Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 597(7874): 77-81, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34471275

RESUMEN

The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2-5 with decomposer groups-such as microorganisms and insects-contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood7. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect-including the direct consumption by insects and indirect effects through interactions with microorganisms-insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9 per cent and -0.1 per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9 ± 3.2 petagram of carbon per year released from deadwood globally, with 93 per cent originating from tropical forests. Globally, the net effect of insects may account for 29 per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle.


Asunto(s)
Ciclo del Carbono , Bosques , Insectos/metabolismo , Árboles/metabolismo , Animales , Secuestro de Carbono , Clima , Ecosistema , Mapeo Geográfico , Cooperación Internacional
2.
Nature ; 574(7780): 671-674, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31666721

RESUMEN

Recent reports of local extinctions of arthropod species1, and of massive declines in arthropod biomass2, point to land-use intensification as a major driver of decreasing biodiversity. However, to our knowledge, there are no multisite time series of arthropod occurrences across gradients of land-use intensity with which to confirm causal relationships. Moreover, it remains unclear which land-use types and arthropod groups are affected, and whether the observed declines in biomass and diversity are linked to one another. Here we analyse data from more than 1 million individual arthropods (about 2,700 species), from standardized inventories taken between 2008 and 2017 at 150 grassland and 140 forest sites in 3 regions of Germany. Overall gamma diversity in grasslands and forests decreased over time, indicating loss of species across sites and regions. In annually sampled grasslands, biomass, abundance and number of species declined by 67%, 78% and 34%, respectively. The decline was consistent across trophic levels and mainly affected rare species; its magnitude was independent of local land-use intensity. However, sites embedded in landscapes with a higher cover of agricultural land showed a stronger temporal decline. In 30 forest sites with annual inventories, biomass and species number-but not abundance-decreased by 41% and 36%, respectively. This was supported by analyses of all forest sites sampled in three-year intervals. The decline affected rare and abundant species, and trends differed across trophic levels. Our results show that there are widespread declines in arthropod biomass, abundance and the number of species across trophic levels. Arthropod declines in forests demonstrate that loss is not restricted to open habitats. Our results suggest that major drivers of arthropod decline act at larger spatial scales, and are (at least for grasslands) associated with agriculture at the landscape level. This implies that policies need to address the landscape scale to mitigate the negative effects of land-use practices.


Asunto(s)
Artrópodos , Biomasa , Animales , Biodiversidad , Conservación de los Recursos Naturales , Bosques , Alemania , Pradera
3.
J Environ Manage ; 311: 114846, 2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35290956

RESUMEN

Roadsides, in particular those being species-rich and of conservation value, are considered to improve landscape permeability by providing corridors among habitat patches and by facilitating species' dispersal. However, little is known about the potential connectivity offered by such high-value roadsides. Using circuit theory, we modelled connectivity provided by high-value roadsides in landscapes with low or high permeability in south-central Sweden, with 'permeability' being measured by the area of semi-natural grasslands. We modelled structural connectivity and, for habitat generalists and specialists, potential functional connectivity focusing on butterflies. We further assessed in which landscapes grassland connectivity is best enhanced through measures for expanding the area of high-value roadsides. Structural connectivity provided by high-value roadsides resulted in similar patterns to those of a functional approach, in which we modelled habitat generalists. In landscapes with low permeability, all target species showed higher movements within compared to between grasslands using high-value roadsides. In landscapes with high permeability, grassland generalists and specialists showed the same patterns, whereas for habitat generalists, connectivity provided by high-value roadsides and grasslands was similar. Increasing the ratio of high-value roadsides can thus enhance structural and functional connectivity in landscapes with low permeability. In contrast, in landscapes with high permeability, roadsides only supported movement of specialised species. Continuous segments of high-value roadsides are most efficient to increase connectivity for specialists, whereas generalists can utilize also short segments of high-value roadsides acting as stepping-stones. Thus, land management should focus on the preservation and restoration of existing semi-natural grasslands. Management for enhancing grassland connectivity through high-value roadsides should aim at maintaining and creating high-value roadside vegetation, preferably in long continuous segments, especially in landscapes with low permeability.

4.
Mol Ecol ; 23(16): 4103-18, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24954273

RESUMEN

The Eastern Afromontane biodiversity hotspot composed of highly fragmented forested highlands (sky islands) harbours exceptional diversity and endemicity, particularly within birds. To explain their elevated diversity within this region, models founded on niche conservatism have been offered, although detailed phylogeographic studies are limited to a few avian lineages. Here, we focus on the recent songbird genus Zosterops, represented by montane and lowland members, to test the roles of niche conservatism versus niche divergence in the diversification and colonization of East Africa's sky islands. The species-rich white-eyes are a typically homogeneous family with an exceptional colonizing ability, but in contrast to their diversity on oceanic islands, continental diversity is considered depauperate and has been largely neglected. Molecular phylogenetic analysis of ~140 taxa reveals extensive polyphyly among different montane populations of Z. poliogastrus. These larger endemic birds are shown to be more closely related to taxa with divergent habitat types, altitudinal distributions and dispersal abilities than they are to populations of restricted endemics that occur in neighbouring montane forest fragments. This repeated transition between lowland and highland habitats over time demonstrate that diversification of the focal group is explained by niche divergence. Our results also highlight an underestimation of diversity compared to morphological studies that has implications for their taxonomy and conservation. Molecular dating suggests that the spatially extensive African radiation arose exceptionally rapidly (1-2.5 Ma) during the fluctuating Plio-Pleistocene climate, which may have provided the primary driver for lineage diversification.


Asunto(s)
Biodiversidad , Evolución Molecular , Passeriformes/genética , Filogenia , África Oriental , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Animales , ADN Mitocondrial/genética , Datos de Secuencia Molecular , Passeriformes/clasificación , Filogeografía , Análisis de Secuencia de ADN
5.
BMC Evol Biol ; 11: 215, 2011 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-21777453

RESUMEN

BACKGROUND: The glacial-interglacial oscillations caused severe range modifications of biota. Thermophilic species became extinct in the North and survived in southern retreats, e.g. the Mediterranean Basin. These repeated extinction and (re)colonisation events led to long-term isolation and intermixing of populations and thus resulted in strong genetic imprints in many European species therefore being composed of several genetic lineages. To better understand these cycles of repeated expansion and retraction, we selected the Marbled White butterfly Melanargia galathea. Fourty-one populations scattered over Europe and the Maghreb and one population of the sibling taxon M. lachesis were analysed using allozyme electrophoresis. RESULTS: We obtained seven distinct lineages applying neighbour joining and STRUCTURE analyses: (i) Morocco, (ii) Tunisia, (iii) Sicily, (iv) Italy and southern France, (v) eastern Balkans extending to Central Europe, (vi) western Balkans with western Carpathian Basin as well as (vii) south-western Alps. The hierarchy of these splits is well matching the chronology of glacial and interglacial cycles since the Günz ice age starting with an initial split between the galathea group in North Africa and the lachesis group in Iberia. These genetic structures were compared with past distribution patterns during the last glacial stage calculated with distribution models. CONCLUSIONS: Both methods suggest climatically suitable areas in the Maghreb and the southern European peninsulas with distinct refugia during the last glacial period and underpin strong range expansions to the North during the Postglacial. However, the allozyme patterns reveal biogeographical structures not detected by distribution modelling as two distinct refugia in the Maghreb, two or more distinct refugia at the Balkans and a close link between the eastern Maghreb and Sicily. Furthermore, the genetically highly diverse western Maghreb might have acted as source or speciation centre of this taxon, while the eastern, genetically impoverished Maghreb population might result from a relatively recent recolonisation from Europe via Sicily.


Asunto(s)
Mariposas Diurnas/clasificación , Mariposas Diurnas/genética , África , Animales , Evolución Biológica , Europa (Continente) , Variación Genética , Filogenia , Filogeografía
6.
PLoS One ; 13(11): e0207052, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30485301

RESUMEN

Habitat demands and species mobility strongly determine the occurrence of species. Sedentary species with specific habitat requirements are assumed to occur more patchy than mobile habitat generalist species, and thus suffer stronger under habitat fragmentation and habitat deterioration. In this study we measured dispersal and habitat preference of three selected butterfly species using mark-release-recapture technique. We used data on species abundance to calculate Species Distribution Models based on high-resolution aerial photographs taken using RGB / NIR cameras mounted on a UAV. We found that microhabitats for species with specific habitat requirements occur spatially restricted. In contrast, suitable habitats are more interconnected and widespread for mobile habitat generalists. Our models indicate that even managed grassland sites have comparatively little habitat quality, while road verges provide high quality micro-habitats. In addition, dispersal was more restricted for specialist butterfly species, and higher for the two other butterfly species with less ecological specialisation. This study shows synergies arising when combining ecological data with high precision aerial pictures and Species Distribution Models, to identify micro-habitats for butterflies. This approach might be suitable to identify and conserve high quality habitats, and to improve nature conservation at the ground.


Asunto(s)
Agricultura , Mariposas Diurnas , Monitoreo del Ambiente/métodos , Pradera , Modelos Estadísticos , Distribución Animal , Animales , Conservación de los Recursos Naturales
7.
PLoS One ; 11(11): e0163338, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27855174

RESUMEN

Rapid fragmentation and degradation of large undisturbed habitats constitute major threats to biodiversity. Several studies have shown that populations in small and highly isolated habitat patches are prone to strong environmental and demographic stochasticity and increased risk of extinction. Based on community assembly theory, we predict recent rapid forest fragmentation to cause a decline in species and functional guild richness of forest birds combined with a high species turnover among habitat patches, and well defined dominance structures, if competition is the major driver of community assembly. To test these predictions, we analysed species co-occurrence, nestedness, and competitive strength to infer effects of interspecific competition, habitat structure, and species' traits on the assembly of bird species communities from 12 cloud forest fragments in southern Kenya. Our results do not point to a single ecological driver of variation in species composition. Interspecific competition does not appear to be a major driver of species segregation in small forest patches, while its relative importance appears to be higher in larger ones, which may be indicative for a generic shift from competition-dominated to colonisation-driven community structure with decreasing fragment size. Functional trait diversity was independent of fragment size after controlling for species richness. As fragmentation effects vary among feeding guilds and habitat generalists, in particular, tend to decline in low quality forest patches, we plead for taking species ecology fully into account when predicting tropical community responses to habitat change.


Asunto(s)
Biodiversidad , Aves , Ecosistema , Bosques , África Oriental , Animales , Conservación de los Recursos Naturales , Dinámica Poblacional , Clima Tropical
8.
Biol Rev Camb Philos Soc ; 89(2): 484-92, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24251767

RESUMEN

The genetic structure of a species is shaped by the interaction of contemporary and historical factors. Analyses of individuals from the same population sampled at different points in time can help to disentangle the effects of current and historical forces and facilitate the understanding of the forces driving the differentiation of populations. The use of such time series allows for the exploration of changes at the population and intraspecific levels over time. Material from museum collections plays a key role in understanding and evaluating observed population structures, especially if large numbers of individuals have been sampled from the same locations at multiple time points. In these cases, changes in population structure can be assessed empirically. The development of new molecular markers relying on short DNA fragments (such as microsatellites or single nucleotide polymorphisms) allows for the analysis of long-preserved and partially degraded samples. Recently developed techniques to construct genome libraries with a reduced complexity and next generation sequencing and their associated analysis pipelines have the potential to facilitate marker development and genotyping in non-model species. In this review, we discuss the problems with sampling and available marker systems for historical specimens and demonstrate that temporal comparative studies are crucial for the estimation of important population genetic parameters and to measure empirically the effects of recent habitat alteration. While many of these analyses can be performed with samples taken at a single point in time, the measurements are more robust if multiple points in time are studied. Furthermore, examining the effects of habitat alteration, population declines, and population bottlenecks is only possible if samples before and after the respective events are included.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Genética de Población , Animales , ADN/genética , Marcadores Genéticos , Filogenia
9.
PLoS One ; 9(9): e106526, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25184414

RESUMEN

To understand how landscape characteristics affect gene flow in species with diverging ecological traits, it is important to analyze taxonomically related sympatric species in the same landscape using identical methods. Here, we present such a comparative landscape genetic study involving three closely related Hesperid butterflies of the genus Thymelicus that represent a gradient of diverging ecological traits. We analyzed landscape effects on their gene flow by deriving inter-population connectivity estimates based on different species distribution models (SDMs), which were calculated from multiple landscape parameters. We then used SDM output maps to calculate circuit-theoretic connectivity estimates and statistically compared these estimates to actual genetic differentiation in each species. We based our inferences on two different analytical methods and two metrics of genetic differentiation. Results indicate that land use patterns influence population connectivity in the least mobile specialist T. acteon. In contrast, populations of the highly mobile generalist T. lineola were panmictic, lacking any landscape related effect on genetic differentiation. In the species with ecological traits in between those of the congeners, T. sylvestris, climate has a strong impact on inter-population connectivity. However, the relative importance of different landscape factors for connectivity varies when using different metrics of genetic differentiation in this species. Our results show that closely related species representing a gradient of ecological traits also show genetic structures and landscape genetic relationships that gradually change from a geographical macro- to micro-scale. Thus, the type and magnitude of landscape effects on gene flow can differ strongly even among closely related species inhabiting the same landscape, and depend on their relative degree of specialization. In addition, the use of different genetic differentiation metrics makes it possible to detect recent changes in the relative importance of landscape factors affecting gene flow, which likely change as a result of contemporary habitat alterations.


Asunto(s)
Mariposas Diurnas/genética , Ecología , Repeticiones de Microsatélite/genética , Simpatría , Animales , Ecosistema , Flujo Génico , Flujo Genético , Estructuras Genéticas , Genética de Población , Especificidad de la Especie
10.
PLoS One ; 7(2): e29403, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22383951

RESUMEN

The immense biodiversity of the Atlas Mountains in North Africa might be the result of high rates of microallopatry caused by mountain barriers surpassing 4000 meters leading to patchy habitat distributions. We test the influence of geographic structures on the phylogenetic patterns among Buthus scorpions using mtDNA sequences. We sampled 91 individuals of the genus Buthus from 51 locations scattered around the Atlas Mountains (Antiatlas, High Atlas, Middle Atlas and Jebel Sahro). We sequenced 452 bp of the Cytochrome Oxidase I gene which proved to be highly variable within and among Buthus species. Our phylogenetic analysis yielded 12 distinct genetic groups one of which comprised three subgroups mostly in accordance with the orographic structure of the mountain systems. Main clades overlap with each other, while subclades are distributed parapatrically. Geographic structures likely acted as long-term barriers among populations causing restriction of gene flow and allowing for strong genetic differentiation. Thus, genetic structure and geographical distribution of genetic (sub)clusters follow the classical theory of allopatric differentiation where distinct groups evolve without range overlap until reproductive isolation and ecological differentiation has built up. Philopatry and low dispersal ability of Buthus scorpions are the likely causes for the observed strong genetic differentiation at this small geographic scale.


Asunto(s)
ADN Mitocondrial/genética , Escorpiones/genética , África del Norte , Animales , Análisis por Conglomerados , Complejo IV de Transporte de Electrones/genética , Evolución Molecular , Flujo Génico , Variación Genética , Genética de Población , Geografía , Modelos Genéticos , Modelos Estadísticos , Marruecos , Filogenia , Reacción en Cadena de la Polimerasa/métodos , Análisis de Secuencia de ADN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA