Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 23(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35682594

RESUMEN

Cerebral small vessel disease (CSVD) is the second most common cause of stroke and a major contributor to dementia. Manifestations of CSVD include cerebral microbleeds, intracerebral hemorrhages (ICH), lacunar infarcts, white matter hyperintensities (WMH) and enlarged perivascular spaces. Chronic hypertensive models have been found to reproduce most key features of the disease. Nevertheless, no animal models have been identified to reflect all different aspects of the human disease. Here, we described a novel model for CSVD using salt-sensitive 'Sabra' hypertension-prone rats (SBH/y), which display chronic hypertension and enhanced peripheral oxidative stress. SBH/y rats were either administered deoxycorticosteroid acetate (DOCA) (referred to as SBH/y-DOCA rats) or sham-operated and provided with 1% NaCl in drinking water. Rats underwent neurological assessment and behavioral testing, followed by ex vivo MRI and biochemical and histological analyses. SBH/y-DOCA rats show a neurological decline and cognitive impairment and present multiple cerebrovascular pathologies associated with CSVD, such as ICH, lacunes, enlarged perivascular spaces, blood vessel stenosis, BBB permeability and inflammation. Remarkably, SBH/y-DOCA rats show severe white matter pathology as well as WMH, which are rarely reported in commonly used models. Our model may serve as a novel platform for further understanding the mechanisms underlying CSVD and for testing novel therapeutics.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Acetato de Desoxicorticosterona , Hipertensión , Sustancia Blanca , Animales , Hemorragia Cerebral/complicaciones , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Hipertensión/complicaciones , Imagen por Resonancia Magnética , Estrés Oxidativo , Ratas , Roedores
2.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36232513

RESUMEN

Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been employed in the past decade as therapeutic agents in various diseases, including central nervous system (CNS) disorders. We currently aimed to use MSC-EVs as potential treatment for cerebral small vessel disease (CSVD), a complex disorder with a variety of manifestations. MSC-EVs were intranasally administrated to salt-sensitive hypertension prone SBH/y rats that were DOCA-salt loaded (SBH/y-DS), which we have previously shown is a model of CSVD. MSC-EVs accumulated within brain lesion sites of SBH/y-DS. An in vitro model of an inflammatory environment in the brain demonstrated anti-inflammatory properties of MSC-EVs. Following in vivo MSC-EV treatment, gene set enrichment analysis (GSEA) of SBH/y-DS cortices revealed downregulation of immune system response-related gene sets. In addition, MSC-EVs downregulated gene sets related to apoptosis, wound healing and coagulation, and upregulated gene sets associated with synaptic signaling and cognition. While no specific gene was markedly altered upon treatment, the synergistic effect of all gene alternations was sufficient to increase animal survival and improve the neurological state of affected SBH/y-DS rats. Our data suggest MSC-EVs act as microenvironment modulators, through various molecular pathways. We conclude that MSC-EVs may serve as beneficial therapeutic measure for multifactorial disorders, such as CSVD.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Acetato de Desoxicorticosterona , Vesículas Extracelulares , Células Madre Mesenquimatosas , Animales , Antiinflamatorios/metabolismo , Enfermedades de los Pequeños Vasos Cerebrales/metabolismo , Enfermedades de los Pequeños Vasos Cerebrales/terapia , Modelos Animales de Enfermedad , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratas
3.
Adv Drug Deliv Rev ; 190: 114535, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36210573

RESUMEN

Tissue-specific uptake and sufficient biodistribution are central goals in drug development. Crossing the blood-brain barrier (BBB) represents a major challenge in delivering therapeutics to the central nervous system (CNS). Since its discovery in the late 19th century, considerable efforts have been invested in an attempt to decipher the BBB structure complexity and plasticity. In parallel, another prevalent approach is to improve a delivery system by harnessing the biological machinery in an attempt to enhance therapeutic-agent permeability. Here, we review the advantages and limitations of using extracellular vesicles over AAV systems as a delivery system for therapy, focusing on neurodevelopmental disorders.


Asunto(s)
Dependovirus , Vesículas Extracelulares , Barrera Hematoencefálica , Sistemas de Liberación de Medicamentos , Humanos , Medicina de Precisión , Distribución Tisular
4.
Biomolecules ; 10(9)2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32942544

RESUMEN

Neurodegenerative disease refers to any pathological condition in which there is a progressive decline in neuronal function resulting from brain atrophy. Despite the immense efforts invested over recent decades in developing treatments for neurodegenerative diseases, effective therapy for these conditions is still an unmet need. One of the promising options for promoting brain recovery and regeneration is mesenchymal stem cell (MSC) transplantation. The therapeutic effect of MSCs is thought to be mediated by their secretome, and specifically, by their exosomes. Research shows that MSC-derived exosomes retain some of the characteristics of their parent MSCs, such as immune system modulation, regulation of neurite outgrowth, promotion of angiogenesis, and the ability to repair damaged tissue. Here, we summarize the functional outcomes observed in animal models of neurodegenerative diseases following MSC-derived exosome treatment. We will examine the proposed mechanisms of action through which MSC-derived exosomes mediate their therapeutic effects and review advanced studies that attempt to enhance the improvement achieved using MSC-derived exosome treatment, with a view towards future clinical use.


Asunto(s)
Enfermedad de Alzheimer/terapia , Lesiones Traumáticas del Encéfalo/terapia , Exosomas/trasplante , Células Madre Mesenquimatosas/metabolismo , Esclerosis Múltiple/terapia , Traumatismos de la Médula Espinal/terapia , Estado Epiléptico/terapia , Accidente Cerebrovascular/terapia , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Transporte Biológico , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Modelos Animales de Enfermedad , Exosomas/química , Exosomas/metabolismo , Humanos , Inflamación/prevención & control , Inyecciones Intravenosas , Ratones , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Sistema Nervioso/metabolismo , Sistema Nervioso/patología , Neuronas/metabolismo , Neuronas/patología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Estado Epiléptico/metabolismo , Estado Epiléptico/patología , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología
5.
Front Neurosci ; 13: 151, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30872995

RESUMEN

The peripheral nervous system has an intrinsic ability to regenerate after injury. However, this process is slow, incomplete, and often accompanied by disturbing motor and sensory consequences. Sciatic nerve injury (SNI), which is the most common model for studying peripheral nerve injury, is characterized by damage to both motor and sensory fibers. The main goal of this study is to examine the feasibility of administration of human muscle progenitor cells (hMPCs) overexpressing neurotrophic factor (NTF) genes, known to protect peripheral neurons and enhance axon regeneration and functional recovery, to ameliorate motoric and sensory deficits in SNI mouse model. To this end, hMPCs were isolated from a human muscle biopsy, and manipulated to ectopically express brain-derived neurotrophic factor (BDNF), glial-cell-line-derived neurotrophic factor (GDNF), vascular endothelial growth factor (VEGF), and insulin-like growth factor (IGF-1). These hMPC-NTF were transplanted into the gastrocnemius muscle of mice after SNI, and motor and sensory functions of the mice were assessed using the CatWalk XT system and the hot plate test. ELISA analysis showed that genetically manipulated hMPC-NTF express significant amounts of BDNF, GDNF, VEGF, or IGF-1. Transplantation of 3 × 106 hMPC-NTF was shown to improve motor function and gait pattern in mice following SNI surgery, as indicated by the CatWalk XT system 7 days post-surgery. Moreover, using the hot-plate test, performed 6 days after surgery, the treated mice showed less sensory deficits, indicating a palliative effect of the treatment. ELISA analysis following transplantation demonstrated increased NTF expression levels in the gastrocnemius muscle of the treated mice, reinforcing the hypothesis that the observed positive effect was due to the transplantation of the genetically manipulated hMPC-NTF. These results show that genetically modified hMPC can alleviate both motoric and sensory deficits of SNI. The use of hMPC-NTF demonstrates the feasibility of a treatment paradigm, which may lead to rapid, high-quality healing of damaged peripheral nerves due to administration of hMPC. Our approach suggests a possible clinical application for the treatment of peripheral nerve injury.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA