Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nature ; 608(7922): 310-316, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35948715

RESUMEN

Soft magnetic materials (SMMs) serve in electrical applications and sustainable energy supply, allowing magnetic flux variation in response to changes in applied magnetic field, at low energy loss1. The electrification of transport, households and manufacturing leads to an increase in energy consumption owing to hysteresis losses2. Therefore, minimizing coercivity, which scales these losses, is crucial3. Yet meeting this target alone is not enough: SMMs in electrical engines must withstand severe mechanical loads; that is, the alloys need high strength and ductility4. This is a fundamental design challenge, as most methods that enhance strength introduce stress fields that can pin magnetic domains, thus increasing coercivity and hysteresis losses5. Here we introduce an approach to overcome this dilemma. We have designed a Fe-Co-Ni-Ta-Al multicomponent alloy (MCA) with ferromagnetic matrix and paramagnetic coherent nanoparticles (about 91 nm in size and around 55% volume fraction). They impede dislocation motion, enhancing strength and ductility. Their small size, low coherency stress and small magnetostatic energy create an interaction volume below the magnetic domain wall width, leading to minimal domain wall pinning, thus maintaining the soft magnetic properties. The alloy has a tensile strength of 1,336 MPa at 54% tensile elongation, extremely low coercivity of 78 A m-1 (less than 1 Oe), moderate saturation magnetization of 100 A m2 kg-1 and high electrical resistivity of 103 µΩ cm.

2.
Small ; : e2208098, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38072802

RESUMEN

The production of bulk nanostructured silicide thermoelectric materials by a reversible hydrogen absorption-desorption process is demonstrated. Here, high-pressure reactive milling under 100 bar hydrogen is used to decompose the Ca2 Si phase into CaH2 and Si. Subsequent vacuum heat treatment results in hydrogen desorption and recombination of the constituents into the original phase. By changing the heat treatment temperature, recombination into Ca2 Si or Ca5 Si3 can be achieved. Most importantly, the advanced synthesis process enables drastic and simple microstructure refinement by more than two orders of magnitude, from a grain size of around 50 µm in the initial ingot to 100-200 nm after the hydrogen absorption-desorption process. Fine precipitates with sizes ranging from 10-50 nm are forming coherently inside the grains. Thus, the route is promising and can be used for reducing thermal conductivity due to phonon scattering from grain boundaries as well as through nanostructuring with second-phase precipitates. Moreover, the process is environmentally friendly since hydrogen is reversibly absorbed, desorbed, and can be fully recovered.

3.
Small ; 19(36): e2300333, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37150875

RESUMEN

2D magnets can potentially revolutionize information technology, but their potential application to cooling technology and magnetocaloric effect (MCE) in a material down to the monolayer limit remain unexplored. Herein, it is revealed through multiscale calculations the existence of giant MCE and its strain tunability in monolayer magnets such as CrX3 (X = F, Cl, Br, I), CrAX (A = O, S, Se; X = F, Cl, Br, I), and Fe3 GeTe2 . The maximum adiabatic temperature change ( Δ T ad max $\Delta T_{{\rm{ad}}}^{\max }$ ), maximum isothermal magnetic entropy change, and specific cooling power in monolayer CrF3 are found as high as 11 K, 35 µJ m-2  K-1 , and 3.5 nW cm-2 under a magnetic field of 5 T, respectively. A 2% biaxial and 5% a-axis uniaxial compressive strain can remarkably increase Δ T ad max $\Delta T_{{\rm{ad}}}^{\max }$ of CrCl3 and CrOF by 230% and 37% (up to 15.3 and 6.0 K), respectively. It is found that large net magnetic moment per unit area favors improved MCE. These findings advocate the giant-MCE monolayer magnets, opening new opportunities for magnetic cooling at nanoscale.

4.
Microsc Microanal ; 29(5): 1658-1670, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37639387

RESUMEN

Atom probe tomography (APT) is ideally suited to characterize and understand the interplay of segregation and microstructure in modern multi-component materials. Yet, the quantitative analysis typically relies on human expertise to define regions of interest. We introduce a computationally efficient, multi-stage machine learning strategy to identify compositionally distinct domains in a semi-automated way, and subsequently quantify their geometric and compositional characteristics. In our algorithmic pipeline, we first coarse-grain the APT data into voxels, collect the composition statistics, and decompose it via clustering in composition space. The composition classification then enables the real-space segmentation via a density-based clustering algorithm, thus revealing the microstructure at voxel resolution. Our approach is demonstrated for a Sm-(Co,Fe)-Zr-Cu alloy. The alloy exhibits two precipitate phases with a plate-like, but intertwined morphology. The primary segmentation is further refined to disentangle these geometrically complex precipitates into individual plate-like parts by an unsupervised approach based on principle component analysis, or a U-Net-based semantic segmentation trained on the former. Following the composition and geometric analysis, detailed composition distribution and segregation effects relative to the predominant plate-like geometry can be readily mapped from the point cloud, without resorting to the voxel compositions.

5.
Nat Mater ; 17(10): 929-934, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30202111

RESUMEN

The giant magnetocaloric effect, in which large thermal changes are induced in a material on the application of a magnetic field, can be used for refrigeration applications, such as the cooling of systems from a small to a relatively large scale. However, commercial uptake is limited. We propose an approach to magnetic cooling that rejects the conventional idea that the hysteresis inherent in magnetostructural phase-change materials must be minimized to maximize the reversible magnetocaloric effect. Instead, we introduce a second stimulus, uniaxial stress, so that we can exploit the hysteresis. This allows us to lock-in the ferromagnetic phase as the magnetizing field is removed, which drastically removes the volume of the magnetic field source and so reduces the amount of expensive Nd-Fe-B permanent magnets needed for a magnetic refrigerator. In addition, the mass ratio between the magnetocaloric material and the permanent magnet can be increased, which allows scaling of the cooling power of a device simply by increasing the refrigerant body. The technical feasibility of this hysteresis-positive approach is demonstrated using Ni-Mn-In Heusler alloys. Our study could lead to an enhanced usage of the giant magnetocaloric effect in commercial applications.

6.
Chem Mater ; 36(14): 6765-6776, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39070670

RESUMEN

Due to their versatile composition and customizable properties, A2BC Heusler alloys have found applications in magnetic refrigeration, magnetic shape memory effects, permanent magnets, and spintronic devices. The discovery of all-d-metal Heusler alloys with improved mechanical properties compared to those containing main group elements presents an opportunity to engineer Heusler alloys for energy-related applications. Using high-throughput density-functional theory calculations, we screened magnetic all-d-metal Heusler compounds and identified 686 (meta)stable compounds. Our detailed analysis revealed that the inverse Heusler structure is preferred when the electronegativity difference between the A and B/C atoms is small, contrary to conventional Heusler alloys. Additionally, our calculations of Pugh ratios and Cauchy pressures demonstrated that ductile and metallic bonding are widespread in all-d-metal Heuslers, supporting their enhanced mechanical behavior. We identified 49 compounds with a double-well energy surface based on Bain path calculations and magnetic ground states, indicating their potential as candidates for magnetocaloric and shape memory applications. Furthermore, by calculating the free energies, we propose that 11 compounds exhibit structural phase transitions and suggest isostructural substitutions to enhance the magnetocaloric effect.

7.
ACS Appl Mater Interfaces ; 16(29): 38208-38220, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38990047

RESUMEN

The transition toward a carbon-neutral society based on renewable energies goes hand in hand with the availability of energy-efficient technologies. Magnetocaloric cooling is a very promising refrigeration technology to fulfill this role regarding cryogenic gas liquefaction. However, the current reliance on highly resource critical, heavy rare-earth-based compounds as magnetocaloric material makes global usage unsustainable. Here, we aim to mitigate this limitation through the utilization of a multicaloric cooling concept, which uses the external stimuli of isotropic pressure and magnetic field to tailor and induce magnetostructural phase transitions associated with large caloric effects. In this study, La0.7Ce0.3Fe11.6Si1.4 is used as a nontoxic, low-cost, low-criticality multiferroic material to explore the potential, challenges, and peculiarities of multicaloric cryocooling, achieving maximum isothermal entropy changes up to -28 J (kg K)-1 in the temperature range from 190 K down to 30 K. Thus, the multicaloric cooling approach offers an additional degree of freedom to tailor the phase transition properties and may lead to energy-efficient and environmentally friendly gas liquefaction based on designed-for-purpose, noncritical multiferroic materials.

8.
Nat Mater ; 11(7): 620-6, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22635044

RESUMEN

Magnetic cooling could be a radically different energy solution substituting conventional vapour compression refrigeration in the future. For the largest cooling effects of most potential refrigerants we need to fully exploit the different degrees of freedom such as magnetism and crystal structure. We report now for Heusler-type Ni­Mn­In­(Co) magnetic shape-memory alloys, the adiabatic temperature change ΔT(ad) = −3.6 to −6.2 K under a moderate field of 2 T. Here it is the structural transition that plays the dominant role towards the net cooling effect. A phenomenological model is established that reveals the parameters essential for such a large ΔT(ad). We also demonstrate that obstacles to the application of Heusler alloys, namely the usually large hysteresis and limited operating temperature window, can be overcome by using the multi-response to different external stimuli and/or fine-tuning the lattice parameters, and by stacking a series of alloys with tailored magnetostructural transitions.

9.
Adv Sci (Weinh) ; 10(17): e2206772, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37078807

RESUMEN

Magnetic refrigeration offers an energy efficient and environmental friendly alternative to conventional vapor-cooling. However, its adoption depends on materials with tailored magnetic and structural properties. Here a high-throughput computational workflow for the design of magnetocaloric materials is introduced. Density functional theory calculations are used to screen potential candidates in the family of MM'X (M/M' = metal, X = main group element) compounds. Out of 274 stable compositions, 46 magnetic compounds are found to stabilize in both an austenite and martensite phase. Following the concept of Curie temperature window, nine compounds are identified as potential candidates with structural transitions, by evaluating and comparing the structural phase transition and magnetic ordering temperatures. Additionally, the use of doping to tailor magnetostructural coupling for both known and newly predicted MM'X compounds is predicted and isostructural substitution as a general approach to engineer magnetocaloric materials is suggested.

10.
Nat Commun ; 14(1): 8176, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071266

RESUMEN

Fast growth of sustainable energy production requires massive electrification of transport, industry and households, with electrical motors as key components. These need soft magnets with high saturation magnetization, mechanical strength, and thermal stability to operate efficiently and safely. Reconciling these properties in one material is challenging because thermally-stable microstructures for strength increase conflict with magnetic performance. Here, we present a material concept that combines thermal stability, soft magnetic response, and high mechanical strength. The strong and ductile soft ferromagnet is realized as a multicomponent alloy in which precipitates with a large aspect ratio form a Widmanstätten pattern. The material shows excellent magnetic and mechanical properties at high temperatures while the reference alloy with identical composition devoid of precipitates significantly loses its magnetization and strength at identical temperatures. The work provides a new avenue to develop soft magnets for high-temperature applications, enabling efficient use of sustainable electrical energy under harsh operating conditions.

11.
ACS Sustain Chem Eng ; 11(36): 13374-13386, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37711764

RESUMEN

Permanent magnets are fundamental constituents in key sectors such as energy and transport, but also robotics, automatization, medicine, etc. High-performance magnets are based on rare earth elements (RE), included in the European list of critical raw materials list. The volatility of their market increased the research over the past decade to develop RE-free magnets to fill the large performance/cost gap existing between ferrites and RE-based magnets. The improvement of hard ferrites and Mn-Al-C permanent magnets plays into this important technological role in the near future. The possible substitution advantage was widely discussed in the literature considering both magnetic properties and economic aspects. To evaluate further sustainability aspects, the present paper gives a life cycle assessment quantifying the environmental gain resulting from the production of RE-free magnets based on traditional hexaferrite and Mn-Al-C. The analysis quantified an advantage of both magnets that overcomes the 95% in all the considered impact categories (such as climate change, ozone depletion, human toxicity) compared to RE-based technologies. The benefit also includes the health and safety of working time aspects, proving possible reduction of worker risks by 3-12 times. The results represent the fundamentals for the development of green magnets that are able to significantly contribute to an effective sustainable transition.

12.
Science ; 378(6615): 78-85, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36201584

RESUMEN

High-entropy alloys are solid solutions of multiple principal elements that are capable of reaching composition and property regimes inaccessible for dilute materials. Discovering those with valuable properties, however, too often relies on serendipity, because thermodynamic alloy design rules alone often fail in high-dimensional composition spaces. We propose an active learning strategy to accelerate the design of high-entropy Invar alloys in a practically infinite compositional space based on very sparse data. Our approach works as a closed-loop, integrating machine learning with density-functional theory, thermodynamic calculations, and experiments. After processing and characterizing 17 new alloys out of millions of possible compositions, we identified two high-entropy Invar alloys with extremely low thermal expansion coefficients around 2 × 10-6 per degree kelvin at 300 kelvin. We believe this to be a suitable pathway for the fast and automated discovery of high-entropy alloys with optimal thermal, magnetic, and electrical properties.

13.
Anal Chem ; 83(8): 3199-204, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21410226

RESUMEN

A novel cell for in situ Raman studies at hydrogen pressures up to 200 bar and at temperatures as high as 400 °C is presented. This device permits in situ monitoring of the formation and decomposition of chemical structures under high pressure via Raman scattering. The performance of the cell under extreme conditions is stable as the design of this device compensates much of the thermal expansion during heating which avoids defocusing of the laser beam. Several complex and metal hydrides were analyzed to demonstrate the advantageous use of this in situ cell. Temperature calibration was performed by monitoring the structural phase transformation and melting point of LiBH(4). The feasibility of the cell in hydrogen atmosphere was confirmed by in situ studies of the decomposition of NaAlH(4) with added TiCl(3) at different hydrogen pressures and the decomposition and rehydrogenation of MgH(2) and LiNH(2).


Asunto(s)
Borohidruros/química , Hidrógeno/química , Compuestos de Litio/química , Litio/química , Magnesio/química , Nitrógeno/química , Espectrometría Raman/métodos , Temperatura , Ensayo de Materiales , Presión , Espectrometría Raman/instrumentación
14.
Sci Rep ; 11(1): 5253, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664353

RESUMEN

Tetragonal ([Formula: see text]) FeNi is a promising material for high-performance rare-earth-free permanent magnets. Pure tetragonal FeNi is very difficult to synthesize due to its low chemical order-disorder transition temperature ([Formula: see text] K), and thus one must consider alternative non-equilibrium processing routes and alloy design strategies that make the formation of tetragonal FeNi feasible. In this paper, we investigate by density functional theory as implemented in the exact muffin-tin orbitals method whether alloying FeNi with a suitable element can have a positive impact on the phase formation and ordering properties while largely maintaining its attractive intrinsic magnetic properties. We find that small amount of non-magnetic (Al and Ti) or magnetic (Cr and Co) elements increase the order-disorder transition temperature. Adding Mo to the Co-doped system further enhances the ordering temperature while the Curie temperature is decreased only by a few degrees. Our results show that alloying is a viable route to stabilizing the ordered tetragonal phase of FeNi.

15.
Adv Mater ; 33(37): e2102139, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34337799

RESUMEN

The lack of strength and damage tolerance can limit the applications of conventional soft magnetic materials (SMMs), particularly in mechanically loaded functional devices. Therefore, strengthening and toughening of SMMs is critically important. However, conventional strengthening concepts usually significantly deteriorate soft magnetic properties, due to Bloch wall interactions with the defects used for hardening. Here a novel concept to overcome this dilemma is proposed, by developing bulk SMMs with excellent mechanical and attractive soft magnetic properties through coherent and ordered nanoprecipitates (<15 nm) dispersed homogeneously within a face-centered cubic matrix of a non-equiatomic CoFeNiTaAl high-entropy alloy (HEA). Compared to the alloy in precipitate-free state, the alloy variant with a large volume fraction (>42%) of nanoprecipitates achieves significantly enhanced strength (≈1526 MPa) at good ductility (≈15%), while the coercivity is only marginally increased (<10.7 Oe). The ordered nanoprecipitates and the resulting dynamic microband refinement in the matrix significantly strengthen the HEAs, while full coherency between the nanoprecipitates and the matrix leads at the same time to the desired insignificant pinning of the magnetic domain walls. The findings provide guidance for developing new high-performance materials with an excellent combination of mechanical and soft magnetic properties as needed for the electrification of transport and industry.

16.
Adv Mater ; 33(5): e2006853, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33354774

RESUMEN

Pinning-type magnets with high coercivity at high temperatures are at the core of thriving clean-energy technologies. Among these, Sm2 Co17 -based magnets are excellent candidates owing to their high-temperature stability. However, despite intensive efforts to optimize the intragranular microstructure, the coercivity currently only reaches 20-30% of the theoretical limits. Here, the roles of the grain-interior nanostructure and the grain boundaries in controlling coercivity are disentangled by an emerging magnetoelectric approach. Through hydrogen charging/discharging by applying voltages of only ≈1 V, the coercivity is reversibly tuned by an unprecedented value of ≈1.3 T. In situ magneto-structural characterization and atomic-scale tracking of hydrogen atoms reveal that the segregation of hydrogen atoms at the grain boundaries, rather than the change of the crystal structure, dominates the reversible and substantial change of coercivity. Hydrogen reduces the local magnetocrystalline anisotropy and facilitates the magnetization reversal starting from the grain boundaries. This study opens a way to achieve the giant magnetoelectric effect in permanent magnets by engineering grain boundaries with hydrogen atoms. Furthermore, it reveals the so far neglected critical role of grain boundaries in the conventional magnetization-switching paradigm of pinning-type magnets, suggesting a critical reconsideration of engineering strategies to overcome the coercivity limits.

17.
Chemistry ; 16(29): 8707-12, 2010 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-20583064

RESUMEN

The new double-cation Al-Li-borohydride is an attractive candidate material for hydrogen storage due to a very low hydrogen desorption temperature (approximately 70 degrees C) combined with a high hydrogen density (17.2 wt%). It was synthesised by high-energy ball milling of AlCl(3) and LiBH(4). The structure of the compound was determined from image-plate synchrotron powder diffraction supported by DFT calculations. The material shows a unique 3D framework structure within the borohydrides (space group=P-43n, a=11.3640(3) A). The unexpected composition Al(3)Li(4)(BH(4))(13) can be rationalized on the basis of a complex cation [(BH(4))Li(4)](3+) and a complex anion [Al(BH(4))(4)](-). The refinements from synchrotron powder diffraction of different samples revealed the presence of limited amounts of chloride ions replacing the borohydride on one site. In situ Raman spectroscopy, differential scanning calorimetry (DSC), thermogravimetry (TG) and thermal desorption measurements were used to study the decomposition pathway of the compound. Al-Li-borohydride decomposes at approximately 70 degrees C, forming LiBH(4). The high mass loss of about 20 % during the decomposition indicates the release of not only hydrogen but also diborane.

18.
J Phys Condens Matter ; 32(11): 115802, 2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-31756724

RESUMEN

Spin fluctuations are a crucial driving force for magnetic phase transitions, but their presence usually is indirectly deduced from macroscopic variables like volume, magnetization or electrical resistivity. Here we report on the direct observation of spin fluctuations in the paramagnetic regime of the magnetocaloric model system LaFe11.6Si1.4 in the form of neutron diffuse scattering. To confirm the magnetic origin of the diffuse scattering, we correlate the temperature dependence of the diffuse intensity with ac magnetic susceptibility and x-ray diffraction experiments under magnetic field. Strong spin fluctuations are already observable at 295 K and their presence alters the thermal contraction behavior of LaFe11.6Si1.4 down to the Curie temperature of the first-order magneto-structural transition at 190 K. We explain the influence of the spin fluctuation amplitude on the lattice parameter in the framework of the internal magnetic pressure model and find that the critical forced magnetostriction follows Takashi's spin fluctuation theory for itinerant electron systems.

19.
Nat Commun ; 11(1): 4849, 2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973128

RESUMEN

Owing to electric-field screening, the modification of magnetic properties in ferromagnetic metals by applying small voltages is restricted to a few atomic layers at the surface of metals. Bulk metallic systems usually do not exhibit any magneto-electric effect. Here, we report that the magnetic properties of micron-scale ferromagnetic metals can be modulated substantially through electrochemically-controlled insertion and extraction of hydrogen atoms in metal structure. By applying voltages of only ~ 1 V, we show that the coercivity of micrometer-sized SmCo5, as a bulk model material, can be reversibly adjusted by ~ 1 T, two orders of magnitudes larger than previously reported. Moreover, voltage-assisted magnetization reversal is demonstrated at room temperature. Our study opens up a way to control the magnetic properties in ferromagnetic metals beyond the electric-field screening length, paving its way towards practical use in magneto-electric actuation and voltage-assisted magnetic storage.

20.
Energy Technol (Weinh) ; 8(7): 1901025, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32728520

RESUMEN

Magnetic refrigeration is an upcoming technology that could be an alternative to the more than 100-year-old conventional gas-vapor compression cooling. Magnetic refrigeration might answer some of the global challenges linked with the increasing demands for readily available cooling in almost every region of the world and the global-warming potential of conventional refrigerants. Important issues to be solved are, for example, the required mass and the ecological footprint of the rare-earth permanent magnets and the magnetocaloric material, which are key parts of the magnetic cooling device. The majority of existing demonstrators use Nd-Fe-B permanent magnets, which account for more than 50% of the ecological footprint, and Gd, which is a critical raw material. This work shows a solution to these problems by demonstrating the world's first magnetocaloric demonstrator that uses recycled Nd-Fe-B magnets as the magnetic field source, and, as a Gd replacement material, La-Fe-Mn-Si for the magnetocaloric heat exchanger. These solutions show that it is possible to reduce the ecological footprint of magnetic cooling devices and provides magnetic cooling as a green solid-state technology that has the potential to satisfy the rapidly growing global demands.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA