Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Genet Metab ; 122(3): 85-94, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28803783

RESUMEN

Lipoic acid (LA) is the cofactor of the E2 subunit of mitochondrial ketoacid dehydrogenases and plays a major role in oxidative decarboxylation. De novo LA biosynthesis is dependent on LIAS activity together with LIPT1 and LIPT2. LIAS is an iron­sulfur (Fe-S) cluster-containing mitochondrial protein, like mitochondrial aconitase (mt-aco) and some subunits of respiratory chain (RC) complexes I, II and III. All of them harbor at least one [Fe-S] cluster and their activity is dependent on the mitochondrial [Fe-S] cluster (ISC) assembly machinery. Disorders in the ISC machinery affect numerous Fe-S proteins and lead to a heterogeneous group of diseases with a wide variety of clinical symptoms and combined enzymatic defects. Here, we present the biochemical profiles of several key mitochondrial [Fe-S]-containing proteins in fibroblasts from 13 patients carrying mutations in genes encoding proteins involved in either the lipoic acid (LIPT1 and LIPT2) or mitochondrial ISC biogenesis (FDX1L, ISCA2, IBA57, NFU1, BOLA3) pathway. Ten of them are new patients described for the first time. We confirm that the fibroblast is a good cellular model to study these deficiencies, except for patients presenting mutations in FDX1L and a muscular clinical phenotype. We find that oxidative phosphorylation can be affected by LA defects in LIPT1 and LIPT2 patients due to excessive oxidative stress or to another mechanism connecting LA and respiratory chain activity. We confirm that NFU1, BOLA3, ISCA2 and IBA57 operate in the maturation of [4Fe-4S] clusters and not in [2Fe-2S] protein maturation. Our work suggests a functional difference between IBA57 and other proteins involved in maturation of [Fe-S] proteins. IBA57 seems to require BOLA3, NFU1 and ISCA2 for its stability and NFU1 requires BOLA3. Finally, our study establishes different biochemical profiles for patients according to their mutated protein.


Asunto(s)
Fibroblastos/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Mitocondriales/genética , Mutación , Ácido Tióctico/biosíntesis , Aciltransferasas/genética , Adolescente , Vías Biosintéticas/genética , Proteínas Portadoras/genética , Niño , Preescolar , Femenino , Fibroblastos/química , Humanos , Lactante , Masculino , Mitocondrias/metabolismo , Fosforilación Oxidativa , Estrés Oxidativo , Fenotipo , Proteínas/genética , Ácido Tióctico/genética
2.
JIMD Rep ; 38: 53-59, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28510035

RESUMEN

OBJECTIVE: Ketogenic diet is the first line therapy for neurological symptoms associated with pyruvate dehydrogenase deficiency (PDHD) and intractable seizures in a number of disorders, including GLUT1 deficiency syndrome (GLUT1-DS). Because high-fat diet raises serious compliance issues, we investigated if oral L,D-3-hydroxybutyrate administration could be as effective as ketogenic diet in PDHD and GLUT1-DS. METHODS: We designed a partial or total progressive substitution of KD with L,D-3-hydroxybutyrate in three GLUT1-DS and two PDHD patients. RESULTS: In GLUT1-DS patients, we observed clinical deterioration including increased frequency of seizures and myoclonus. In parallel, ketone bodies in CSF decreased after introducing 3-hydroxybutyrate. By contrast, two patients with PDHD showed clinical improvement as dystonic crises and fatigability decreased under basal metabolic conditions. In one of the two PDHD children, 3-hydroxybutyrate has largely replaced the ketogenic diet, with the latter that is mostly resumed only during febrile illness. Positive direct effects on energy metabolism in PDHD patients were suggested by negative correlation between ketonemia and lactatemia (r 2 = 0.59). Moreover, in cultured PDHc-deficient fibroblasts, the increase of CO2 production after 14C-labeled 3-hydroxybutyrate supplementation was consistent with improved Krebs cycle activity. However, except in one patient, ketonemia tended to be lower with 3-hydroxybutyrate administration compared to ketogenic diet. CONCLUSION: 3-hydroxybutyrate may be an adjuvant treatment to ketogenic diet in PDHD but not in GLUT1-DS under basal metabolic conditions. Nevertheless, ketogenic diet is still necessary in PDHD patients during febrile illness.

3.
Eur J Paediatr Neurol ; 20(1): 53-60, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26610677

RESUMEN

OBJECTIVE AND PATIENTS: We report on two new cases of serine deficiency due respectively to 3-phosphoglycerate dehydrogenase (PHGDH) deficiency (Patient 1) and phosphoserine aminotransferase (PSAT1) deficiency (Patient 2), presenting with congenital microcephaly (<3rd centile at birth) and encephalopathy with spasticity. Patient 1 had also intractable seizures. A treatment with oral l-serine was started at age 4.5 years and 3 months respectively. RESULTS: Serine levels were low in plasma and CSF relative to the reference population, for which we confirm recently redefined intervals based on a larger number of samples. l-Serine treatment led in patient 1 to a significant reduction of seizures after one week of treatment and decrease of electroencephalographic abnormalities within one year. In patient 2 treatment with l-serine led to an improvement of spasticity. However for both patients, l-serine failed to improve substantially head circumference (HC) and neurocognitive development. In a couple related to patient's 2 family, dosage of serine was performed on fetal cord blood when the fetus presented severe microcephaly, showing reduced serine levels at 30 weeks of pregnancy. CONCLUSIONS: l-Serine treatment in patients with 2 different serine synthesis defects, led to a significant reduction of seizures and an improvement of spasticity, but failed to improve substantially neurocognitive impairment. Therefore, CSF and plasma serine levels should be measured in all cases of severe microcephaly at birth to screen for serine deficiency, as prompt treatment with l-serine may significantly impact the outcome of the disease. Reduced serine levels in fetal cord blood may also be diagnostic as early as 30 weeks of pregnancy.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Errores Innatos del Metabolismo de los Carbohidratos/tratamiento farmacológico , Microcefalia/tratamiento farmacológico , Fosfoglicerato-Deshidrogenasa/deficiencia , Trastornos Psicomotores/tratamiento farmacológico , Convulsiones/tratamiento farmacológico , Serina/deficiencia , Serina/uso terapéutico , Transaminasas/deficiencia , Adulto , Errores Innatos del Metabolismo de los Aminoácidos/genética , Aminoácidos/líquido cefalorraquídeo , Errores Innatos del Metabolismo de los Carbohidratos/genética , Preescolar , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/etiología , Epilepsia Refractaria/etiología , Electroencefalografía , Femenino , Cabeza/crecimiento & desarrollo , Humanos , Lactante , Recién Nacido , Masculino , Microcefalia/etiología , Microcefalia/genética , Espasticidad Muscular/etiología , Fosfoglicerato-Deshidrogenasa/genética , Embarazo , Trastornos Psicomotores/genética , Convulsiones/etiología , Convulsiones/genética , Serina/sangre , Transaminasas/genética , Resultado del Tratamiento
4.
Mol Genet Metab Rep ; 2: 25-31, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28649521

RESUMEN

Pyruvate carboxylase (PC) is a biotin-containing mitochondrial enzyme that catalyzes the conversion of pyruvate to oxaloacetate, thereby being involved in gluconeogenesis and in energy production through replenishment of the tricarboxylic acid (TCA) cycle with oxaloacetate. PC deficiency is a very rare metabolic disorder. We report on a new patient affected by the moderate form (the American type A). Diagnosis was nearly fortuitous, resulting from the revision of an initial diagnosis of mitochondrial complex IV (C IV) defect. The patient presented with severe lactic acidosis and pronounced ketonuria, associated with lethargy at age 23 months. Intellectual disability was noted at this time. Amino acids in plasma and organic acids in urine did not show patterns of interest for the diagnostic work-up. In skin fibroblasts PC showed no detectable activity whereas biotinidase activity was normal. We had previously reported another patient with the severe form of PC deficiency and we show that she also had secondary C IV deficiency in fibroblasts. Different anaplerotic treatments in vivo and in vitro were tested using fibroblasts of both patients with 2 different types of PC deficiency, type A (patient 1) and type B (patient 2). Neither clinical nor biological effects in vivo and in vitro were observed using citrate, aspartate, oxoglutarate and bezafibrate. In conclusion, this case report suggests that the moderate form of PC deficiency may be underdiagnosed and illustrates the challenges raised by energetic disorders in terms of diagnostic work-up and therapeutical strategy even in a moderate form.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA