Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 167(3): 843-857.e14, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27720451

RESUMEN

Glucagon and thyroid hormone (T3) exhibit therapeutic potential for metabolic disease but also exhibit undesired effects. We achieved synergistic effects of these two hormones and mitigation of their adverse effects by engineering chemical conjugates enabling delivery of both activities within one precisely targeted molecule. Coordinated glucagon and T3 actions synergize to correct hyperlipidemia, steatohepatitis, atherosclerosis, glucose intolerance, and obesity in metabolically compromised mice. We demonstrate that each hormonal constituent mutually enriches cellular processes in hepatocytes and adipocytes via enhanced hepatic cholesterol metabolism and white fat browning. Synchronized signaling driven by glucagon and T3 reciprocally minimizes the inherent harmful effects of each hormone. Liver-directed T3 action offsets the diabetogenic liability of glucagon, and glucagon-mediated delivery spares the cardiovascular system from adverse T3 action. Our findings support the therapeutic utility of integrating these hormones into a single molecular entity that offers unique potential for treatment of obesity, type 2 diabetes, and cardiovascular disease.


Asunto(s)
Glucagón/uso terapéutico , Enfermedades Metabólicas/tratamiento farmacológico , Triyodotironina/efectos de los fármacos , Animales , Aterosclerosis/tratamiento farmacológico , Peso Corporal/efectos de los fármacos , Huesos/efectos de los fármacos , Ingeniería Química/métodos , Colesterol/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Modelos Animales de Enfermedad , Combinación de Medicamentos , Sistemas de Liberación de Medicamentos , Sinergismo Farmacológico , Glucagón/efectos adversos , Glucagón/química , Glucagón/farmacología , Hiperglucemia/tratamiento farmacológico , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Terapia Molecular Dirigida , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Triyodotironina/efectos adversos , Triyodotironina/química , Triyodotironina/farmacología
2.
FASEB J ; 35(8): e21772, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34252225

RESUMEN

Genetic deletion of Src associated in mitosis of 68kDa (Sam68), a pleiotropic adaptor protein prevents high-fat diet-induced weight gain and insulin resistance. To clarify the role of Sam68 in energy metabolism in the adult stage, we generated an inducible Sam68 knockout mice. Knockout of Sam68 was induced at the age of 7-10 weeks, and then we examined the metabolic profiles of the mice. Sam68 knockout mice gained less body weight over time and at 34 or 36 weeks old, had smaller fat mass without changes in food intake and absorption efficiency. Deletion of Sam68 in mice elevated thermogenesis, increased energy expenditure, and attenuated core-temperature drop during acute cold exposure. Furthermore, we examined younger Sam68 knockout mice at 11 weeks old before their body weights deviate, and confirmed increased energy expenditure and thermogenic gene program. Thus, Sam68 is essential for the control of adipose thermogenesis and energy homeostasis in the adult.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/deficiencia , Metabolismo Energético , Termogénesis , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Masculino , Ratones , Ratones Noqueados , Proteínas de Unión al ARN/metabolismo
3.
Am J Physiol Endocrinol Metab ; 321(4): E521-E529, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34370595

RESUMEN

The regulation of euglycemia is essential for human health with both chronic hypoglycemia and hyperglycemia having detrimental effects. It is well documented that the incidence of type 2 diabetes increases with age and exhibits racial disparity. Interestingly, mitochondrial DNA (mtDNA) damage also accumulates with age and its sequence varies with geographic maternal origins (maternal race). From these two observations, we hypothesized that mtDNA background may contribute to glucose metabolism and insulin sensitivity. Pronuclear transfer was used to generate mitochondrial-nuclear eXchange (MNX) mice to directly test this hypothesis, by assessing physiologic parameters of glucose metabolism in nuclear isogenic C57BL/6J mice harboring either a C57BL/6J (C57n:C57mt wild type-control) or C3H/HeN mtDNA (C57n:C3Hmt-MNX). All mice were fed normal chow diets. MNX mice were significantly leaner, had lower leptin levels, and were more insulin sensitive, with lower modified Homeostatic Model Assessment of Insulin Resistance (mHOMA-IR) values and enhanced insulin action when compared with their control counterparts. Further interrogation of muscle insulin signaling revealed higher phosphorylated Akt/total Akt ratios in MNX animals relative to control, consistent with greater insulin sensitivity. Overall, these results are consistent with the hypothesis that different mtDNA combinations on the same nuclear DNA (nDNA) background can significantly impact glucose metabolism and insulin sensitivity in healthy mice.NEW & NOTEWORTHY Different mitochondrial DNAs on the same nuclear genetic background can significantly impact body composition, glucose metabolism, and insulin sensitivity in healthy mice.


Asunto(s)
ADN Mitocondrial/metabolismo , Glucosa/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Mitocondrias/metabolismo , Animales , ADN Mitocondrial/genética , Femenino , Masculino , Análisis de la Aleatorización Mendeliana , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL
4.
Physiol Rev ; 92(3): 1479-514, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22811431

RESUMEN

The sirtuins are a family of highly conserved NAD(+)-dependent deacetylases that act as cellular sensors to detect energy availability and modulate metabolic processes. Two sirtuins that are central to the control of metabolic processes are mammalian sirtuin 1 (SIRT1) and sirtuin 3 (SIRT3), which are localized to the nucleus and mitochondria, respectively. Both are activated by high NAD(+) levels, a condition caused by low cellular energy status. By deacetylating a variety of proteins that induce catabolic processes while inhibiting anabolic processes, SIRT1 and SIRT3 coordinately increase cellular energy stores and ultimately maintain cellular energy homeostasis. Defects in the pathways controlled by SIRT1 and SIRT3 are known to result in various metabolic disorders. Consequently, activation of sirtuins by genetic or pharmacological means can elicit multiple metabolic benefits that protect mice from diet-induced obesity, type 2 diabetes, and nonalcoholic fatty liver disease.


Asunto(s)
Metabolismo Energético , Transducción de Señal , Sirtuina 1/metabolismo , Sirtuina 3/metabolismo , Animales , Ritmo Circadiano , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Activación Enzimática , Activadores de Enzimas/farmacología , Predisposición Genética a la Enfermedad , Homeostasis , Humanos , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Modelos Moleculares , Fenotipo , Polimorfismo Genético , Conformación Proteica , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sirtuina 1/genética , Sirtuina 3/genética , Relación Estructura-Actividad
5.
Am J Physiol Endocrinol Metab ; 316(3): E397-E409, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30620636

RESUMEN

The LIM-homeodomain (LIM-HD) transcription factor Islet-1 (Isl1) interacts with the LIM domain-binding protein 1 (Ldb1) coregulator to control expression of key pancreatic ß-cell genes. However, Ldb1 also has Isl1-independent effects, supporting that another LIM-HD factor interacts with Ldb1 to impact ß-cell development and/or function. LIM homeobox 1 (Lhx1) is an Isl1-related LIM-HD transcription factor that appears to be expressed in the developing mouse pancreas and in adult islets. However, roles for this factor in the pancreas are unknown. This study aimed to determine Lhx1 interactions and elucidate gene regulatory and physiological roles in the pancreas. Co-immunoprecipitation using ß-cell extracts demonstrated an interaction between Lhx1 and Isl1, and thus we hypothesized that Lhx1 and Isl1 regulate similar target genes. To test this, we employed siRNA-mediated Lhx1 knockdown in ß-cell lines and discovered reduced Glp1R mRNA. Chromatin immunoprecipitation revealed Lhx1 occupancy at a domain also known to be occupied by Isl1 and Ldb1. Through development of a pancreas-wide knockout mouse model ( Lhx1∆Panc), we demonstrate that aged Lhx1∆Panc mice have elevated fasting blood glucose levels, altered intraperitoneal and oral glucose tolerance, and significantly upregulated glucagon, somatostatin, pancreatic polypeptide, MafB, and Arx islet mRNAs. Additionally, Lhx1∆Panc mice exhibit significantly reduced Glp1R, an mRNA encoding the insulinotropic receptor for glucagon-like peptide 1 along with a concomitant dampened Glp1 response and mild glucose intolerance in mice challenged with oral glucose. These data are the first to reveal that the Lhx1 transcription factor contributes to normal glucose homeostasis and Glp1 responses.


Asunto(s)
Glucemia/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Factores de Transcripción/metabolismo , Animales , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/metabolismo , Técnicas de Silenciamiento del Gen , Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/genética , Proteínas de Homeodominio/genética , Homeostasis , Células Secretoras de Insulina/metabolismo , Proteínas con Dominio LIM/metabolismo , Proteínas con Homeodominio LIM/genética , Factor de Transcripción MafB/genética , Ratones , Ratones Noqueados , Polipéptido Pancreático/genética , ARN Mensajero/metabolismo , Somatostatina/genética , Factores de Transcripción/genética , Regulación hacia Arriba
6.
Int J Mol Sci ; 20(21)2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31671603

RESUMEN

Glucagon's ability to increase energy expenditure has been known for more than 60 years, yet the mechanisms underlining glucagon's thermogenic effect still remain largely elusive. Over the last years, significant efforts were directed to unravel the physiological and cellular underpinnings of how glucagon regulates energy expenditure. In this review, we summarize the current knowledge on how glucagon regulates systems metabolism with a special emphasis on its acute and chronic thermogenic effects.


Asunto(s)
Metabolismo Energético , Glucagón/metabolismo , Animales , Humanos , Termogénesis
7.
Diabetologia ; 58(10): 2414-23, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26099854

RESUMEN

AIMS/HYPOTHESIS: Ketogenic diets (KDs) have increasingly gained attention as effective means for weight loss and potential adjunctive treatment of cancer. The metabolic benefits of KDs are regularly ascribed to enhanced hepatic secretion of fibroblast growth factor 21 (FGF21) and its systemic effects on fatty-acid oxidation, energy expenditure (EE) and body weight. Ambiguous data from Fgf21-knockout animal strains and low FGF21 concentrations reported in humans with ketosis have nevertheless cast doubt regarding the endogenous function of FGF21. We here aimed to elucidate the causal role of FGF21 in mediating the therapeutic benefits of KDs on metabolism and cancer. METHODS: We established a dietary model of increased vs decreased FGF21 by feeding C57BL/6J mice with KDs, either depleted of protein or enriched with protein. We furthermore used wild-type and Fgf21-knockout mice that were subjected to the respective diets, and monitored energy and glucose homeostasis as well as tumour growth after transplantation of Lewis lung carcinoma cells. RESULTS: Hepatic and circulating, but not adipose tissue, FGF21 levels were profoundly increased by protein starvation, independent of the state of ketosis. We demonstrate that endogenous FGF21 is not essential for the maintenance of normoglycaemia upon protein and carbohydrate starvation and is therefore not needed for the effects of KDs on EE. Furthermore, the tumour-suppressing effects of KDs were independent of FGF21 and, rather, driven by concomitant protein and carbohydrate starvation. CONCLUSIONS/INTERPRETATION: Our data indicate that the multiple systemic effects of KD exposure in mice, previously ascribed to increased FGF21 secretion, are rather a consequence of protein malnutrition.


Asunto(s)
Dieta Cetogénica , Factores de Crecimiento de Fibroblastos/genética , Glucosa/metabolismo , Homeostasis/genética , Cetosis/genética , Neoplasias/genética , Deficiencia de Proteína/genética , Tejido Adiposo/metabolismo , Animales , Factores de Crecimiento de Fibroblastos/metabolismo , Cetosis/metabolismo , Hígado/metabolismo , Ratones , Ratones Noqueados , Neoplasias/dietoterapia , Neoplasias/metabolismo , Deficiencia de Proteína/metabolismo
8.
Gut ; 63(8): 1238-46, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24107591

RESUMEN

OBJECTIVE: Surgical interventions that prevent nutrient exposure to the duodenum are among the most successful treatments for obesity and diabetes. However, these interventions are highly invasive, irreversible and often carry significant risk. The duodenal-endoluminal sleeve (DES) is a flexible tube that acts as a barrier to nutrient-tissue interaction along the duodenum. We implanted this device in Zucker Diabetic Fatty (ZDF) rats to gain greater understanding of duodenal nutrient exclusion on glucose homeostasis. DESIGN: ZDF rats were randomised to four groups: Naive, sham ad libitum, sham pair-fed, and DES implanted. Food intake, body weight (BW) and body composition were measured for 28 days postoperatively. Glucose, lipid and bile acid metabolism were evaluated, as well as histological assessment of the upper intestine. RESULTS: DES implantation induced a sustained decrease in BW throughout the study that was matched by pair-fed sham animals. Decreased BW resulted from loss of fat, but not lean mass. DES rats were also found to be more glucose tolerant than either ad libitum-fed or pair-fed sham controls, suggesting fat mass independent metabolic benefits. DES also reduced circulating triglyceride and glycerol levels while increasing circulating bile acids. Interestingly, DES stimulated a considerable increase in villus length throughout the upper intestine, which may contribute to metabolic improvements. CONCLUSIONS: Our preclinical results validate DES as a promising therapeutic approach to diabetes and obesity, which offers reversibility, low risk, low invasiveness and triple benefits including fat mass loss, glucose and lipid metabolism improvement which mechanistically may involve increased villus growth in the upper gut.


Asunto(s)
Glucemia/metabolismo , Duodeno/fisiología , Absorción Intestinal , Síndrome Metabólico/terapia , Prótesis e Implantes , Animales , Ácidos y Sales Biliares/sangre , Composición Corporal , Peso Corporal , Diabetes Mellitus Experimental/terapia , Duodeno/patología , Péptido 1 Similar al Glucagón/metabolismo , Prueba de Tolerancia a la Glucosa , Glicerol/sangre , Homeostasis , Íleon/patología , Yeyuno/patología , Masculino , Obesidad/terapia , Distribución Aleatoria , Ratas , Ratas Zucker , Triglicéridos/sangre
9.
Circulation ; 128(22): 2364-71, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24170386

RESUMEN

BACKGROUND: Abnormal glucose metabolism is a central feature of disorders with increased rates of cardiovascular disease. Low levels of high-density lipoprotein (HDL) are a key predictor for cardiovascular disease. We used genetic mouse models with increased HDL levels (apolipoprotein A-I transgenic [apoA-I tg]) and reduced HDL levels (apoA-I-deficient [apoA-I ko]) to investigate whether HDL modulates mitochondrial bioenergetics in skeletal muscle. METHODS AND RESULTS: ApoA-I ko mice exhibited fasting hyperglycemia and impaired glucose tolerance test compared with wild-type mice. Mitochondria isolated from gastrocnemius muscle of apoA-I ko mice displayed markedly blunted ATP synthesis. Endurance capacity during exercise exhaustion test was impaired in apoA-I ko mice. HDL directly enhanced glucose oxidation by increasing glycolysis and mitochondrial respiration rate in C2C12 muscle cells. ApoA-I tg mice exhibited lower fasting glucose levels, improved glucose tolerance test, increased lactate levels, reduced fat mass, associated with protection against age-induced decline of endurance capacity compared with wild-type mice. Circulating levels of fibroblast growth factor 21, a novel biomarker for mitochondrial respiratory chain deficiencies and inhibitor of white adipose lipolysis, were significantly reduced in apoA-I tg mice. Consistent with an increase in glucose utilization of skeletal muscle, genetically increased HDL and apoA-I levels in mice prevented high-fat diet-induced impairment of glucose homeostasis. CONCLUSIONS: In view of impaired mitochondrial function and decreased HDL levels in type 2 diabetes mellitus, our findings indicate that HDL-raising therapies may preserve muscle mitochondrial function and address key aspects of type 2 diabetes mellitus beyond cardiovascular disease.


Asunto(s)
Glucemia/metabolismo , Intolerancia a la Glucosa/metabolismo , Hiperglucemia/metabolismo , Lipoproteínas HDL/metabolismo , Músculo Esquelético/metabolismo , Animales , Apolipoproteína A-I/genética , Respiración de la Célula/fisiología , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Ácidos Grasos no Esterificados/sangre , Factores de Crecimiento de Fibroblastos/sangre , Homeostasis/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Musculares/metabolismo , Resistencia Física/fisiología
10.
Mol Metab ; 72: 101715, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37019209

RESUMEN

OBJECTIVE: A buildup of skeletal muscle plasma membrane (PM) cholesterol content in mice occurs within 1 week of a Western-style high-fat diet and causes insulin resistance. The mechanism driving this cholesterol accumulation and insulin resistance is not known. Promising cell data implicate that the hexosamine biosynthesis pathway (HBP) triggers a cholesterolgenic response via increasing the transcriptional activity of Sp1. In this study we aimed to determine whether increased HBP/Sp1 activity represented a preventable cause of insulin resistance. METHODS: C57BL/6NJ mice were fed either a low-fat (LF, 10% kcal) or high-fat (HF, 45% kcal) diet for 1 week. During this 1-week diet the mice were treated daily with either saline or mithramycin-A (MTM), a specific Sp1/DNA-binding inhibitor. A series of metabolic and tissue analyses were then performed on these mice, as well as on mice with targeted skeletal muscle overexpression of the rate-limiting HBP enzyme glutamine-fructose-6-phosphate-amidotransferase (GFAT) that were maintained on a regular chow diet. RESULTS: Saline-treated mice fed this HF diet for 1 week did not have an increase in adiposity, lean mass, or body mass while displaying early insulin resistance. Consistent with an HBP/Sp1 cholesterolgenic response, Sp1 displayed increased O-GlcNAcylation and binding to the HMGCR promoter that increased HMGCR expression in skeletal muscle from saline-treated HF-fed mice. Skeletal muscle from these saline-treated HF-fed mice also showed a resultant elevation of PM cholesterol with an accompanying loss of cortical filamentous actin (F-actin) that is essential for insulin-stimulated glucose transport. Treating these mice daily with MTM during the 1-week HF diet fully prevented the diet-induced Sp1 cholesterolgenic response, loss of cortical F-actin, and development of insulin resistance. Similarly, increases in HMGCR expression and cholesterol were measured in muscle from GFAT transgenic mice compared to age- and weight-match wildtype littermate control mice. In the GFAT Tg mice we found that these increases were alleviated by MTM. CONCLUSIONS: These data identify increased HBP/Sp1 activity as an early mechanism of diet-induced insulin resistance. Therapies targeting this mechanism may decelerate T2D development.


Asunto(s)
Resistencia a la Insulina , Ratones , Animales , Resistencia a la Insulina/fisiología , Actinas/metabolismo , Ratones Endogámicos C57BL , Colesterol/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones Transgénicos , Hexosaminas/metabolismo
11.
JACC Basic Transl Sci ; 8(9): 1141-1156, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37791313

RESUMEN

Circadian clocks temporally orchestrate biological processes critical for cellular/organ function. For example, the cardiomyocyte circadian clock modulates cardiac metabolism, signaling, and electrophysiology over the course of the day, such that, disruption of the clock leads to age-onset cardiomyopathy (through unknown mechanisms). Here, we report that genetic disruption of the cardiomyocyte clock results in chronic induction of the transcriptional repressor E4BP4. Importantly, E4BP4 deletion prevents age-onset cardiomyopathy following clock disruption. These studies also indicate that E4BP4 regulates both cardiac metabolism (eg, fatty acid oxidation) and electrophysiology (eg, QT interval). Collectively, these studies reveal that E4BP4 is a novel regulator of both cardiac physiology and pathophysiology.

12.
J Am Heart Assoc ; 12(4): e027693, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36752232

RESUMEN

As the worldwide prevalence of overweight and obesity continues to rise, so too does the urgency to fully understand mediating mechanisms, to discover new targets for safe and effective therapeutic intervention, and to identify biomarkers to track obesity and the success of weight loss interventions. In 2016, the American Heart Association sought applications for a Strategically Focused Research Network (SFRN) on Obesity. In 2017, 4 centers were named, including Johns Hopkins University School of Medicine, New York University Grossman School of Medicine, University of Alabama at Birmingham, and Vanderbilt University Medical Center. These 4 centers were convened to study mechanisms and therapeutic targets in obesity, to train a talented cadre of American Heart Association SFRN-designated fellows, and to initiate and sustain effective and enduring collaborations within the individual centers and throughout the SFRN networks. This review summarizes the central themes, major findings, successful training of highly motivated and productive fellows, and the innovative collaborations and studies forged through this SFRN on Obesity. Leveraging expertise in in vitro and cellular model assays, animal models, and humans, the work of these 4 centers has made a significant impact in the field of obesity, opening doors to important discoveries, and the identification of a future generation of obesity-focused investigators and next-step clinical trials. The creation of the SFRN on Obesity for these 4 centers is but the beginning of innovative science and, importantly, the birth of new collaborations and research partnerships to propel the field forward.


Asunto(s)
American Heart Association , Sobrepeso , Animales , Humanos , Sobrepeso/epidemiología , Sobrepeso/terapia , Obesidad/epidemiología , Obesidad/terapia , Causalidad , New York
13.
Diabetes ; 71(9): 1842-1851, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35657690

RESUMEN

While the consumption of external energy (i.e., feeding) is essential to life, this action induces a temporary disturbance of homeostasis in an animal. A primary example of this effect is found in the regulation of glycemia. In the fasted state, stored energy is released to maintain physiological glycemic levels. Liver glycogen is liberated to glucose, glycerol and (glucogenic) amino acids are used to build new glucose molecules (i.e., gluconeogenesis), and fatty acids are oxidized to fuel long-term energetic demands. This regulation is driven primarily by the counterregulatory hormones epinephrine, growth hormone, cortisol, and glucagon. Conversely, feeding induces a rapid influx of diverse nutrients, including glucose, that disrupt homeostasis. Consistently, a host of hormonal and neural systems under the coordination of insulin are engaged in the transition from fasting to prandial states to reduce this disruption. The ultimate action of these systems is to appropriately store the newly acquired energy and to return to the homeostatic norm. Thus, at first glance it is tempting to assume that glucagon is solely antagonistic regarding the anabolic effects of insulin. We have been intrigued by the role of glucagon in the prandial transition and have attempted to delineate its role as beneficial or inhibitory to glycemic control. The following review highlights this long-known yet poorly understood hormone.


Asunto(s)
Glucagón , Insulina , Animales , Glucemia/metabolismo , Glucagón/metabolismo , Glucosa/metabolismo , Hepatocitos/metabolismo , Insulina/metabolismo , Insulina Regular Humana , Hígado/metabolismo , Receptores de Glucagón/metabolismo
14.
Diabetes ; 71(10): 2123-2135, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35877180

RESUMEN

Long-term glucagon receptor (GCGR) agonism is associated with hyperglycemia and glucose intolerance, while acute GCGR agonism enhances whole-body insulin sensitivity and hepatic AKTSer473 phosphorylation. These divergent effects establish a critical gap in knowledge surrounding GCGR action. mTOR complex 2 (mTORC2) is composed of seven proteins, including RICTOR, which dictates substrate binding and allows for targeting of AKTSer473. We used a liver-specific Rictor knockout mouse (RictorΔLiver) to investigate whether mTORC2 is necessary for insulin receptor (INSR) and GCGR cross talk. RictorΔLiver mice were characterized by impaired AKT signaling and glucose intolerance. Intriguingly, RictorΔLiver mice were also resistant to GCGR-stimulated hyperglycemia. Consistent with our prior report, GCGR agonism increased glucose infusion rate and suppressed hepatic glucose production during hyperinsulinemic-euglycemic clamp of control animals. However, these benefits to insulin sensitivity were ablated in RictorΔLiver mice. We observed diminished AKTSer473 and GSK3α/ßSer21/9 phosphorylation in RictorΔLiver mice, whereas phosphorylation of AKTThr308 was unaltered in livers from clamped mice. These signaling effects were replicated in primary hepatocytes isolated from RictorΔLiver and littermate control mice, confirming cell-autonomous cross talk between GCGR and INSR pathways. In summary, our study reveals the necessity of RICTOR, and thus mTORC2, in GCGR-mediated enhancement of liver and whole-body insulin action.


Asunto(s)
Intolerancia a la Glucosa , Hiperglucemia , Resistencia a la Insulina , Animales , Glucosa/metabolismo , Intolerancia a la Glucosa/metabolismo , Homeostasis , Hiperglucemia/metabolismo , Insulina/metabolismo , Insulina/farmacología , Insulina Regular Humana , Hígado/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina , Receptor de Insulina/metabolismo , Receptores de Glucagón/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
15.
Neuroendocrinology ; 93(3): 143-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21372559

RESUMEN

Over the last decades, the negative health consequences of obesity have triggered massive searches for the cause of --and potential solutions for--the excessive mismatch between calorie consumption and expenditure. The concepts of malfunctioning hypothalamic neurotransmission and impaired related neuromodulatory networks in other brain regions have attracted considerable attention as they may partially explain metabolic abnormalities. While numerous and important efforts are underway to scientifically dissect the neuronal signaling pathways involved in metabolic sensing and regulation, the roles of astroglial cells represent a relatively understudied area. This gap in knowledge is particularly evident in the neuroendocrine control of glucose and lipid metabolism. This review presents evidence that in regard to metabolism, astrocytes act not only as an energy supplier for neurons, but may also play key roles in metabolic sensing by expressing metabolic related receptors and regulators. Moreover, the astrocytosis observed during calorie-rich high-fat diet indicates that astrocytes could be involved in developing metabolic abnormalities. Finally, potential obstacles and pitfalls for studying the role of astrocytes in metabolic sensing and regulation are discussed.


Asunto(s)
Astrocitos/metabolismo , Ingestión de Energía/fisiología , Metabolismo Energético/fisiología , Neuronas/metabolismo , Transducción de Señal/fisiología , Animales , Humanos , Obesidad/metabolismo
16.
Compr Physiol ; 11(2): 1759-1783, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33792899

RESUMEN

Discovered almost simultaneously with insulin, glucagon is a pleiotropic hormone with metabolic action that goes far beyond its classical role to increase blood glucose. Albeit best known for its ability to directly act on the liver to increase de novo glucose production and to inhibit glycogen breakdown, glucagon lowers body weight by decreasing food intake and by increasing metabolic rate. Glucagon further promotes lipolysis and lipid oxidation and has positive chronotropic and inotropic effects in the heart. Interestingly, recent decades have witnessed a remarkable renaissance of glucagon's biology with the acknowledgment that glucagon has pharmacological value beyond its classical use as rescue medication to treat severe hypoglycemia. In this article, we summarize the multifaceted nature of glucagon with a special focus on its hepatic action and discuss the pharmacological potential of either agonizing or antagonizing the glucagon receptor for health and disease. © 2021 American Physiological Society. Compr Physiol 11:1759-1783, 2021.


Asunto(s)
Glucagón , Insulina , Glucemia , Glucosa , Humanos , Hígado
17.
Mol Metab ; 53: 101284, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34198011

RESUMEN

OBJECTIVE: Brown adipose tissue (BAT) is critical for thermogenesis and glucose/lipid homeostasis. Exploiting the energy uncoupling capacity of BAT may reveal targets for obesity therapies. This exploitation requires a greater understanding of the transcriptional mechanisms underlying BAT function. One potential regulator of BAT is the transcriptional co-regulator LIM domain-binding protein 1 (LDB1), which acts as a dimerized scaffold, allowing for the assembly of transcriptional complexes. Utilizing a global LDB1 heterozygous mouse model, we recently reported that LDB1 might have novel roles in regulating BAT function. However, direct evidence for the LDB1 regulation of BAT thermogenesis and substrate utilization has not been elucidated. We hypothesize that brown adipocyte-expressed LDB1 is required for BAT function. METHODS: LDB1-deficient primary cells and brown adipocyte cell lines were assessed via qRT-PCR and western blotting for altered mRNA and protein levels to define the brown adipose-specific roles. We conducted chromatin immunoprecipitation with primary BAT tissue and immortalized cell lines. Potential transcriptional partners of LDB1 were revealed by conducting LIM factor surveys via qRT-PCR in mouse and human brown adipocytes. We developed a Ucp1-Cre-driven LDB1-deficiency mouse model, termed Ldb1ΔBAT, to test LDB1 function in vivo. Glucose tolerance and uptake were assessed at thermoneutrality via intraperitoneal glucose challenge and glucose tracer studies. Insulin tolerance was measured at thermoneutrality and after stimulation with cold or the administration of the ß3-adrenergic receptor (ß3-AR) agonist CL316,243. Additionally, we analyzed plasma insulin via ELISA and insulin signaling via western blotting. Lipid metabolism was evaluated via BAT weight, histology, lipid droplet morphometry, and the examination of lipid-associated mRNA. Finally, energy expenditure and cold tolerance were evaluated via indirect calorimetry and cold challenges. RESULTS: Reducing Ldb1 in vitro and in vivo resulted in altered BAT-selective mRNA, including Ucp1, Elovl3, and Dio2. In addition, there was reduced Ucp1 induction in vitro. Impacts on gene expression may be due, in part, to LDB1 occupying Ucp1 upstream regulatory domains. We also identified BAT-expressed LIM-domain factors Lmo2, Lmo4, and Lhx8, which may partner with LDB1 to mediate activity in brown adipocytes. Additionally, we observed LDB1 enrichment in human brown adipose. In vivo analysis revealed LDB1 is required for whole-body glucose and insulin tolerance, in part through reduced glucose uptake into BAT. In Ldb1ΔBAT tissue, we found significant alterations in insulin-signaling effectors. An assessment of brown adipocyte morphology and lipid droplet size revealed larger and more unilocular brown adipocytes in Ldb1ΔBAT mice, particularly after a cold challenge. Alterations in lipid handling were further supported by reductions in mRNA associated with fatty acid oxidation and mitochondrial respiration. Finally, LDB1 is required for energy expenditure and cold tolerance in both male and female mice. CONCLUSIONS: Our findings support LDB1 as a regulator of BAT function. Furthermore, given LDB1 enrichment in human brown adipose, this co-regulator may have conserved roles in human BAT.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas con Dominio LIM/metabolismo , Animales , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas con Dominio LIM/deficiencia , Proteínas con Dominio LIM/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Transcriptoma
18.
JCI Insight ; 6(4)2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33411693

RESUMEN

Glucagon regulates glucose and lipid metabolism and promotes weight loss. Thus, therapeutics stimulating glucagon receptor (GCGR) signaling are promising for obesity treatment; however, the underlying mechanism(s) have yet to be fully elucidated. We previously identified that hepatic GCGR signaling increases circulating fibroblast growth factor 21 (FGF21), a potent regulator of energy balance. We reported that mice deficient for liver Fgf21 are partially resistant to GCGR-mediated weight loss, implicating FGF21 as a regulator of glucagon's weight loss effects. FGF21 signaling requires an obligate coreceptor (ß-Klotho, KLB), with expression limited to adipose tissue, liver, pancreas, and brain. We hypothesized that the GCGR-FGF21 system mediates weight loss through a central mechanism. Mice deficient for neuronal Klb exhibited a partial reduction in body weight with chronic GCGR agonism (via IUB288) compared with controls, supporting a role for central FGF21 signaling in GCGR-mediated weight loss. Substantiating these results, mice with central KLB inhibition via a pharmacological KLB antagonist, 1153, also displayed partial weight loss. Central KLB, however, is dispensable for GCGR-mediated improvements in plasma cholesterol and liver triglycerides. Together, these data suggest GCGR agonism mediates part of its weight loss properties through central KLB and has implications for future treatments of obesity and metabolic syndrome.


Asunto(s)
Glucagón/metabolismo , Proteínas Klotho/metabolismo , Receptores de Glucagón/metabolismo , Transducción de Señal , Pérdida de Peso , Animales , Peso Corporal , Ingestión de Alimentos , Factores de Crecimiento de Fibroblastos/genética , Expresión Génica , Glucosa/metabolismo , Homeostasis , Proteínas Klotho/genética , Metabolismo de los Lípidos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo , Péptidos
19.
Nat Commun ; 12(1): 3340, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099657

RESUMEN

Hepatic gluconeogenesis is essential for glucose homeostasis and also a therapeutic target for type 2 diabetes, but its mechanism is incompletely understood. Here, we report that Sam68, an RNA-binding adaptor protein and Src kinase substrate, is a novel regulator of hepatic gluconeogenesis. Both global and hepatic deletions of Sam68 significantly reduce blood glucose levels and the glucagon-induced expression of gluconeogenic genes. Protein, but not mRNA, levels of CRTC2, a crucial transcriptional regulator of gluconeogenesis, are >50% lower in Sam68-deficient hepatocytes than in wild-type hepatocytes. Sam68 interacts with CRTC2 and reduces CRTC2 ubiquitination. However, truncated mutants of Sam68 that lack the C- (Sam68ΔC) or N-terminal (Sam68ΔN) domains fails to bind CRTC2 or to stabilize CRTC2 protein, respectively, and transgenic Sam68ΔN mice recapitulate the blood-glucose and gluconeogenesis profile of Sam68-deficient mice. Hepatic Sam68 expression is also upregulated in patients with diabetes and in two diabetic mouse models, while hepatocyte-specific Sam68 deficiencies alleviate diabetic hyperglycemia and improves insulin sensitivity in mice. Thus, our results identify a role for Sam68 in hepatic gluconeogenesis, and Sam68 may represent a therapeutic target for diabetes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Gluconeogénesis/fisiología , Hígado/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Glucemia/metabolismo , Proteínas de Unión al ADN , Diabetes Mellitus Tipo 2/metabolismo , Regulación de la Expresión Génica , Glucagón/metabolismo , Gluconeogénesis/genética , Glucosa/metabolismo , Hepatocitos/metabolismo , Homeostasis , Humanos , Hiperglucemia , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética , Regulación hacia Arriba
20.
Endocrinology ; 161(1)2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31673703

RESUMEN

Glucagon (GCG) is an essential regulator of glucose and lipid metabolism that also promotes weight loss. We have shown that glucagon-receptor (GCGR) signaling increases fatty acid oxidation (FAOx) in primary hepatocytes and reduces liver triglycerides in diet-induced obese (DIO) mice; however, the mechanisms underlying this aspect of GCG biology remains unclear. Investigation of hepatic GCGR targets elucidated a potent and previously unknown induction of leptin receptor (Lepr) expression. Liver leptin signaling is known to increase FAOx and decrease liver triglycerides, similar to glucagon action. Therefore, we hypothesized that glucagon increases hepatic LEPR, which is necessary for glucagon-mediated reversal of hepatic steatosis. Eight-week-old control and liver-specific LEPR-deficient mice (LeprΔliver) were placed on a high-fat diet for 12 weeks and then treated with a selective GCGR agonist (IUB288) for 14 days. Liver triglycerides and gene expression were assessed in liver tissue homogenates. Administration of IUB288 in both lean and DIO mice increased hepatic Lepr isoforms a-e in acute (4 hours) and chronic (72 hours,16 days) (P < 0.05) settings. LeprΔliver mice displayed increased hepatic triglycerides on a chow diet alone (P < 0.05), which persisted in a DIO state (P < 0.001), with no differences in body weight or composition. Surprisingly, chronic administration of IUB288 in DIO control and LeprΔliver mice reduced liver triglycerides regardless of genotype (P < 0.05). Together, these data suggest that GCGR activation induces hepatic Lepr expression and, although hepatic glucagon and leptin signaling have similar liver lipid targets, these appear to be 2 distinct pathways.


Asunto(s)
Hígado Graso/tratamiento farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Péptidos/farmacología , Receptores de Glucagón/metabolismo , Receptores de Leptina/metabolismo , Animales , Área Bajo la Curva , Dieta Alta en Grasa , Homeostasis , Metabolismo de los Lípidos/fisiología , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Noqueados , Obesidad/inducido químicamente , Receptores de Glucagón/genética , Receptores de Leptina/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA