphoma progression, including aberrant coexpression of FOXP1 and the B-cell mutagenic enzyme activation-induced deaminase, and immune evasion through major histocompatibility complex class II downregulation, PD-L1 upregulation, and T-cell exhaustion. Consistently, PD-1 blockade cooperated with anti-CD20-mediated B-cell cytotoxicity, promoting extended T-cell reactivation and antitumor specificity that improved long-term overall survival in mice. Our data support a pathogenic cooperation among NF-κB-driven prosurvival, genetic instability, and immune evasion mechanisms in DLBCL and provide preclinical proof of concept for including PD-1/PD-L1 blockade in combinatorial immunotherapy for ABC-DLBCL.


Asunto(s)
Linfocitos B/inmunología , Antígeno B7-H1/inmunología , Regulación Neoplásica de la Expresión Génica , Activación de Linfocitos , Linfoma de Células B Grandes Difuso/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Escape del Tumor , Proteína p53 Supresora de Tumor/inmunología , Animales , Linfocitos B/patología , Antígeno B7-H1/genética , Femenino , Humanos , Inmunoterapia , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Linfoma de Células B Grandes Difuso/terapia , Masculino , Ratones , Ratones Transgénicos , Receptor de Muerte Celular Programada 1/genética , Linfocitos T/inmunología , Linfocitos T/patología , Proteína p53 Supresora de Tumor/genética
8.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34502030

RESUMEN

Understanding the mechanisms involved in cognitive resilience in Alzheimer's disease (AD) represents a promising strategy to identify novel treatments for dementia in AD. Previous findings from our group revealed that the study of aged-Tg2576 cognitive resilient individuals is a suitable tool for this purpose. In the present study, we performed a transcriptomic analysis using the prefrontal cortex of demented and resilient Tg2576 transgenic AD mice. We have been able to hypothesize that pathways involved in inflammation, amyloid degradation, memory function, and neurotransmission may be playing a role on cognitive resilience in AD. Intriguingly, the results obtained in this study are suggestive of a reduction of the influx of peripheral immune cells into the brain on cognitive resilient subjects. Indeed, CD4 mRNA expression is significantly reduced on Tg2576 mice with cognitive resilience. For further validation of this result, we analyzed CD4 expression in human AD samples, including temporal cortex and peripheral blood mononuclear cells (PBMC). Interestingly, we have found a negative correlation between CD4 mRNA levels in the periphery and the score in the Mini-Mental State Exam of AD patients. These findings highlight the importance of understanding the role of the immune system on the development of neurodegenerative diseases and points out to the infiltration of CD4+ cells in the brain as a key player of cognitive dysfunction in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Antígenos CD4/genética , Corteza Cerebral/metabolismo , Cognición , Inflamación , Leucocitos Mononucleares/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/fisiopatología , Animales , Corteza Cerebral/fisiología , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Corteza Prefrontal/metabolismo , Lóbulo Temporal/metabolismo
9.
J Proteome Res ; 19(12): 4795-4807, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33155801

RESUMEN

The Human Proteome Project (HPP) is leading the international effort to characterize the human proteome. Although the main goal of this project was first focused on the detection of missing proteins, a new challenge arose from the need to assign biological functions to the uncharacterized human proteins and describe their implications in human diseases. Not only the proteins with experimental evidence (uPE1 proteins) but also the uncharacterized missing proteins (uMPs) were the objects of study in this challenge, neXt-CP50. In this work, we developed a new bioinformatic approach to infer biological annotations for the uPE1 proteins and uMPs based on a "guilt-by-association" analysis using public RNA-Seq data sets. We used the correlation of these proteins with the well-characterized PE1 proteins to construct a network. In this way, we applied the PageRank algorithm to this network to identify the most relevant nodes, which were the biological annotations of the uncharacterized proteins. All of the generated information was stored in a database. In addition, we implemented the web application UPEFinder (https://upefinder.proteored.org) to facilitate the access to this new resource. This information is especially relevant for the researchers of the HPP who are interested in the generation and validation of new hypotheses about the functions of these proteins. Both the database and the web application are publicly available (https://github.com/ubioinformat/UPEfinder).


Asunto(s)
Biología Computacional , Proteoma , Algoritmos , Bases de Datos de Proteínas , Expresión Génica , Humanos , Proteoma/genética
10.
Expert Rev Proteomics ; 16(3): 267-275, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30654666

RESUMEN

INTRODUCTION: The technological and scientific progress performed in the Human Proteome Project (HPP) has provided to the scientific community a new set of experimental and bioinformatic methods in the challenging field of shotgun and SRM/MRM-based Proteomics. The requirements for a protein to be considered experimentally validated are now well-established, and the information about the human proteome is available in the neXtProt database, while targeted proteomic assays are stored in SRMAtlas. However, the study of the missing proteins continues being an outstanding issue. Areas covered: This review is focused on the implementation of proteogenomic methods designed to improve the detection and validation of the missing proteins. The evolution of the methodological strategies based on the combination of different omic technologies and the use of huge publicly available datasets is shown taking the Chromosome 16 Consortium as reference. Expert commentary: Proteogenomics and other strategies of data analysis implemented within the C-HPP initiative could be used as guidance to complete in a near future the catalog of the human proteins. Besides, in the next years, we will probably witness their use in the B/D-HPP initiative to go a step forward on the implications of the proteins in the human biology and disease.


Asunto(s)
Cromosomas Humanos Par 16/genética , Proteogenómica/tendencias , Proteoma/genética , Proteómica , Bases de Datos de Proteínas , Proyecto Genoma Humano , Humanos , Estándares de Referencia
12.
EMBO Rep ; 17(7): 1013-28, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27283940

RESUMEN

The role of long noncoding RNAs (lncRNAs) in viral infection is poorly studied. We have identified hepatitis C virus (HCV)-Stimulated lncRNAs (CSRs) by transcriptome analysis. Interestingly, two of these CSRs (PVT1 and UCA1) play relevant roles in tumorigenesis, providing a novel link between HCV infection and development of liver tumors. Expression of some CSRs seems induced directly by HCV, while others are upregulated by the antiviral response against the virus. In fact, activation of pathogen sensors induces the expression of CSR32/EGOT RIG-I and the RNA-activated kinase PKR sense HCV RNA, activate NF-κB and upregulate EGOT EGOT is increased in the liver of patients infected with HCV and after infection with influenza or Semliki Forest virus (SFV). Genome-wide guilt-by-association studies predict that EGOT may function as a negative regulator of the antiviral pathway. Accordingly, EGOT depletion increases the expression of several interferon-stimulated genes and leads to decreased replication of HCV and SFV Our results suggest that EGOT is a lncRNA induced after infection that increases viral replication by antagonizing the antiviral response.


Asunto(s)
Resistencia a la Enfermedad/genética , Hepacivirus/fisiología , Interacciones Huésped-Patógeno/genética , ARN Largo no Codificante/genética , Replicación Viral , Línea Celular Tumoral , Análisis por Conglomerados , Proteína 58 DEAD Box/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hepatitis C/genética , Hepatitis C/virología , Humanos , Interferón gamma/metabolismo , Espacio Intracelular , Sistemas de Lectura Abierta , Transporte de ARN , Receptores Toll-Like/metabolismo , Transcriptoma , eIF-2 Quinasa/metabolismo
13.
J Proteome Res ; 16(12): 4374-4390, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28960077

RESUMEN

The Human Proteome Project (HPP) aims deciphering the complete map of the human proteome. In the past few years, significant efforts of the HPP teams have been dedicated to the experimental detection of the missing proteins, which lack reliable mass spectrometry evidence of their existence. In this endeavor, an in depth analysis of shotgun experiments might represent a valuable resource to select a biological matrix in design validation experiments. In this work, we used all the proteomic experiments from the NCI60 cell lines and applied an integrative approach based on the results obtained from Comet, Mascot, OMSSA, and X!Tandem. This workflow benefits from the complementarity of these search engines to increase the proteome coverage. Five missing proteins C-HPP guidelines compliant were identified, although further validation is needed. Moreover, 165 missing proteins were detected with only one unique peptide, and their functional analysis supported their participation in cellular pathways as was also proposed in other studies. Finally, we performed a combined analysis of the gene expression levels and the proteomic identifications from the common cell lines between the NCI60 and the CCLE project to suggest alternatives for further validation of missing protein observations.


Asunto(s)
Proteoma/análisis , Proteómica/métodos , Motor de Búsqueda , Línea Celular Tumoral , Humanos , Bases del Conocimiento , Proteínas/análisis , Programas Informáticos
14.
Expert Rev Proteomics ; 14(1): 9-14, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27885863

RESUMEN

INTRODUCTION: The Human Proteome Project was launched with two main goals: the comprehensive and systematic definition of the human proteome map and the development of ready to use analytical tools to measure relevant proteins in their biological context in health and disease. Despite the great progress in this endeavour, there is still a group of reluctant proteins with no, or scarce, experimental evidence supporting their existence. These are called the 'missing proteins' and represent one of the biggest challenges to complete the human proteome map. Areas covered: This review focuses on the description of the missing proteome based on the HUPO standards, the analysis of the reasons explaining the difficulty of detecting missing proteins and the strategies currently used in the search for missing proteins. The present and future of the quest for the missing proteins is critically revised hereafter. Expert commentary: An overarching multidisciplinary effort is currently being done under the HUPO umbrella to allow completion of the human proteome map. It is expected that the detection of missing proteins will grow in the coming years since the methods and the best tissue/cell type sample for their search are already on the table.


Asunto(s)
Bases de Datos de Proteínas , Proteínas/genética , Proteoma/genética , Cromatografía Liquida , Mapeo Cromosómico , Humanos , Proteínas/aislamiento & purificación
15.
J Med Virol ; 88(5): 843-51, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26447929

RESUMEN

Viral clearance during acute hepatitis C virus (HCV) infection is associated with the induction of potent antiviral T-cell responses. Since dendritic cells (DC) are essential in the activation of primary T-cell responses, gene expression was analyzed in DC from patients during acute HCV infection. By using microarrays, gene expression was compared in resting and activated peripheral blood plasmacytoid (pDC) and myeloid (mDC) DC from acute HCV resolving patients (AR) and from patients who become chronically infected (ANR), as well as in healthy individuals (CTRL) and chronically-infected patients (CHR). For pDC, a high number of upregulated genes was found in AR patients, irrespective of DC stimulation. However, for mDC, most evident differences were detected after DC stimulation, again corresponding to upregulated genes in AR patients. Divergent behavior of ANR was also observed when analyzing DC from CTRL and CHR, with ANR patients clustering again apart from these groups. These differences corresponded to metabolism-associated genes and genes belonging to pathways relevant for DC activation and cytokine responses. Thus, upregulation of relevant genes in DC during acute HCV infection may determine viral clearance, suggesting that dysfunctional DC may be responsible for the lack of efficient T-cell responses which lead to chronic HCV infection.


Asunto(s)
Células Dendríticas/inmunología , Perfilación de la Expresión Génica , Hepatitis C/inmunología , Adolescente , Adulto , Femenino , Humanos , Masculino , Análisis por Micromatrices , Persona de Mediana Edad
16.
J Proteome Res ; 14(3): 1350-60, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25612097

RESUMEN

Experimental evidence for the entire human proteome has been defined in the Human Proteome Project, and it is publicly available in the neXtProt database. However, there are still human proteins for which reliable experimental evidence does not exist, and the identification of such information has become one of the overriding objectives in the chromosome-centric study of the human proteome. With this aim and considering the complexity of protein detection using shotgun and targeted proteomics, the research community has addressed the integration of transcriptomics and proteomics landscapes. Here, we describe an analytical pipeline that predicts the probability of a missing protein being expressed in a biological sample based on (1) gene sequence characteristics, (2) the probability of an expressed gene being a coding gene of a missing protein in a certain sample, and (3) the probability of a gene being expressed in a transcriptomic experiment. More than 3400 microarray experiments were analyzed corresponding to three biological sources: cell lines, normal tissues, and cancer samples. A gene classification based on gene expression profiles distinguished among ubiquitous, nonubiquitous, nonexpressed, and coding genes of missing proteins. In addition, a different tissue-specific expression pattern for the coding genes of missing proteins is reported. Our results underline the relevance of selecting an appropriate sample for the detection of missing proteins and provide a comprehensive method to score their expression probability. Testis, brain, and skeletal muscle are the most promising normal tissues.


Asunto(s)
Proteínas/metabolismo , Proteoma , Humanos , Análisis por Matrices de Proteínas , Proteínas/química , Proteínas/genética , Transcriptoma
17.
J Proteome Res ; 14(9): 3738-49, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26144527

RESUMEN

dasHPPboard is a novel proteomics-based dashboard that collects and reports the experiments produced by the Spanish Human Proteome Project consortium (SpHPP) and aims to help HPP to map the entire human proteome. We have followed the strategy of analog genomics projects like the Encyclopedia of DNA Elements (ENCODE), which provides a vast amount of data on human cell lines experiments. The dashboard includes results of shotgun and selected reaction monitoring proteomics experiments, post-translational modifications information, as well as proteogenomics studies. We have also processed the transcriptomics data from the ENCODE and Human Body Map (HBM) projects for the identification of specific gene expression patterns in different cell lines and tissues, taking special interest in those genes having little proteomic evidence available (missing proteins). Peptide databases have been built using single nucleotide variants and novel junctions derived from RNA-Seq data that can be used in search engines for sample-specific protein identifications on the same cell lines or tissues. The dasHPPboard has been designed as a tool that can be used to share and visualize a combination of proteomic and transcriptomic data, providing at the same time easy access to resources for proteogenomics analyses. The dasHPPboard can be freely accessed at: http://sphppdashboard.cnb.csic.es.


Asunto(s)
Genómica , Proteoma , Humanos , Procesamiento Proteico-Postraduccional , Transcriptoma
18.
EBioMedicine ; 102: 105048, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484556

RESUMEN

BACKGROUND: Tobacco is the main risk factor for developing lung cancer. Yet, while some heavy smokers develop lung cancer at a young age, other heavy smokers never develop it, even at an advanced age, suggesting a remarkable variability in the individual susceptibility to the carcinogenic effects of tobacco. We characterized the germline profile of subjects presenting these extreme phenotypes with Whole Exome Sequencing (WES) and Machine Learning (ML). METHODS: We sequenced germline DNA from heavy smokers who either developed lung adenocarcinoma at an early age (extreme cases) or who did not develop lung cancer at an advanced age (extreme controls), selected from databases including over 6600 subjects. We selected individual coding genetic variants and variant-rich genes showing a significantly different distribution between extreme cases and controls. We validated the results from our discovery cohort, in which we analysed by WES extreme cases and controls presenting similar phenotypes. We developed ML models using both cohorts. FINDINGS: Mean age for extreme cases and controls was 50.7 and 79.1 years respectively, and mean tobacco consumption was 34.6 and 62.3 pack-years. We validated 16 individual variants and 33 variant-rich genes. The gene harbouring the most validated variants was HLA-A in extreme controls (4 variants in the discovery cohort, p = 3.46E-07; and 4 in the validation cohort, p = 1.67E-06). We trained ML models using as input the 16 individual variants in the discovery cohort and tested them on the validation cohort, obtaining an accuracy of 76.5% and an AUC-ROC of 83.6%. Functions of validated genes included candidate oncogenes, tumour-suppressors, DNA repair, HLA-mediated antigen presentation and regulation of proliferation, apoptosis, inflammation and immune response. INTERPRETATION: Individuals presenting extreme phenotypes of high and low risk of developing tobacco-associated lung adenocarcinoma show different germline profiles. Our strategy may allow the identification of high-risk subjects and the development of new therapeutic approaches. FUNDING: See a detailed list of funding bodies in the Acknowledgements section at the end of the manuscript.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Persona de Mediana Edad , Anciano , Secuenciación del Exoma , Predisposición Genética a la Enfermedad , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Fenotipo , Células Germinativas/patología
19.
Neuro Oncol ; 2024 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-38554031

RESUMEN

BACKGROUND: Pediatric high-grade gliomas (pHGGs), including diffuse midline gliomas (DMGs), are aggressive pediatric tumors with one of the poorest prognoses. Delta-24-RGD and ONC201 have shown promising efficacy as single agents for these tumors. However, the combination of both agents has not been evaluated. METHODS: The production of functional viruses was assessed by immunoblotting and replication assays. The antitumor effect was evaluated in a panel of human and murine pHGG and DMG cell lines. RNAseq, the seahorse stress test, mitochondrial DNA content, and γH2A.X immunofluorescence were used to perform mechanistic studies. Mouse models of both diseases were used to assess the efficacy of the combination in vivo. The tumor immune microenvironment was evaluated using flow cytometry, RNAseq and multiplexed immunofluorescence staining. RESULTS: The Delta-24-RGD/ONC201 combination did not affect the virus replication capability in human pHGG and DMG models in vitro. Cytotoxicity analysis showed that the combination treatment was either synergistic or additive. Mechanistically, the combination treatment increased nuclear DNA damage and maintained the metabolic perturbation and mitochondrial damage caused by each agent alone. Delta-24-RGD/ONC201 cotreatment extended the overall survival of mice implanted with human and murine pHGG and DMG cells, independent of H3 mutation status and location. Finally, combination treatment in murine DMG models revealed a reshaping of the tumor microenvironment to a proinflammatory phenotype. CONCLUSIONS: The Delta-24-RGD/ONC201 combination improved the efficacy compared to each agent alone in in vitro and in vivo models by potentiating nuclear DNA damage and in turn improving the antitumor (immune) response to each agent alone.

20.
Clin Cancer Res ; 29(6): 1137-1154, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36607777

RESUMEN

PURPOSE: The identification of pancreatic ductal adenocarcinoma (PDAC) dysregulated genes may unveil novel molecular targets entering inhibitory strategies. Laminins are emerging as potential targets in PDAC given their role as diagnostic and prognostic markers. Here, we investigated the cellular, functional, and clinical relevance of LAMC2 and its regulated network, with the ultimate goal of identifying potential therapies. EXPERIMENTAL DESIGN: LAMC2 expression was analyzed in PDAC tissues, a panel of human and mouse cell lines, and a genetically engineered mouse model. Genetic perturbation in 2D, 3D, and in vivo allograft and xenograft models was done. Expression profiling of a LAMC2 network was performed by RNA-sequencing, and publicly available gene expression datasets from experimental and clinical studies examined to query its human relevance. Dual inhibition of pharmacologically targetable LAMC2-regulated effectors was investigated. RESULTS: LAMC2 was consistently upregulated in human and mouse experimental models as well as in human PDAC specimens, and associated with tumor grade and survival. LAMC2 inhibition impaired cell cycle, induced apoptosis, and sensitized PDAC to MEK1/2 inhibitors (MEK1/2i). A LAMC2-regulated network was featured in PDAC, including both classical and quasi-mesenchymal subtypes, and contained downstream effectors transcriptionally shared by the KRAS signaling pathway. LAMC2 regulated a functional FOSL1-AXL axis via AKT phosphorylation. Furthermore, genetic LAMC2 or pharmacological AXL inhibition elicited a synergistic antiproliferative effect in combination with MEK1/2is that was consistent across 2D and 3D human and mouse PDAC models, including primary patient-derived organoids. CONCLUSIONS: LAMC2 is a molecular target in PDAC that regulates a transcriptional network that unveils a dual drug combination for cancer treatment.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Laminina/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosforilación , Transducción de Señal , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA