Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Development ; 138(11): 2261-71, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21558374

RESUMEN

In female meiosis, chromosome missegregations lead to the generation of aneuploid oocytes and can cause the development of trisomies or infertility. Because mammalian female meiosis I is error prone, the full functionality of control mechanisms, such as the spindle assembly checkpoint (SAC), has been put into question. The SAC monitors the correct orientation, microtubule occupancy and tension on proteinaceous structures named kinetochores. Although it has been shown previously that the SAC exists in meiosis I, where attachments are monopolar, the role of microtubule occupancy for silencing the SAC and the importance of certain essential SAC components, such as the kinase Mps1, are unknown in mammalian oocytes. Using a conditional loss-of-function approach, we address the role of Mps1 in meiotic progression and checkpoint control in meiosis I. Our data demonstrate that kinetochore localization of Mps1 is required for the proper timing of prometaphase and is essential for SAC control, chromosome alignment and aurora C localization in meiosis I. The absence of Mps1 from kinetochores severely impairs chromosome segregation in oocyte meiosis I and, therefore, fertility in mice. In addition, we settle a long-standing question in showing that kinetochore-microtubule attachments are present in prometaphase I at a time when most of the SAC protein Mad2 disappears from kinetochores.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Meiosis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Segregación Cromosómica , Femenino , Técnica del Anticuerpo Fluorescente , Proteínas Mad2 , Ratones , Ratones Transgénicos , Microtúbulos/metabolismo , Oocitos/citología , Oocitos/metabolismo , Reacción en Cadena de la Polimerasa , Huso Acromático/metabolismo
2.
Sci Transl Med ; 16(756): eadm8842, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018366

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome associated with increased myocardial stiffness and cardiac filling abnormalities. Prior studies implicated increased α-tubulin detyrosination, which is catalyzed by the vasohibin enzymes, as a contributor to increased stabilization of the cardiomyocyte microtubule network (MTN) and stiffness in failing human hearts. We explored whether increased MTN detyrosination contributed to impaired diastolic function in the ZSF1 obese rat model of HFpEF and designed a small-molecule vasohibin inhibitor to ablate MTN detyrosination in vivo. Compared with ZSF1 lean and Wistar Kyoto rats, obese rats exhibited increased tubulin detyrosination concomitant with diastolic dysfunction, left atrial enlargement, and cardiac hypertrophy with a preserved left ventricle ejection fraction, consistent with an HFpEF phenotype. Ex vivo myocardial phenotyping assessed cardiomyocyte mechanics and contractility. Vasohibin inhibitor treatment of isolated cardiomyocytes from obese rats resulted in reduced stiffness and faster relaxation. Acute in vivo treatment with vasohibin inhibitor improved diastolic relaxation in ZSF1 obese rats compared with ZSF1 lean and Wistar Kyoto rats. Vasohibin inhibition also improved relaxation in isolated human cardiomyocytes from both failing and nonfailing hearts. Our data suggest the therapeutic potential for vasohibin inhibition to reduce myocardial stiffness and improve relaxation in HFpEF.


Asunto(s)
Modelos Animales de Enfermedad , Insuficiencia Cardíaca , Miocitos Cardíacos , Volumen Sistólico , Animales , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Volumen Sistólico/efectos de los fármacos , Ratas Endogámicas WKY , Ratas , Masculino , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Diástole/efectos de los fármacos , Tubulina (Proteína)/metabolismo , Miocardio/patología , Miocardio/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/fisiopatología
3.
Pharmacol Ther ; 218: 107681, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32961263

RESUMEN

In the brain of patients with Alzheimer's disease (AD), the number and length of microtubules (MTs) are significantly and selectively reduced. MTs are involved in a wide range of cellular functions, and defects of the microtubular system have emerged as a unifying hypothesis for the heterogeneous and variable clinical presentations of AD. MTs orchestrate their numerous functions through the spatiotemporal regulation of the binding of specialised microtubule-associated proteins (MAPs) and molecular motors. Covalent posttranslational modifications (PTMs) on the tubulin C-termini that protrude at the surface of MTs regulate the binding of these effectors. In neurons, MAP tau is highly abundant and its abnormal dissociation from MTs in the axon, cellular mislocalization and hyperphosphorylation, are primary events leading to neuronal death. Consequently, compounds targeting tau phosphorylation or aggregation are currently evaluated but their clinical significance has not been demonstrated yet. In this review, we discuss the emerging link between tubulin PTMs and tau dysfunction. In neurons, high levels of glutamylation and detyrosination profoundly impact the physicochemical properties at the surface of MTs. Moreover, in patients with early-onset progressive neurodegeneration, deleterious mutations in enzymes involved in modifying MTs at the surface have recently been identified, underscoring the importance of this enzymatic machinery in neurology. We postulate that pharmacologically targeting the tubulin-modifying enzymes holds promise as therapeutic approach for the treatment of neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Tubulina (Proteína) , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/enzimología , Humanos , Microtúbulos , Neuronas , Tubulina (Proteína)/metabolismo , Proteínas tau
4.
J Cell Biol ; 218(2): 541-558, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30626720

RESUMEN

Greatwall (GWL) is an essential kinase that indirectly controls PP2A-B55, the phosphatase counterbalancing cyclin B/CDK1 activity during mitosis. In Xenopus laevis egg extracts, GWL-mediated phosphorylation of overexpressed ARPP19 and ENSA turns them into potent PP2A-B55 inhibitors. It has been shown that the GWL/ENSA/PP2A-B55 axis contributes to the control of DNA replication, but little is known about the role of ARPP19 in cell division. By using conditional knockout mouse models, we investigated the specific roles of ARPP19 and ENSA in cell division. We found that Arpp19, but not Ensa, is essential for mouse embryogenesis. Moreover, Arpp19 ablation dramatically decreased mouse embryonic fibroblast (MEF) viability by perturbing the temporal pattern of protein dephosphorylation during mitotic progression, possibly by a drop of PP2A-B55 activity inhibition. We show that these alterations are not prevented by ENSA, which is still expressed in Arpp19 Δ/Δ MEFs, suggesting that ARPP19 is essential for mitotic division. Strikingly, we demonstrate that unlike ARPP19, ENSA is not required for early embryonic development. Arpp19 knockout did not perturb the S phase, unlike Ensa gene ablation. We conclude that, during mouse embryogenesis, the Arpp19 and Ensa paralog genes display specific functions by differentially controlling cell cycle progression.


Asunto(s)
Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mitosis/fisiología , Fosfoproteínas/metabolismo , Fase S/fisiología , Animales , Embrión de Mamíferos/citología , Desarrollo Embrionario/fisiología , Fibroblastos/citología , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Ratones Noqueados , Fosfoproteínas/genética , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Xenopus laevis
5.
Nat Commun ; 8(1): 206, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28785014

RESUMEN

The Greatwall/Ensa/PP2A-B55 pathway is essential for controlling mitotic substrate phosphorylation and mitotic entry. Here, we investigate the effect of the knockdown of the Gwl substrate, Ensa, in human cells. Unexpectedly, Ensa knockdown promotes a dramatic extension of S phase associated with a lowered density of replication forks. Notably, Ensa depletion results in a decrease of Treslin levels, a pivotal protein for the firing of replication origins. Accordingly, the extended S phase in Ensa-depleted cells is completely rescued by the overexpression of Treslin. Our data herein reveal a new mechanism by which normal cells regulate S-phase duration by controlling the ubiquitin-proteasome degradation of Treslin in a Gwl/Ensa-dependent pathway.The Greatwall/Ensa/PP2A-B55 pathway controls mitotic substrate phosphorylation and mitotic entry. Here the authors show that cells regulate S phase duration by controlling the ubiquitin-proteasome degradation of Treslin in a Gwl/Ensa-dependent pathway.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Péptidos/metabolismo , Fase S , Proteínas de Ciclo Celular/genética , División Celular , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intercelular , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Péptidos/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
6.
Int J Dev Biol ; 60(7-8-9): 245-254, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27759153

RESUMEN

Entry into mitosis requires the coordinated activation of various protein kinases and phosphatases that together activate sequential signaling pathways allowing entry, progression and exit of mitosis. The limiting step is thought to be the activation of the mitotic Cdk1-cyclin B kinase. However, this model has recently evolved with new data showing that in addition to the Cdk1-cyclin B complex, Greatwall (Gwl) kinase is also required to enter into and maintain mitosis. This new concept proposes that entry into mitosis is now based on the combined activation of both kinases Cdk1-cyclin B and Gwl, the former promoting massive phosphorylation of mitotic substrates and the latter inhibiting PP2A-B55 phosphatase responsible for dephosphorylation of these substrates. Activated Gwl phosphorylates both Arpp19 and ENSA, which associate and inhibit PP2A-B55. This pathway seems relatively well conserved from yeast to humans, although some differences appear based on models or techniques used. While Gwl is activated by phosphorylation, its inactivation requires dephosphorylation of critical residues. Several phosphatases such as PP1, PP2A-B55 and FCP1 are required to control the dephosphorylation and inactivation of Gwl and a properly regulated mitotic exit. Gwl has also been reported to be involved in cancer processes and DNA damage recovery. These new findings support the idea that the Gwl-Arpp19/ENSA-PP2A-B55 pathway is essential to achieve an efficient division of cells and to maintain genomic stability.


Asunto(s)
Meiosis/fisiología , Mitosis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Proteína Quinasa CDC2/metabolismo , Ciclina B/metabolismo , Fosforilación , Xenopus laevis
7.
Nat Commun ; 6: 6946, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25897860

RESUMEN

Mammalian female meiosis is error prone, with rates of meiotic chromosome missegregations strongly increasing towards the end of the reproductive lifespan. A strong reduction of BubR1 has been observed in oocytes of women approaching menopause and in ovaries of aged mice, which led to the hypothesis that a gradual decline of BubR1 contributes to age-related aneuploidization. Here we employ a conditional knockout approach in mouse oocytes to dissect the meiotic roles of BubR1. We show that BubR1 is required for diverse meiotic functions, including persistent spindle assembly checkpoint activity, timing of meiosis I and the establishment of robust kinetochore-microtubule attachments in a meiosis-specific manner, but not prophase I arrest. These data reveal that BubR1 plays a multifaceted role in chromosome segregation during the first meiotic division and suggest that age-related decline of BubR1 is a key determinant of the formation of aneuploid oocytes as women approach menopause.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica/fisiología , Profase Meiótica I/fisiología , Oocitos/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Femenino , Leviviridae , Ratones , Ratones Endogámicos , Proteínas Serina-Treonina Quinasas/genética
9.
Methods Mol Biol ; 957: 203-12, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23138954

RESUMEN

This chapter describes a technique for performing chromosome spreads from mouse oocytes. It is based on a previously described protocol (Hodges and Hunt, Chromosoma 111: 165-169, 2002), which we have modified. Chromosomes are stained with either Propidium Iodide or Hoechst. This spreading technique allows for simultaneous immunostaining of proteins associated with chromosomes. It is very useful to stain spreads with CREST serum which labels kinetochores, to be able to distinguish bivalents (chromosome pairs), dyads or univalents (paired sister chromatids), and single sister chromatids without ambiguity.


Asunto(s)
Centrómero/metabolismo , Cromosomas de los Mamíferos/metabolismo , Oocitos/citología , Coloración y Etiquetado/métodos , Animales , Técnicas de Cultivo de Célula , Femenino , Ratones , Imagen Molecular , Zona Pelúcida/metabolismo
10.
Nat Cell Biol ; 13(5): 599-610, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21478856

RESUMEN

Meiotic crossover formation between homologous chromosomes (homologues) entails DNA double-strand break (DSB) formation, homology search using DSB ends, and synaptonemal-complex formation coupled with DSB repair. Meiotic progression must be prevented until DSB repair and homologue alignment are completed, to avoid the formation of aneuploid gametes. Here we show that mouse HORMAD1 ensures that sufficient numbers of processed DSBs are available for successful homology search. HORMAD1 is needed for normal synaptonemal-complex formation and for the efficient recruitment of ATR checkpoint kinase activity to unsynapsed chromatin. The latter phenomenon was proposed to be important in meiotic prophase checkpoints in both sexes. Consistent with this hypothesis, HORMAD1 is essential for the elimination of synaptonemal-complex-defective oocytes. Synaptonemal-complex formation results in HORMAD1 depletion from chromosome axes. Thus, we propose that the synaptonemal complex and HORMAD1 are key components of a negative feedback loop that coordinates meiotic progression with homologue alignment: HORMAD1 promotes homologue alignment and synaptonemal-complex formation, and synaptonemal complexes downregulate HORMAD1 function, thereby permitting progression past meiotic prophase checkpoints.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Meiosis , Animales , Daño del ADN , Reparación del ADN , Ratones
11.
PLoS One ; 2(11): e1165, 2007 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-18043727

RESUMEN

The spindle assembly checkpoint (SAC) ensures correct separation of sister chromatids in somatic cells and provokes a cell cycle arrest in metaphase if one chromatid is not correctly attached to the bipolar spindle. Prolonged metaphase arrest due to overexpression of Mad2 has been shown to be deleterious to the ensuing anaphase, leading to the generation of aneuploidies and tumorigenesis. Additionally, some SAC components are essential for correct timing of prometaphase. In meiosis, we and others have shown previously that the Mad2-dependent SAC is functional during the first meiotic division in mouse oocytes. Expression of a dominant-negative form of Mad2 interferes with the SAC in metaphase I, and a knock-down approach using RNA interference accelerates anaphase onset in meiosis I. To prove unambigiously the importance of SAC control for mammalian female meiosis I we analyzed oocyte maturation in Mad2 heterozygote mice, and in oocytes overexpressing a GFP-tagged version of Mad2. In this study we show for the first time that loss of one Mad2 allele, as well as overexpression of Mad2 lead to chromosome missegregation events in meiosis I, and therefore the generation of aneuploid metaphase II oocytes. Furthermore, SAC control is impaired in mad2+/- oocytes, also leading to the generation of aneuploidies in meiosis I.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Cromosomas , Meiosis , Huso Acromático , Animales , Femenino , Proteínas Mad2 , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA