Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 169(3): 470-482.e13, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28431247

RESUMEN

Aging is attended by a progressive decline in protein homeostasis (proteostasis), aggravating the risk for protein aggregation diseases. To understand the coordination between proteome imbalance and longevity, we addressed the mechanistic role of the quality-control ubiquitin ligase CHIP, which is a key regulator of proteostasis. We observed that CHIP deficiency leads to increased levels of the insulin receptor (INSR) and reduced lifespan of worms and flies. The membrane-bound INSR regulates the insulin and IGF1 signaling (IIS) pathway and thereby defines metabolism and aging. INSR is a direct target of CHIP, which triggers receptor monoubiquitylation and endocytic-lysosomal turnover to promote longevity. However, upon proteotoxic stress conditions and during aging, CHIP is recruited toward disposal of misfolded proteins, reducing its capacity to degrade the INSR. Our study indicates a competitive relationship between proteostasis and longevity regulation through CHIP-assisted proteolysis, providing a mechanistic concept for understanding the impact of proteome imbalance on aging.


Asunto(s)
Envejecimiento , Antígenos CD/metabolismo , Receptor de Insulina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Caenorhabditis elegans , Drosophila melanogaster , Endocitosis , Humanos , Longevidad , Lisosomas/metabolismo , Proteolisis , Proteoma , Transducción de Señal , Somatomedinas , Ubiquitinación
2.
EMBO Rep ; 22(8): e52507, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34309183

RESUMEN

Cell survival, tissue integrity and organismal health depend on the ability to maintain functional protein networks even under conditions that threaten protein integrity. Protection against such stress conditions involves the adaptation of folding and degradation machineries, which help to preserve the protein network by facilitating the refolding or disposal of damaged proteins. In multicellular organisms, cells are permanently exposed to stress resulting from mechanical forces. Yet, for long time mechanical stress was not recognized as a primary stressor that perturbs protein structure and threatens proteome integrity. The identification and characterization of protein folding and degradation systems, which handle force-unfolded proteins, marks a turning point in this regard. It has become apparent that mechanical stress protection operates during cell differentiation, adhesion and migration and is essential for maintaining tissues such as skeletal muscle, heart and kidney as well as the immune system. Here, we provide an overview of recent advances in our understanding of mechanical stress protection.


Asunto(s)
Pliegue de Proteína , Proteostasis , Supervivencia Celular , Proteoma/metabolismo , Estrés Mecánico
3.
Exp Cell Res ; 408(2): 112865, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34637763

RESUMEN

Protein homeostasis (proteostasis) in multicellular organisms depends on the maintenance of force-bearing and force-generating cellular structures. Within myofibrillar Z-discs of striated muscle, isoforms of synaptopodin-2 (SYNPO2/myopodin) act as adapter proteins that are engaged in proteostasis of the actin-crosslinking protein filamin C (FLNc) under mechanical stress. SYNPO2 directly binds F-actin, FLNc and α-actinin and thus contributes to the architectural features of the actin cytoskeleton. By its association with autophagy mediating proteins, i.e. BAG3 and VPS18, SYNPO2 is also engaged in protein quality control and helps to target mechanical unfolded and damaged FLNc for degradation. Here we show that deficiency of all SYNPO2-isoforms in myotubes leads to decreased myofibrillar stability and deregulated autophagy under mechanical stress. In addition, isoform-specific proteostasis functions were revealed. The PDZ-domain containing variant SYNPO2b and the shorter, PDZ-less isoform SYNPO2e both localize to Z-discs. Yet, SYNPO2e is less stably associated with the Z-disc than SYNPO2b, and is dynamically transferred into FLNc-containing myofibrillar lesions under mechanical stress. SYNPO2e also recruits BAG3 into these lesions via interaction with the WW domain of BAG3. Our data provide evidence for a role of myofibrillar lesions as a transient quality control compartment essential to prevent and repair contraction-induced myofibril damage in muscle and indicate an important coordinating activity for SYNPO2 therein.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas de Microfilamentos/genética , Músculo Esquelético/metabolismo , Estrés Mecánico , Proteínas de Transporte Vesicular/genética , Citoesqueleto de Actina/genética , Actinina/genética , Actinas/genética , Animales , Autofagia/genética , Línea Celular , Citoesqueleto/genética , Humanos , Ratones , Fibras Musculares Esqueléticas/metabolismo , Músculo Estriado/metabolismo , Miofibrillas/genética , Miofibrillas/metabolismo , Dominios PDZ/genética , Isoformas de Proteínas/genética , Sinaptofisina/genética
4.
J Am Soc Nephrol ; 31(3): 544-559, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32047005

RESUMEN

BACKGROUND: Understanding podocyte-specific responses to injury at a systems level is difficult because injury leads to podocyte loss or an increase of extracellular matrix, altering glomerular cellular composition. Finding a window into early podocyte injury might help identify molecular pathways involved in the podocyte stress response. METHODS: We developed an approach to apply proteome analysis to very small samples of purified podocyte fractions. To examine podocytes in early disease states in FSGS mouse models, we used podocyte fractions isolated from individual mice after chemical induction of glomerular disease (with Doxorubicin or LPS). We also applied single-glomerular proteome analysis to tissue from patients with FSGS. RESULTS: Transcriptome and proteome analysis of glomeruli from patients with FSGS revealed an underrepresentation of podocyte-specific genes and proteins in late-stage disease. Proteome analysis of purified podocyte fractions from FSGS mouse models showed an early stress response that includes perturbations of metabolic, mechanical, and proteostasis proteins. Additional analysis revealed a high correlation between the amount of proteinuria and expression levels of the mechanosensor protein Filamin-B. Increased expression of Filamin-B in podocytes in biopsy samples from patients with FSGS, in single glomeruli from proteinuric rats, and in podocytes undergoing mechanical stress suggests that this protein has a role in detrimental stress responses. In Drosophila, nephrocytes with reduced filamin homolog Cher displayed altered filtration capacity, but exhibited no change in slit diaphragm structure. CONCLUSIONS: We identified conserved mechanisms of the podocyte stress response through ultrasensitive proteome analysis of human glomerular FSGS tissue and purified native mouse podocytes during early disease stages. This approach enables systematic comparisons of large-scale proteomics data and phenotype-to-protein correlation.


Asunto(s)
Filaminas/genética , Regulación de la Expresión Génica , Glomeruloesclerosis Focal y Segmentaria/patología , Proteómica/métodos , Estrés Fisiológico/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Glomeruloesclerosis Focal y Segmentaria/genética , Humanos , Ratones , Podocitos/metabolismo , Proteinuria/genética , Proteinuria/fisiopatología , Distribución Aleatoria , Ratas
5.
Am J Physiol Cell Physiol ; 319(2): C300-C312, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32520607

RESUMEN

Skeletal muscle is a target of contraction-induced loading (CiL), leading to protein unfolding or cellular perturbations, respectively. While cytoskeletal desmin is responsible for ongoing structural stabilization, in the immediate response to CiL, alpha-crystallin B (CRYAB) is phosphorylated at serine 59 (pCRYABS59) by P38, acutely protecting the cytoskeleton. To reveal adaptation and deadaptation of these myofibrillar subsystems to CiL, we examined CRYAB, P38, and desmin regulation following resistance exercise at diverse time points of a chronic training period. Mechanosensitive JNK phosphorylation (pJNKT183/Y185) was determined to indicate the presence of mechanical components in CiL. Within 6 wk, subjects performed 13 resistance exercise bouts at the 8-12 repetition maximum, followed by 10 days detraining and a final 14th bout. Biopsies were taken at baseline and after the 1st, 3rd, 7th, 10th, 13th, and 14th bout. To assess whether potential desensitization to CiL can be mitigated, one group trained with progressive and a second with constant loading. As no group differences were found, all subjects were combined for statistics. Total and phosphorylated P38 was not regulated over the time course. pCRYABS59 and pJNKT183/Y185 strongly increased following the unaccustomed first bout. This exercise-induced pCRYABS59/pJNKT183/Y185 increase disappeared with the 10th until 13th bout. As response to the detraining period, the 14th bout led to a renewed increase in pCRYABS59. Desmin content followed pCRYABS59 inversely, i.e., was up- when pCRYABS59 was downregulated and vice versa. In conclusion, the pCRYABS59 response indicates increase and decrease in resistance to CiL, in which a reinforced desmin network could play an essential role by structurally stabilizing the cells.


Asunto(s)
Adaptación Fisiológica/genética , Desmina/genética , Músculo Esquelético/metabolismo , Cadena B de alfa-Cristalina/genética , Adulto , Citoesqueleto/genética , Citoesqueleto/metabolismo , Desmina/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Masculino , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Fosforilación/genética , Entrenamiento de Fuerza/efectos adversos , Adulto Joven , Cadena B de alfa-Cristalina/metabolismo
6.
J Cell Sci ; 130(17): 2781-2788, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28808089

RESUMEN

Cellular and organismal survival depend on the ability to maintain the proteome, even under conditions that threaten protein integrity. BCL2-associated athanogene 3 (BAG3) is essential for protein homeostasis (proteostasis) in stressed cells. Owing to its multi-domain structure, it engages in diverse processes that are crucial for proteome maintenance. BAG3 promotes the activity of molecular chaperones, sequesters and concentrates misfolded proteins, initiates autophagic disposal, and balances transcription, translation and degradation. In this Cell Science at a Glance article and the accompanying poster, we discuss the functions of this multi-functional proteostasis tool with a focus on mechanical stress protection and describe the importance of BAG3 for human physiology and pathophysiology.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteostasis , Animales , Autofagia , Citoesqueleto/metabolismo , Filaminas/metabolismo , Humanos , Chaperonas Moleculares/metabolismo
7.
Biochim Biophys Acta Mol Cell Res ; 1864(1): 62-75, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27756573

RESUMEN

The cochaperone BAG3 is a central protein homeostasis factor in mechanically strained mammalian cells. It mediates the degradation of unfolded and damaged forms of the actin-crosslinker filamin through chaperone-assisted selective autophagy (CASA). In addition, BAG3 stimulates filamin transcription in order to compensate autophagic disposal and to maintain the actin cytoskeleton under strain. Here we demonstrate that BAG3 coordinates protein synthesis and autophagy through spatial regulation of the mammalian target of rapamycin complex 1 (mTORC1). The cochaperone utilizes its WW domain to contact a proline-rich motif in the tuberous sclerosis protein TSC1 that functions as an mTORC1 inhibitor in association with TSC2. Interaction with BAG3 results in a recruitment of TSC complexes to actin stress fibers, where the complexes act on a subpopulation of mTOR-positive vesicles associated with the cytoskeleton. Local inhibition of mTORC1 is essential to initiate autophagy at sites of filamin unfolding and damage. At the same time, BAG3-mediated sequestration of TSC1/TSC2 relieves mTORC1 inhibition in the remaining cytoplasm, which stimulates protein translation. In human muscle, an exercise-induced association of TSC1 with the cytoskeleton coincides with mTORC1 activation in the cytoplasm. The spatial regulation of mTORC1 exerted by BAG3 apparently provides the basis for a simultaneous induction of autophagy and protein synthesis to maintain the proteome under mechanical strain.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Autofagia/genética , Complejos Multiproteicos/genética , Músculo Esquelético/metabolismo , Miocitos del Músculo Liso/metabolismo , Estrés Mecánico , Serina-Treonina Quinasas TOR/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Fenómenos Biomecánicos , Línea Celular , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Filaminas/genética , Filaminas/metabolismo , Expresión Génica , Regulación de la Expresión Génica , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos/metabolismo , Músculo Esquelético/citología , Miocitos del Músculo Liso/ultraestructura , Unión Proteica , Biosíntesis de Proteínas , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
8.
Cell Mol Neurobiol ; 34(8): 1123-30, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25078755

RESUMEN

Genetic studies have linked the evolutionary novel, anthropoid primate-specific gene locus G72/G30 in the etiology of schizophrenia and other psychiatric disorders. However, the function of the protein encoded by this locus, LG72, is currently controversially discussed. Some studies have suggested that LG72 binds to and regulates the activity of the peroxisomal enzyme D-amino-acid-oxidase, while others proposed an alternative role of this protein due to its mitochondrial location in vitro. Studies with transgenic mice expressing LG72 further suggested that high levels of LG72 lead to an impairment of mitochondrial functions with a concomitant increase in reactive oxygen species production. In the present study, we now performed extensive interaction analyses and identified the mitochondrial methionine-R-sulfoxide reductase B2 (MSRB2) as a specific interaction partner of LG72. MSRB2 belongs to the MSR protein family and functions in mitochondrial oxidative stress defense. Based on our results, we propose that LG72 is involved in the regulation of mitochondrial oxidative stress.


Asunto(s)
Proteínas Portadoras/metabolismo , Metionina Sulfóxido Reductasas/metabolismo , Mitocondrias/metabolismo , Factores de Transcripción/metabolismo , Animales , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Proteínas de Microfilamentos , Unión Proteica
9.
Brain ; 135(Pt 9): 2642-60, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22961544

RESUMEN

Mutations in FLNC cause two distinct types of myopathy. Disease associated with mutations in filamin C rod domain leading to expression of a toxic protein presents with progressive proximal muscle weakness and shows focal destructive lesions of polymorphous aggregates containing desmin, myotilin and other proteins in the affected myofibres; these features correspond to the profile of myofibrillar myopathy. The second variant associated with mutations in the actin-binding domain of filamin C is characterized by weakness of distal muscles and morphologically by non-specific myopathic features. A frameshift mutation in the filamin C rod domain causing haploinsufficiency was also found responsible for distal myopathy with some myofibrillar changes but no protein aggregation typical of myofibrillar myopathies. Controversial data accumulating in the literature require re-evaluation and comparative analysis of phenotypes associated with the position of the FLNC mutation and investigation of the underlying disease mechanisms. This is relevant and necessary for the refinement of diagnostic criteria and developing therapeutic approaches. We identified a p.W2710X mutation in families originating from ethnically diverse populations and re-evaluated a family with a p.V930_T933del mutation. Analysis of the expanded database allows us to refine clinical and myopathological characteristics of myofibrillar myopathy caused by mutations in the rod domain of filamin C. Biophysical and biochemical studies indicate that certain pathogenic mutations in FLNC cause protein misfolding, which triggers aggregation of the mutant filamin C protein and subsequently involves several other proteins. Immunofluorescence analyses using markers for the ubiquitin-proteasome system and autophagy reveal that the affected muscle fibres react to protein aggregate formation with a highly increased expression of chaperones and proteins involved in proteasomal protein degradation and autophagy. However, there is a noticeably diminished efficiency of both the ubiquitin-proteasome system and autophagy that impairs the muscle capacity to prevent the formation or mediate the degradation of aggregates. Transfection studies of cultured muscle cells imitate events observed in the patient's affected muscle and therefore provide a helpful model for testing future therapeutic strategies.


Asunto(s)
Proteínas Contráctiles/metabolismo , Proteínas de Microfilamentos/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo , Mutación , Fenotipo , Actinas/metabolismo , Adulto , Proteínas Contráctiles/genética , Progresión de la Enfermedad , Femenino , Filaminas , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Proteínas de Microfilamentos/genética , Persona de Mediana Edad , Músculo Esquelético/patología , Distrofias Musculares/genética , Distrofias Musculares/patología , Linaje , Unión Proteica , Proteolisis , Ubiquitinación
10.
Proc Natl Acad Sci U S A ; 105(45): 17408-13, 2008 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-18988734

RESUMEN

The plant cytotoxin ricin enters target mammalian cells by receptor-mediated endocytosis and undergoes retrograde transport to the endoplasmic reticulum (ER). Here, its catalytic A chain (RTA) is reductively separated from the cell-binding B chain, and free RTA enters the cytosol where it inactivates ribosomes. Cytosolic entry requires unfolding of RTA and dislocation across the ER membrane such that it arrives in the cytosol in a vulnerable, nonnative conformation. Clearly, for such a dislocated toxin to become active, it must avoid degradation and fold to a catalytic conformation. Here, we show that, in vitro, Hsc70 prevents aggregation of heat-treated RTA, and that RTA catalytic activity is recovered after chaperone treatment. A combination of pharmacological inhibition and cochaperone expression reveals that, in vivo, cytosolic RTA is scrutinized sequentially by the Hsc70 and Hsp90 cytosolic chaperone machineries, and that its eventual fate is determined by the balance of activities of cochaperones that regulate Hsc70 and Hsp90 functions. Cytotoxic activity follows Hsc70-mediated escape of RTA from an otherwise destructive pathway facilitated by Hsp90. We demonstrate a role for cytosolic chaperones, proteins typically associated with folding nascent proteins, assembling multimolecular protein complexes and degrading cytosolic and stalled, cotranslocational clients, in a toxin triage, in which both toxin folding and degradation are initiated from chaperone-bound states.


Asunto(s)
Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo , Chaperonas Moleculares/metabolismo , Ricina/metabolismo , Electroforesis en Gel de Poliacrilamida , Proteínas HSP90 de Choque Térmico/metabolismo , Células HeLa , Humanos , Conformación Proteica , Ribosomas/metabolismo , Ricina/toxicidad , Ubiquitinación
11.
Mol Biol Cell ; 32(20): ar9, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34379447

RESUMEN

Basically, all mammalian tissues are constantly exposed to a variety of environmental mechanical signals. Depending on the signal strength, mechanics intervenes in a multitude of cellular processes and is thus capable of inducing simple cellular adaptations but also complex differentiation processes and even apoptosis. The underlying recognition typically depends on mechanosensitive proteins, which most often sense the mechanical signal for the induction of a cellular signaling cascade by changing their protein conformation. However, the fate of mechanosensors after mechanical stress application is still poorly understood, and it remains unclear whether protein degradation pathways affect the mechanosensitivity of cells. Here, we show that cyclic stretch induces autophagosome formation in a time-dependent manner. Formation depends on the cochaperone BAG family molecular chaperone regulator 3 (BAG3) and thus likely involves BAG3-mediated chaperone-assisted selective autophagy. Furthermore, we demonstrate that strain-induced cell reorientation is clearly delayed upon inhibition of autophagy, suggesting a bidirectional cross-talk between mechanotransduction and autophagic degradation. The strength of the observed delay depends on stable adhesion structures and stress fiber formation in a Ras homologue family member A (RhoA)-dependent manner.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Mecanorreceptores/metabolismo , Animales , Apoptosis/fisiología , Autofagosomas/metabolismo , Autofagia/fisiología , Fenómenos Biomecánicos , Línea Celular , Fibroblastos/citología , Fibroblastos/metabolismo , Mecanorreceptores/citología , Mecanotransducción Celular , Ratones , Músculo Liso/citología , Músculo Liso/metabolismo , Proteolisis , Ratas , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo
12.
Nat Commun ; 12(1): 3575, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34117258

RESUMEN

An amino acid exchange (P209L) in the HSPB8 binding site of the human co-chaperone BAG3 gives rise to severe childhood cardiomyopathy. To phenocopy the disease in mice and gain insight into its mechanisms, we generated humanized transgenic mouse models. Expression of human BAG3P209L-eGFP in mice caused Z-disc disintegration and formation of protein aggregates. This was accompanied by massive fibrosis resulting in early-onset restrictive cardiomyopathy with increased mortality as observed in patients. RNA-Seq and proteomics revealed changes in the protein quality control system and increased autophagy in hearts from hBAG3P209L-eGFP mice. The mutation renders hBAG3P209L less soluble in vivo and induces protein aggregation, but does not abrogate hBAG3 binding properties. In conclusion, we report a mouse model mimicking the human disease. Our data suggest that the disease mechanism is due to accumulation of hBAG3P209L and mouse Bag3, causing sequestering of components of the protein quality control system and autophagy machinery leading to sarcomere disruption.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Cardiomiopatía Restrictiva/genética , Cardiomiopatía Restrictiva/metabolismo , Animales , Autofagia , Sitios de Unión , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/terapia , Cardiomiopatía Restrictiva/terapia , Niño , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Terapia Genética , Corazón , Proteínas de Choque Térmico , Humanos , Ratones , Ratones Transgénicos , Chaperonas Moleculares/metabolismo , Mutación , Unión Proteica , Proteómica , Sarcómeros/metabolismo
13.
Hum Mutat ; 31(4): 466-76, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20151404

RESUMEN

Keratin (K) intermediate filament proteins form cytoskeletal scaffolds in epithelia, the disruption of which leads to a large number of human disorders. KRT5 or KRT14 mutations cause epidermolysis bullosa simplex (EBS). The considerable intra- and interfamilial variability in EBS suggests modifying loci, most of which are unknown. In many human disorders, chaperones and the ubiquitin-proteasome system have been found to modify disease severity, thereby providing novel therapy targets. Here, we demonstrate upregulation of stress-induced Hsp70 and Hsp90 in two EBS models, namely, in neonatal K5(-/-) mice and upon proteasome inhibition in cells that stably express the disease-causing mutation K14-p.Arg125Cys, both harboring keratin aggregates. Furthermore, proteasome inhibition caused nuclear translocation of pHSF-1 and an increase in K14-p.Arg125Cys-positive aggregates in cells. Overexpression of the chaperone-associated ubiquitin ligase CHIP/STUB1 strongly reduced keratin aggregates through increased degradation of mutant K14. Using CHIP-p.Met1_Ala142del (DeltaTPR-CHIP), we demonstrated the involvement of Hsc70 and Hsp70 in mutant keratin degradation. Our data uncover common principles between EBS and other protein misfolding disorders, revealing that aggregation-prone keratins are targeted by components of the chaperone machinery. Thus, modulation of the chaperone machinery using small molecules may represent a novel therapeutic strategy for dominant EBS, allowing reformation of an intact keratin cytoskeleton.


Asunto(s)
Queratinas/metabolismo , Proteínas Mutantes/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Línea Celular Tumoral , Epidermólisis Ampollosa Simple/metabolismo , Epidermólisis Ampollosa Simple/patología , Proteínas del Choque Térmico HSC70/metabolismo , Humanos , Queratinas/química , Ratones , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma , Estructura Cuaternaria de Proteína , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
14.
Biol Chem ; 391(5): 481-9, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20302520

RESUMEN

Molecular chaperones are well known as facilitators of protein folding and assembly. However, in recent years multiple chaperone-assisted degradation pathways have also emerged, including CAP (chaperone-assisted proteasomal degradation), CASA (chaperone-assisted selective autophagy), and CMA (chaperone-mediated autophagy). Within these pathways chaperones facilitate the sorting of non-native proteins to the proteasome and the lysosomal compartment for disposal. Impairment of these pathways contributes to the development of cancer, myopathies, and neurodegenerative diseases. Chaperone-assisted degradation thus represents an essential aspect of cellular proteostasis, and its pharmacological modulation holds the promise to ameliorate some of the most devastating diseases of our time. Here, we discuss recent insights into molecular mechanisms underlying chaperone-assisted degradation in mammalian cells and highlight its biomedical relevance.


Asunto(s)
Chaperonas Moleculares/metabolismo , Proteínas/metabolismo , Animales , Autofagia/fisiología , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Pliegue de Proteína , Ubiquitina-Proteína Ligasas/metabolismo
15.
Trends Biochem Sci ; 27(7): 368-75, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12114026

RESUMEN

Molecular chaperones act with folding co-chaperones to suppress protein aggregation and refold stress damaged proteins. However, it is not clear how slowly folding or misfolded polypeptides are targeted for proteasomal degradation. Generally, selection of proteins for degradation is mediated by E3 ubiquitin ligases of the mechanistically distinct HECT and RING domain sub-types. Recent studies suggest that the U-box protein family represents a third class of E3 enzymes. CHIP, a U-box-containing protein, is a degradatory co-chaperone of heat-shock protein 70 (Hsp70) and Hsp90 that facilitates the polyubiquitination of chaperone substrates. These data indicate a model for protein quality control in which the interaction of Hsp70 and Hsp90 with co-chaperones that have either folding or degradatory activity helps to determine the fate of non-native cellular proteins.


Asunto(s)
Ligasas/metabolismo , Chaperonas Moleculares/metabolismo , Cisteína Endopeptidasas/metabolismo , Ligasas/química , Sustancias Macromoleculares , Modelos Biológicos , Complejos Multienzimáticos/metabolismo , Familia de Multigenes , Complejo de la Endopetidasa Proteasomal , Pliegue de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas
16.
Autophagy ; 15(7): 1199-1213, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30744518

RESUMEN

A major cellular catabolic pathway in neurons is macroautophagy/autophagy, through which misfolded or aggregation-prone proteins are sequestered into autophagosomes that fuse with lysosomes, and are degraded. MAPT (microtubule-associated protein tau) is one of the protein clients of autophagy. Given that accumulation of hyperphosphorylated MAPT contributes to the pathogenesis of Alzheimer disease and other tauopathies, decreasing endogenous MAPT levels has been shown to be beneficial to neuronal health in models of these diseases. A previous study demonstrated that the HSPA/HSP70 co-chaperone BAG3 (BCL2-associated athanogene 3) facilitates endogenous MAPT clearance through autophagy. These findings prompted us to further investigate the mechanisms underlying BAG3-mediated autophagy in the degradation of endogenous MAPT. Here we demonstrate for the first time that BAG3 plays an important role in autophagic flux in the neurites of mature neurons (20-24 days in vitro [DIV]) through interaction with the post-synaptic cytoskeleton protein SYNPO (synaptopodin). Loss of either BAG3 or SYNPO impeded the fusion of autophagosomes and lysosomes predominantly in the post-synaptic compartment. A block of autophagy leads to accumulation of the autophagic receptor protein SQSTM1/p62 (sequestosome 1) as well as MAPT phosphorylated at Ser262 (p-Ser262). Furthermore, p-Ser262 appears to accumulate in autophagosomes at post-synaptic densities. Overall these data provide evidence of a novel role for the co-chaperone BAG3 in synapses. In cooperation with SYNPO, it functions as part of a surveillance complex that facilitates the autophagic clearance of MAPT p-Ser262, and possibly other MAPT species at the post-synapse. This appears to be crucial for the maintenance of a healthy, functional synapse.Abbreviations: aa: amino acids; ACTB: actin beta; BafA1: bafilomycin A1; BAG3: BCL2 associated athanogene 3; CQ chloroquine; CTSL: cathepsin L; DIV: days in vitro; DLG4/PSD95: discs large MAGUK scaffold protein 4; HSPA/HSP70: heat shock protein family A (Hsp70); MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAP2: microtubule associated protein 2; MAPT: microtubule associated protein tau; p-Ser262: MAPT phosphorylated at serine 262; p-Ser396/404: MAPT phosphorylated at serines 396 and 404; p-Thr231: MAPT phosphorylated at threonine 231; PBS: phosphate buffered saline; PK: proteinase K; scr: scrambled; shRNA: short hairpin RNA; SQSTM1/p62 sequestosome 1; SYN1: synapsin I; SYNPO synaptopodin; SYNPO2/myopodin: synaptopodin 2; VPS: vacuolar protein sorting.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/genética , Proteínas de Microfilamentos/metabolismo , Neuronas/metabolismo , Proteínas tau/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Reguladoras de la Apoptosis/genética , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagia/efectos de los fármacos , Células HeLa , Humanos , Lisosomas/metabolismo , Proteínas de Microfilamentos/genética , Neuritas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/enzimología , Fosforilación , Densidad Postsináptica/metabolismo , Proteolisis , Ratas , Ratas Sprague-Dawley , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Sinapsis/metabolismo , Dominios WW , Proteínas tau/química
17.
Biochim Biophys Acta Mol Cell Res ; 1866(10): 1556-1566, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31326538

RESUMEN

Chaperone-assisted selective autophagy (CASA) initiated by the cochaperone Bcl2-associated athanogene 3 (BAG3) represents an important mechanism for the disposal of misfolded and damaged proteins in mammalian cells. Under mechanical stress, the cochaperone cooperates with the small heat shock protein HSPB8 and the cytoskeleton-associated protein SYNPO2 to degrade force-unfolded forms of the actin-crosslinking protein filamin. This is essential for muscle maintenance in flies, fish, mice and men. Here, we identify the serine/threonine protein kinase 38 (STK38), which is part of the Hippo signaling network, as a novel interactor of BAG3. STK38 was previously shown to facilitate cytoskeleton assembly and to promote mitophagy as well as starvation and detachment induced autophagy. Significantly, our study reveals that STK38 exerts an inhibitory activity on BAG3-mediated autophagy. Inhibition relies on a disruption of the functional interplay of BAG3 with HSPB8 and SYNPO2 upon binding of STK38 to the cochaperone. Of note, STK38 attenuates CASA independently of its kinase activity, whereas previously established regulatory functions of STK38 involve target phosphorylation. The ability to exert different modes of regulation on central protein homeostasis (proteostasis) machineries apparently allows STK38 to coordinate the execution of diverse macroautophagy pathways and to balance cytoskeleton assembly and degradation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteostasis/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Citoesqueleto/metabolismo , Filaminas/metabolismo , Células HEK293 , Células HeLa , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas de Microfilamentos , Mitofagia , Chaperonas Moleculares/metabolismo , Unión Proteica , Proteómica , Transducción de Señal , Estrés Mecánico
18.
Curr Biol ; 15(11): 1058-64, 2005 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-15936278

RESUMEN

Protein degradation in eukaryotic cells usually involves the attachment of a ubiquitin chain to a substrate protein and its subsequent sorting to the proteasome. Molecular mechanisms underlying the sorting process only recently began to emerge and rely on a cooperation of chaperone machineries and ubiquitin-chain recognition factors [1-3]. Here, we identify isoforms of the cochaperone HSJ1 as neuronal shuttling factors for ubiquitylated proteins. HSJ1 combines a J-domain that stimulates substrate loading onto the Hsc70 chaperone with ubiquitin interaction motifs (UIMs) involved in binding ubiquitylated chaperone clients. HSJ1 prevents client aggregation, shields clients against chain trimming by ubiquitin hydrolases, and stimulates their sorting to the proteasome. In this way, HSJ1 isoforms participate in ER-associated degradation (ERAD) and protect neurons against cytotoxic protein aggregation.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Neuronas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo , Secuencia de Aminoácidos , Western Blotting , Electroforesis en Gel de Poliacrilamida , Glutatión Transferasa , Proteínas del Choque Térmico HSC70 , Proteínas del Choque Térmico HSP40 , Proteínas de Choque Térmico/genética , Humanos , Inmunoprecipitación , Luciferasas , Modelos Biológicos , Chaperonas Moleculares/genética , Datos de Secuencia Molecular , Péptidos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología , Técnicas del Sistema de Dos Híbridos , Ubiquitina/metabolismo
19.
Mol Biol Cell ; 16(12): 5891-900, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16207813

RESUMEN

Cellular protein quality control involves a close interplay between molecular chaperones and the ubiquitin/proteasome system. We recently identified a degradation pathway, on which the chaperone Hsc70 delivers chaperone clients, such as misfolded forms of the cystic fibrosis transmembrane conductance regulator (CFTR), to the proteasome. The cochaperone CHIP is of central importance on this pathway, because it acts as a chaperone-associated ubiquitin ligase. CHIP mediates the attachment of a ubiquitin chain to a chaperone-presented client protein and thereby stimulates its proteasomal degradation. To gain further insight into the function of CHIP we isolated CHIP-containing protein complexes from human HeLa cells and analyzed their composition by peptide mass fingerprinting. We identified the Hsc70 cochaperone BAG-2 as a main component of CHIP complexes. BAG-2 inhibits the ubiquitin ligase activity of CHIP by abrogating the CHIP/E2 cooperation and stimulates the chaperone-assisted maturation of CFTR. The activity of BAG-2 resembles that of the previously characterized Hsc70 cochaperone and CHIP inhibitor HspBP1. The presented data therefore establish multiple mechanisms to control the destructive activity of the CHIP ubiquitin ligase in human cells.


Asunto(s)
Proteínas HSP70 de Choque Térmico/fisiología , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Dimerización , Proteínas HSP70 de Choque Térmico/química , Células HeLa , Humanos , Chaperonas Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Pliegue de Proteína
20.
Trends Cell Biol ; 28(7): 512-522, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29704981

RESUMEN

Conjugation of ubiquitin onto proteins generates a degradation signal or exerts degradation-independent regulatory functions. Ubiquitylation is governed by the antagonistic action of ubiquitin ligases and deubiquitylating enzymes (DUBs). Several recent publications illustrate a balanced interplay of ligases and DUBs at signaling hubs that are central to longevity and protein homeostasis (proteostasis). In addition, stress-induced alterations of ubiquitin conjugation are emerging as key events that drive aging and contribute to the pathology of age-related diseases. This physiological role of dynamic ubiquitylation further extends its well-known function in protein regulation and quality control at the cellular level. Recent work thus significantly advances our understanding of the aging process both at the molecular and organismal level.


Asunto(s)
Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Humanos , Proteolisis , Transducción de Señal , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA