Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Curr Opin Crit Care ; 29(2): 123-129, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36762681

RESUMEN

PURPOSE OF REVIEW: This review aims to provide an overview of the current knowledge about microbiota-targeted therapies in sepsis, and calls out - despite recent negative studies - not to halt our efforts of translating these tools into regular medical practice. RECENT FINDINGS: The intestinal microbiome has an important role in shaping our immune system, and microbiota-derived metabolites prime innate and adaptive inflammatory responses to infectious pathogens. Microbiota composition is severely disrupted during sepsis, which has been linked to increased risk of mortality and secondary infections. However, efforts of using these microbes as a tool for prognostic or therapeutic purposes have been unsuccessful so far, and recent trials studying the impact of probiotics in critical illness did not improve patient outcomes. Despite these negative results, researchers must continue their attempts of harnessing the microbiome to improve sepsis survival in patients with a high risk of clinical deterioration. Promising research avenues that could potentially benefit sepsis patients include the development of next-generation probiotics, use of the microbiome as a theranostic tool to direct therapy, and addressing the restoration of microbial communities following ICU discharge. SUMMARY: Although research focused on microbiome-mediated therapy in critically ill patients has not yielded the results that were anticipated, we should not abandon our efforts to translate promising preclinical findings into clinical practice.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Probióticos , Sepsis , Humanos , Microbiota/fisiología , Probióticos/uso terapéutico , Microbioma Gastrointestinal/fisiología , Cuidados Críticos/métodos , Sepsis/terapia , Enfermedad Crítica/terapia
2.
J Infect Dis ; 225(11): 2023-2032, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35100411

RESUMEN

BACKGROUND: Strongly elevated ferritin levels have been proposed to reflect systemic hyperinflammation in patients admitted to the intensive care unit. Knowledge of the incidence and pathophysiological implications of hyperferritinemia in patients with acute infection admitted to a non-intensive care setting is limited. METHODS: We determined the association between hyperferritinemia, defined by 2 cutoff values (500 and 250 ng/mL), and aberrations in key host response mechanisms among patients with community-acquired pneumonia (CAP) on admission to a general hospital ward (clinicaltrials.gov NCT02928367; trialregister.nl NTR6163). RESULTS: Plasma ferritin levels were higher in patients with CAP (n = 174; median [interquartile ranges], 259.5 [123.1-518.3] ng/mL) than in age- and sex-matched controls without infection (n = 50; 102.8 [53.5-185.7] ng/mL); P < .001); they were ≥500 ng/mL in 46 patients (26%) and ≥250 ng/mL in 90 (52%). Measurements of 26 biomarkers reflective of distinct pathophysiological domains showed that hyperferritinemia was associated with enhanced systemic inflammation, neutrophil activation, cytokine release, endothelial cell activation and dysfunction, and activation of the coagulation system. Results were robust across different cutoff values. CONCLUSIONS: Hyperferritinemia identifies patients with CAP with a broad deregulation of various host response mechanisms implicated in the pathogenesis of sepsis. This could inform future therapeutic strategies targeting subgroups within the CAP population.


Asunto(s)
Infecciones Comunitarias Adquiridas , Hiperferritinemia , Neumonía , Ferritinas , Humanos , Unidades de Cuidados Intensivos , Neumonía/complicaciones
3.
Clin Infect Dis ; 74(5): 776-784, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-34156449

RESUMEN

BACKGROUND: Viruses and bacteria from the nasopharynx are capable of causing community-acquired pneumonia (CAP), which can be difficult to diagnose. We aimed to investigate whether shifts in the composition of these nasopharyngeal microbial communities can be used as diagnostic biomarkers for CAP in adults. METHODS: We collected nasopharyngeal swabs from adult CAP patients and controls without infection in a prospective multicenter case-control study design. We generated bacterial and viral profiles using 16S ribosomal RNA gene sequencing and multiplex polymerase chain reaction (PCR), respectively. Bacterial, viral, and clinical data were subsequently used as inputs for extremely randomized trees classification models aiming to distinguish subjects with CAP from healthy controls. RESULTS: We enrolled 117 cases and 48 control subjects. Cases displayed significant beta diversity differences in nasopharyngeal microbiota (P = .016, R2 = .01) compared to healthy controls. Our extremely randomized trees classification models accurately discriminated CAP caused by bacteria (area under the curve [AUC] .83), viruses (AUC .95) or mixed origin (AUC .81) from healthy control subjects. We validated this approach using a dataset of nasopharyngeal samples from 140 influenza patients and 38 controls, which yielded highly accurate (AUC .93) separation between cases and controls. CONCLUSIONS: Relative proportions of different bacteria and viruses in the nasopharynx can be leveraged to diagnose CAP and identify etiologic agent(s) in adult patients. Such data can inform the development of a microbiota-based diagnostic panel used to identify CAP patients and causative agents from nasopharyngeal samples, potentially improving diagnostic specificity, efficiency, and antimicrobial stewardship practices.


Asunto(s)
Infecciones Comunitarias Adquiridas , Microbiota , Infecciones del Sistema Respiratorio , Adulto , Bacterias/genética , Estudios de Casos y Controles , Infecciones Comunitarias Adquiridas/diagnóstico , Humanos , Microbiota/genética , Nasofaringe/microbiología , Estudios Prospectivos , Sistema Respiratorio/microbiología
4.
Clin Gastroenterol Hepatol ; 20(6): 1404-1407.e4, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34303860

RESUMEN

Although the pathophysiology of asthma is complex, perturbation of the gut microbiota has been associated with an increased risk of asthma development in childhood.1 Disruption and subsequent dysregulation of gut microbiota-related immunologic processes have also been linked to disease severity and response to treatment.2.


Asunto(s)
Asma , Microbioma Gastrointestinal , Adulto , Antibacterianos/uso terapéutico , Asma/tratamiento farmacológico , Humanos , Prueba de Estudio Conceptual , Índice de Severidad de la Enfermedad
5.
Crit Care Med ; 49(11): 1901-1911, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33935163

RESUMEN

OBJECTIVES: Plasma ferritin levels above 4,420 ng/mL have been proposed as a diagnostic marker for macrophage activation-like syndrome in sepsis and used for selection of sepsis patients for anti-inflammatory therapy. We here sought to determine the frequency, presentation, outcome, and host response aberrations of macrophage activation-like syndrome, as defined by admission ferritin levels above 4,420 ng/mL, in critically ill patients with community-acquired pneumonia. DESIGN: A prospective observational cohort study. SETTING: ICUs in two tertiary hospitals in the Netherlands. PATIENTS: One hundred fifty-three patients admitted with community-acquired pneumonia. MEASUREMENTS AND MAIN RESULTS: Patients were stratified in community-acquired pneumonia-macrophage activation-like syndrome (n = 15; 9.8%) and community-acquired pneumonia-control groups (n = 138; 90.2%) based on an admission plasma ferritin level above or below 4,420 ng/mL, respectively. Community-acquired pneumonia-macrophage activation-like syndrome patients presented with a higher disease severity and had a higher ICU mortality (46.7% vs 12.3% in community-acquired pneumonia-controls; p = 0.002). Twenty-three plasma biomarkers indicative of dysregulation of key host response pathways implicated in sepsis pathogenesis (systemic inflammation, cytokine responses, endothelial cell activation, and barrier function, coagulation activation) were more disturbed in community-acquired pneumonia-macrophage activation-like syndrome patients. Hematologic malignancies were overrepresented in community-acquired pneumonia-macrophage activation-like syndrome patients (33.3% vs 5.1% in community-acquired pneumonia-controls; p = 0.001). In a subgroup analysis excluding patients with hematologic malignancies (n = 141), differences in mortality were not present anymore, but the exaggerated host response abnormalities in community-acquired pneumonia-macrophage activation-like syndrome patients remained. CONCLUSIONS: Macrophage activation-like syndrome in critically ill patients with community-acquired pneumonia occurs more often in patients with hematologic malignancies and is associated with deregulation of multiple host response pathways.


Asunto(s)
Infecciones Comunitarias Adquiridas/sangre , Enfermedad Crítica/terapia , Ferritinas/sangre , Activación de Macrófagos , Neumonía Bacteriana/sangre , Anciano , Biomarcadores/sangre , Estudios de Cohortes , Infecciones Comunitarias Adquiridas/terapia , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Países Bajos , Neumonía Bacteriana/terapia , Estudios Prospectivos , Índice de Severidad de la Enfermedad
6.
Curr Opin Gastroenterol ; 37(6): 578-585, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34419965

RESUMEN

PURPOSE OF REVIEW: This review summarizes recent progress in our understanding of the role of the gut microbiota in sepsis pathogenesis and outlines the potential role of microbiota-targeted therapies. RECENT FINDINGS: The composition of the gut microbiome is profoundly distorted during sepsis, with a loss of commensal bacteria and an overgrowth of potential pathogenic micro-organisms. These alterations also extend to nonbacterial intestinal inhabitants. Disruptions of these intestinal communities are associated with both an increased susceptibility to develop sepsis, as well as a higher risk of adverse outcomes. Preclinical studies have characterized the effects of several microbiota-derived metabolites (such as D-lactate, butyrate, and deoxycholic acid) on enhancing the host immune response during critical illness. Microbiota-targeted therapies (e.g. probiotics or fecal microbiota transplantation) might be of benefit, but can also be associated with increased risks of bloodstream infections. SUMMARY: Emerging evidence display an important role of gut micro-organisms (including bacteria, fungi, eukaryotic viruses, and bacteriophages) and their derived metabolites in both the susceptibility to, as well as outcomes of sepsis. Despite recent progress in the mechanistic understanding of microbiota-mediated protection, clinical breakthroughs in the development of microbiota-based prognostic tools or therapies are thus far lacking in the field of sepsis.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Probióticos , Sepsis , Disbiosis , Trasplante de Microbiota Fecal , Humanos , Probióticos/uso terapéutico , Sepsis/terapia
7.
Blood ; 131(26): 2978-2986, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29674425

RESUMEN

Respiratory viral infections are frequent in patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HCT) and can potentially progress to lower respiratory tract infection (LRTI). The intestinal microbiota contributes to resistance against viral and bacterial pathogens in the lung. However, whether intestinal microbiota composition and associated changes in microbe-derived metabolites contribute to the risk of LRTI following upper respiratory tract viral infection remains unexplored in the setting of allo-HCT. Fecal samples from 360 allo-HCT patients were collected at the time of stem cell engraftment and subjected to deep, 16S ribosomal RNA gene sequencing to determine microbiota composition, and short-chain fatty acid levels were determined in a nested subset of fecal samples. The development of respiratory viral infections and LRTI was determined for 180 days following allo-HCT. Clinical and microbiota risk factors for LRTI were subsequently evaluated using survival analysis. Respiratory viral infection occurred in 149 (41.4%) patients. Of those, 47 (31.5%) developed LRTI. Patients with higher abundances of butyrate-producing bacteria were fivefold less likely to develop viral LRTI, independent of other factors (adjusted hazard ratio = 0.22, 95% confidence interval 0.04-0.69). Higher representation of butyrate-producing bacteria in the fecal microbiota is associated with increased resistance against respiratory viral infection with LRTI in allo-HCT patients.


Asunto(s)
Bacterias/metabolismo , Butiratos/metabolismo , Microbioma Gastrointestinal , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Infecciones del Sistema Respiratorio/etiología , Infecciones del Sistema Respiratorio/microbiología , Virosis/etiología , Virosis/microbiología , Adulto , Heces/microbiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores Protectores , Infecciones del Sistema Respiratorio/metabolismo , Trasplante Homólogo/efectos adversos , Virosis/metabolismo
8.
Crit Care ; 24(1): 423, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32660590

RESUMEN

BACKGROUND: Dysregulation of the host immune response is a pathognomonic feature of sepsis. Abnormal physiological conditions are understood to shift efficient linear splicing of protein-coding RNA towards non-canonical splicing, characterized by the accumulation of non-coding circularized (circ)RNA. CircRNAs remain unexplored in specific peripheral blood mononuclear cells (PBMCs) during sepsis. We here sought to identify and characterize circRNA expression in specific PBMCs of patients with sepsis due to community-acquired pneumonia (CAP) relative to healthy subjects. METHODS: The study comprised a discovery cohort of six critically ill patients diagnosed with sepsis due to community-acquired pneumonia and four (age, gender matched) healthy subjects. PBMCs were isolated, and fluorescence-activated cell sorting was used to purify CD14+ monocytes, CD4+, CD8+ T cells, and CD19+ B cells for RNA sequencing. CD14+ monocytes from independent six healthy volunteers were purified, and total RNA was treated with or without RNase R. RESULTS: RNA sequencing of sorted CD14+ monocytes, CD4+, CD8+ T cells, and CD19+ B cells from CAP patients and healthy subjects identified various circRNAs with predominantly cell-specific expression patterns. CircRNAs were expressed to a larger extent in monocytes than in CD4+, CD8+ T cells, or B cells. Cells from CAP patients produced significantly higher levels of circRNA as compared to healthy subjects. Considering adjusted p values, circVCAN (chr5:83519349-83522309) and circCHD2 (chr15:93000512-93014909) levels in monocytes were significantly altered in sepsis. Functional inference per cell-type uncovered pathways mainly attuned to cell proliferation and cytokine production. In addition, our data does not support a role for these circRNAs in microRNA sequestration. Quantitative PCR analysis in purified monocytes from an independent group of healthy volunteers confirmed the existence of circVCAN and circCHD2. CONCLUSIONS: We provide a benchmark map of circRNA expression dynamics in specific immune cell subsets of sepsis patients secondary to CAP. CircRNAs were more abundant in immune cells of sepsis patients relative to healthy subjects. Further studies evaluating circRNA expression in larger cohorts of sepsis patients are warranted.


Asunto(s)
Leucocitos Mononucleares/metabolismo , ARN Circular/análisis , Sepsis/sangre , Adulto , Enfermedad Crítica/clasificación , Enfermedad Crítica/epidemiología , Femenino , Humanos , Leucocitos Mononucleares/microbiología , Masculino , Persona de Mediana Edad , ARN Circular/sangre , Sepsis/fisiopatología
9.
J Antimicrob Chemother ; 74(3): 782-786, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30418539

RESUMEN

OBJECTIVES: The impact of combination antibiotic therapy on the composition of the intestinal microbiota remains ill-defined. We aimed to assess the effect of a 1 week antibiotic regimen on the intestinal microbiota of healthy humans for a period of up to 31 months. PATIENTS AND METHODS: Thirteen healthy adult men received either no treatment or oral broad-spectrum antibiotics (ciprofloxacin, vancomycin and metronidazole) for 7 days. At four timepoints (prior to treatment, on day 9, day 49 and 8-31 months later) faecal samples were collected and analysed using 16S RNA gene sequencing. RESULTS: The short-term impact of broad-spectrum antibiotics on the gut microbiota was profound, with a loss of diversity and drastic shifts in community composition. In addition, antibiotics significantly reduced the abundance of bacterial taxa with important metabolic functions, such as the production of butyrate. The microbiota showed a remarkable return towards baseline after 8-31 months, but community composition often remained altered from its initial state. CONCLUSIONS: These findings suggest that combined treatment with vancomycin, ciprofloxacin and metronidazole has a profound and long-lasting effect on microbiota composition, the consequences of which remain largely unknown.


Asunto(s)
Antibacterianos/farmacología , Ciprofloxacina/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Metronidazol/farmacología , Vancomicina/farmacología , Administración Oral , Adolescente , Adulto , Antibacterianos/administración & dosificación , Biodiversidad , Ciprofloxacina/administración & dosificación , Heces/microbiología , Voluntarios Sanos , Humanos , Masculino , Metronidazol/administración & dosificación , Factores de Tiempo , Vancomicina/administración & dosificación , Adulto Joven
10.
Curr Opin Crit Care ; 23(4): 257-263, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28548992

RESUMEN

PURPOSE OF REVIEW: The review aims to discuss emerging evidence in the field of microbiome-dependent roles in host defense during critical illness with a focus on lung, kidney, and brain inflammation. RECENT FINDINGS: The gut microbiota of critical ill patients is characterized by lower diversity, lower abundances of key commensal genera, and in some cases overgrowth by one bacterial genera, a state otherwise known as dysbiosis. Increasing evidence suggests that microbiota-derived components can reach the circulatory system from the gut and modulate immune homeostasis. Dysbiosis might have greater consequences for the critically ill than previously imagined and could contribute to poor outcome. Preclinical studies suggest that impaired communication across the gut - organ axes is associated with brain, lung - and kidney failure. SUMMARY: In health, a diverse microbiome might enhance host defense, while during critical illness, the dysbiotic microbiome might contribute to comorbidity and organ dysfunction. Future research should be aimed at further establishing the causes and consequences of dysbiosis seen in the critically ill, which will provide perspective for developing new strategies of intervention.


Asunto(s)
Enfermedad Crítica , Microbioma Gastrointestinal , Microbiota , Disbiosis , Humanos
11.
Curr Opin Crit Care ; 23(2): 167-174, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28092309

RESUMEN

PURPOSE OF REVIEW: The composition and diversity of the microbiota of the human gut, skin, and several other sites is severely deranged in critically ill patients on the ICU, and it is likely that these disruptions can negatively affect outcome. We here review new and ongoing studies that investigate the use of microbiota-targeted therapeutics in the ICU, and provide recommendations for future research. RECENT FINDINGS: Practically every intervention in the ICU as well as the physiological effects of critical illness itself can have a profound impact on the gut microbiota. Therapeutic modulation of the microbiota, aimed at restoring the balance between 'pathogenic' and 'health-promoting' microbes is therefore of significant interest. Probiotics have shown to be effective in the treatment of ventilator-associated pneumonia, and the first fecal microbiota transplantations have recently been safely and successfully performed in the ICU. However, all-encompassing data in this vulnerable patient group remain sparse, and only a handful of novel studies that study microbiota-targeted therapies in the ICU are currently ongoing. SUMMARY: Enormous strides have been made in characterizing the gut microbiome of critically ill patients in the ICU, and an increasing amount of preclinical data reveals the huge potential of microbiota-targeted therapies. Further understanding of the causes and consequences of dysbiosis on ICU-related outcomes are warranted to push the field forward.


Asunto(s)
Unidades de Cuidados Intensivos , Microbiota , Neumonía Asociada al Ventilador/terapia , Probióticos/uso terapéutico , Disbiosis , Humanos , Neumonía Asociada al Ventilador/microbiología
13.
Nat Med ; 30(3): 797-809, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429524

RESUMEN

Immune checkpoint blockade (ICB) targeting programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte protein 4 (CTLA-4) can induce remarkable, yet unpredictable, responses across a variety of cancers. Studies suggest that there is a relationship between a cancer patient's gut microbiota composition and clinical response to ICB; however, defining microbiome-based biomarkers that generalize across cohorts has been challenging. This may relate to previous efforts quantifying microbiota to species (or higher taxonomic rank) abundances, whereas microbial functions are often strain specific. Here, we performed deep shotgun metagenomic sequencing of baseline fecal samples from a unique, richly annotated phase 2 trial cohort of patients with diverse rare cancers treated with combination ICB (n = 106 discovery cohort). We demonstrate that strain-resolved microbial abundances improve machine learning predictions of ICB response and 12-month progression-free survival relative to models built using species-rank quantifications or comprehensive pretreatment clinical factors. Through a meta-analysis of gut metagenomes from a further six comparable studies (n = 364 validation cohort), we found cross-cancer (and cross-country) validity of strain-response signatures, but only when the training and test cohorts used concordant ICB regimens (anti-PD-1 monotherapy or combination anti-PD-1 plus anti-CTLA-4). This suggests that future development of gut microbiome diagnostics or therapeutics should be tailored according to ICB treatment regimen rather than according to cancer type.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Microbioma Gastrointestinal/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética
14.
Lancet Microbe ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38909617

RESUMEN

BACKGROUND: Microbiota alterations are common in patients hospitalised for severe infections, and preclinical models have shown that anaerobic butyrate-producing gut bacteria protect against systemic infections. However, the relationship between microbiota disruptions and increased susceptibility to severe infections in humans remains unclear. We investigated the relationship between gut microbiota and the risk of future infection-related hospitalisation in two large population-based cohorts. METHODS: In this observational microbiome study, gut microbiota were characterised using 16S rRNA gene sequencing in independent population-based cohorts from the Netherlands (HELIUS study; derivation cohort) and Finland (FINRISK 2002 study; validation cohort). HELIUS was conducted in Amsterdam, Netherlands, and included adults (aged 18-70 years at inclusion) who were randomly sampled from the municipality register of Amsterdam. FINRISK 2002 was conducted in six regions in Finland and is a population survey that included a random sample of adults (aged 25-74 years). In both cohorts, participants completed questionnaires, underwent a physical examination, and provided a faecal sample at inclusion (Jan 3, 2013, to Nov 27, 2015, for HELIUS participants and Jan 21 to April 19, 2002, for FINRISK participants. For inclusion in our study, a faecal sample needed to be provided and successfully sequenced, and national registry data needed to be available. Primary predictor variables were microbiota composition, diversity, and relative abundance of butyrate-producing bacteria. Our primary outcome was hospitalisation or mortality due to any infectious disease during 5-7-year follow-up after faecal sample collection, based on national registry data. We examined associations between microbiota and infection risk using microbial ecology and Cox proportional hazards. FINDINGS: We profiled gut microbiota from 10 699 participants (4248 [39·7%] from the derivation cohort and 6451 [60·3%] from the validation cohort). 602 (5·6%) participants (152 [3·6%] from the derivation cohort; 450 [7·0%] from the validation cohort) were hospitalised or died due to infections during follow-up. Gut microbiota composition of these participants differed from those without hospitalisation for infections (derivation p=0·041; validation p=0·0002). Specifically, higher relative abundance of butyrate-producing bacteria was associated with a reduced risk of hospitalisation for infections (derivation cohort cause-specific hazard ratio 0·75 [95% CI 0·60-0·94] per 10% increase in butyrate producers, p=0·013; validation cohort 0·86 [0·77-0·96] per 10% increase, p=0·0077). These associations remained unchanged following adjustment for demographics, lifestyle, antibiotic exposure, and comorbidities. INTERPRETATION: Gut microbiota composition, specifically colonisation with butyrate-producing bacteria, was associated with protection against hospitalisation for infectious diseases in the general population across two independent European cohorts. Further studies should investigate whether modulation of the microbiome can reduce the risk of severe infections. FUNDING: Amsterdam UMC, Porticus, National Institutes of Health, Netherlands Organisation for Health Research and Development (ZonMw), and Leducq Foundation.

15.
J Infect ; 88(4): 106131, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38431153

RESUMEN

OBJECTIVES: Lymphopenia at hospital admission occurs in over one-third of patients with community-acquired pneumonia (CAP), yet its clinical relevance and pathophysiological implications remain underexplored. We evaluated outcomes and immune features of patients with lymphopenic CAP (L-CAP), a previously described immunophenotype characterized by admission lymphocyte count <0.724 × 109 cells/L. METHODS: Observational study in 149 patients admitted to a general ward for CAP. We measured 34 plasma biomarkers reflective of inflammation, endothelial cell responses, coagulation, and immune checkpoints. We characterized lymphocyte phenotypes in 29 patients using spectral flow cytometry. RESULTS: L-CAP occurred in 45 patients (30.2%) and was associated with prolonged time-to-clinical-stability (median 5 versus 3 days), also when we accounted for competing events for reaching clinical stability and adjusted for baseline covariates (subdistribution hazard ratio 0.63; 95% confidence interval 0.45-0.88). L-CAP patients demonstrated a proportional depletion of CD4 T follicular helper cells, CD4 T effector memory cells, naïve CD8 T cells and IgG+ B cells. Plasma biomarker analyses indicated increased activation of the cytokine network and the vascular endothelium in L-CAP. CONCLUSIONS: L-CAP patients have a protracted clinical recovery course and a more broadly dysregulated host response. These findings highlight the prognostic and pathophysiological relevance of admission lymphopenia in patients with CAP.


Asunto(s)
Infecciones Comunitarias Adquiridas , Linfopenia , Neumonía , Humanos , Inflamación , Hospitalización
16.
JCI Insight ; 9(4)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385743

RESUMEN

The lipidome of immune cells during infection has remained unexplored, although evidence of the importance of lipids in the context of immunity is mounting. In this study, we performed untargeted lipidomic analysis of blood monocytes and neutrophils from patients hospitalized for pneumonia and age- and sex-matched noninfectious control volunteers. We annotated 521 and 706 lipids in monocytes and neutrophils, respectively, which were normalized to an extensive set of internal standards per lipid class. The cellular lipidomes were profoundly altered in patients, with both common and distinct changes between the cell types. Changes involved every level of the cellular lipidome: differential lipid species, class-wide shifts, and altered saturation patterns. Overall, differential lipids were mainly less abundant in monocytes and more abundant in neutrophils from patients. One month after hospital admission, lipidomic changes were fully resolved in monocytes and partially in neutrophils. Integration of lipidomic and concurrently collected transcriptomic data highlighted altered sphingolipid metabolism in both cell types. Inhibition of ceramide and sphingosine-1-phosphate synthesis in healthy monocytes and neutrophils resulted in blunted cytokine responses upon stimulation with lipopolysaccharide. These data reveal major lipidomic remodeling in immune cells during infection, and link the cellular lipidome to immune functionality.


Asunto(s)
Monocitos , Neumonía , Humanos , Neutrófilos , Lipidómica , Lipopolisacáridos
17.
iScience ; 26(7): 107181, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37496676

RESUMEN

Neutrophils are potent immune cells with key antimicrobial functions. Previous in vitro work has shown that neutrophil effector functions are mainly fueled by intracellular glycolysis. Little is known about the state of neutrophils still in the circulation in patients during infection. Here, we combined flow cytometry, stimulation assays, transcriptomics, and metabolomics to investigate the link between inflammatory and metabolic pathways in blood neutrophils of patients with community-acquired pneumonia. Patients' neutrophils, relative to neutrophils from age- and sex- matched controls, showed increased degranulation upon ex vivo stimulation, and portrayed distinct upregulation of inflammatory transcriptional programs. This neutrophil phenotype was accompanied by a high-energy state with increased intracellular ATP content, and transcriptomic and metabolic upregulation of glycolysis and glycogenolysis. One month after hospital admission, these metabolic and transcriptomic changes were largely normalized. These data elucidate the molecular programs that underpin a balanced, yet primed state of blood neutrophils during pneumonia.

18.
iScience ; 25(8): 104740, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35938048

RESUMEN

Human studies describing the immunomodulatory role of the intestinal microbiota in systemic infections are lacking. Here, we sought to relate microbiota profiles from 115 patients with community-acquired pneumonia (CAP), both on hospital admission and following discharge, to concurrent circulating monocyte and neutrophil function. Rectal microbiota composition did not explain variation in cytokine responses in acute CAP (median 0%, IQR 0.0%-1.9%), but did one month following hospitalization (median 4.1%, IQR 0.0%-6.6%, p = 0.0035). Gene expression analysis of monocytes showed that undisrupted microbiota profiles following hospitalization were associated with upregulated interferon, interleukin-10, and G-protein-coupled-receptor-ligand-binding pathways. While CAP is characterized by profoundly distorted gut microbiota, the effects of these disruptions on cytokine responses and transcriptional profiles during acute infection were absent or modest. However, rectal microbiota were related to altered cytokine responses one month following CAP hospitalization, which may provide insights into potential mechanisms contributing to the high risk of recurrent infections following hospitalization.

19.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166519, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35964875

RESUMEN

BACKGROUND: Community-acquired pneumonia (CAP) is responsible for a high morbidity and mortality worldwide. Monocytes are essential for pathogen recognition and the initiation of an innate immune response. Immune cells induce intracellular glycolysis upon activation to support several functions. OBJECTIVE: To obtain insight in the metabolic profile of blood monocytes during CAP, with a focus on glycolysis and branching metabolic pathways, and to determine a possible association between intracellular metabolite levels and monocyte function. METHODS: Monocytes were isolated from blood of patients with CAP within 24 h of hospital admission and from control subjects matched for age, sex and chronic comorbidities. Changes in glycolysis, oxidative phosphorylation (OXPHOS), tricarboxylic acid (TCA) cycle and the pentose phosphate pathway were investigated through RNA sequencing and metabolomics measurements. Monocytes were stimulated ex vivo with lipopolysaccharide (LPS) to determine their capacity to produce tumor necrosis factor (TNF), interleukin (IL)-1ß and IL-10. RESULTS: 50 patients with CAP and 25 non-infectious control subjects were studied. When compared with control monocytes, monocytes from patients showed upregulation of many genes involved in glycolysis, including PKM, the gene encoding pyruvate kinase, the rate limiting enzyme for pyruvate production. Gene set enrichment analysis of OXPHOS, the TCA cycle and the pentose phosphate pathway did not reveal differences between monocytes from patients and controls. Patients' monocytes had elevated intracellular levels of pyruvate and the TCA cycle intermediate α-ketoglutarate. Monocytes from patients were less capable of producing cytokines upon LPS stimulation. Intracellular pyruvate (but not α-ketoglutarate) concentrations positively correlated with IL-1ß and IL-10 levels released by patients' (but not control) monocytes upon exposure to LPS. CONCLUSION: These results suggest that elevated intracellular pyruvate levels may partially maintain cytokine production capacity of hyporesponsive monocytes from patients with CAP.


Asunto(s)
Monocitos , Neumonía , Citocinas/metabolismo , Humanos , Interleucina-10/metabolismo , Espacio Intracelular , Lipopolisacáridos/farmacología , Monocitos/metabolismo , Neumonía/metabolismo , Piruvato Quinasa/metabolismo , Ácido Pirúvico/metabolismo , Ácidos Tricarboxílicos , Factor de Necrosis Tumoral alfa/metabolismo
20.
EBioMedicine ; 81: 104082, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35660785

RESUMEN

BACKGROUND: Community-acquired pneumonia (CAP) can be caused by a variety of pathogens, of which Streptococcus pneumoniae, Influenza and currently SARS-CoV-2 are the most common. We sought to identify shared and pathogen-specific host response features by directly comparing different aetiologies of CAP. METHODS: We measured 72 plasma biomarkers in a cohort of 265 patients hospitalized for CAP, all sampled within 48 hours of admission, and 28 age-and sex matched non-infectious controls. We stratified the biomarkers into several pathophysiological domains- antiviral response, vascular response and function, coagulation, systemic inflammation, and immune checkpoint markers. We directly compared CAP caused by SARS-CoV-2 (COVID-19, n=39), Streptococcus pneumoniae (CAP-strep, n=27), Influenza (CAP-flu, n=22) and other or unknown pathogens (CAP-other, n=177). We adjusted the comparisons for age, sex and disease severity scores. FINDINGS: Biomarkers reflective of a stronger cell-mediated antiviral response clearly separated COVID-19 from other CAPs (most notably granzyme B). Biomarkers reflecting activation and function of the vasculature showed endothelial barrier integrity was least affected in COVID-19, while glycocalyx degradation and angiogenesis were enhanced relative to other CAPs. Notably, markers of coagulation activation, including D-dimer, were not different between the CAP groups. Ferritin was most increased in COVID-19, while other systemic inflammation biomarkers such as IL-6 and procalcitonin were highest in CAP-strep. Immune checkpoint markers showed distinctive patterns in viral and non-viral CAP, with highly elevated levels of Galectin-9 in COVID-19. INTERPRETATION: Our investigation provides insight into shared and distinct pathophysiological mechanisms in different aetiologies of CAP, which may help guide new pathogen-specific therapeutic strategies. FUNDING: This study was financially supported by the Dutch Research Council, the European Commission and the Netherlands Organization for Health Research and Development.


Asunto(s)
COVID-19 , Infecciones Comunitarias Adquiridas , Gripe Humana , Neumonía , Antivirales , Biomarcadores , Humanos , Inflamación , Neumonía/etiología , SARS-CoV-2 , Streptococcus pneumoniae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA