Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Biosci Biotechnol Biochem ; 88(7): 784-788, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38833262

RESUMEN

Gateway cloning is a useful technology for the simple and reliable preparation of various construct in many organisms. However, there is a problem regarding the negative control construct in the Gateway cloning system. In this study, we developed the pENTR-NeCo-lacZα vector system to create an empty vector that can be used as a negative control construct in Gateway cloning.


Asunto(s)
Clonación Molecular , Vectores Genéticos , Clonación Molecular/métodos , Vectores Genéticos/genética
2.
Biosci Biotechnol Biochem ; 88(2): 154-167, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38040489

RESUMEN

Leucine-rich repeat (LRR)-containing proteins have been identified in diverse species, including plants. The diverse intracellular and extracellular LRR variants are responsible for numerous biological processes. We analyzed the expression patterns of Arabidopsis thaliana extracellular LRR (AtExLRR) genes, 10 receptor-like proteins, and 4 additional genes expressing the LRR-containing protein by a promoter: ß-glucuronidase (GUS) study. According to in silico expression studies, several AtExLRR genes were expressed in a tissue- or stage-specific and abiotic/hormone stress-responsive manner, indicating their potential participation in specific biological processes. Based on the promoter: GUS assay, AtExLRRs were expressed in different cells and organs. A quantitative real-time PCR investigation revealed that the expressions of AtExLRR3 and AtExLRR9 were distinct under various abiotic stress conditions. This study investigated the potential roles of extracellular LRR proteins in plant growth, development, and response to various abiotic stresses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas Repetidas Ricas en Leucina , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glucuronidasa/genética , Regiones Promotoras Genéticas/genética , Regulación de la Expresión Génica de las Plantas
3.
Artículo en Inglés | MEDLINE | ID: mdl-39322273

RESUMEN

Helicases are involved in almost every nucleic acid metabolism process. Within this family, RecQ helicase proteins protect genome integrity across all organisms through DNA recombination, repair, and replication. This study focused on five Arabidopsis thaliana RecQ-like (AtRecQl) genes with diverse functionalities. Analysis of ProAtRecQl:GUS expression during vegetative and reproductive development stages revealed organ- and tissue-specific patterns. Changes in AtRecQls transcript levels in response to abiotic stressors suggest their involvement in diverse stimuli responses. Notably, germination and growth rates were lower in atrecql2 and atrecql3 mutants under various salt concentrations and cold conditions. These findings indicate that AtRecQl2 and AtRecQl3 act as positive regulators of abiotic stress tolerance during the germinative and postgerminative phases.

4.
Planta ; 257(4): 64, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36811672

RESUMEN

MAIN CONCLUSION: Targeted expression of bgl23-D, a dominant-negative allele of ATCSLD5, is a useful genetic approach for functional analysis of ATCSLDs in specific cells and tissues in plants. Stomata are key cellular structures for gas and water exchange in plants and their development is influenced by several genes. We found the A. thaliana bagel23-D (bgl23-D) mutant showing abnormal bagel-shaped single guard cells. The bgl23-D was a novel dominant mutation in the A. thaliana cellulose synthase-like D5 (ATCSLD5) gene that was reported to function in the division of guard mother cells. The dominant character of bgl23-D was used to inhibit ATCSLD5 function in specific cells and tissues. Transgenic A. thaliana expressing bgl23-D cDNA with the promoter of stomata lineage genes, SDD1, MUTE, and FAMA, showed bagel-shaped stomata as observed in the bgl23-D mutant. Especially, the FAMA promoter exhibited a higher frequency of bagel-shaped stomata with severe cytokinesis defects. Expression of bgl23-D cDNA in the tapetum with SP11 promoter or in the anther with ATSP146 promoter induced defects in exine pattern and pollen shape, novel phenotypes that were not shown in the bgl23-D mutant. These results indicated that bgl23-D inhibited unknown ATCSLD(s) that exert the function of exine formation in the tapetum. Furthermore, transgenic A. thaliana expressing bgl23-D cDNA with SDD1, MUTE, and FAMA promoters showed enhanced rosette diameter and increased leaf growth. Taken together, these findings suggest that the bgl23-D mutation could be a helpful genetic tool for functional analysis of ATCSLDs and manipulating plant growth.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Citocinesis , Alelos , ADN Complementario , Proteínas de Arabidopsis/metabolismo , Polen/genética , Células Madre/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Plant Physiol ; 188(4): 2364-2376, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35134987

RESUMEN

Oryza longistaminata, a wild rice, vegetatively reproduces and forms a networked clonal colony consisting of ramets connected by rhizomes. Although water, nutrients, and other molecules can be transferred between ramets via the rhizomes, inter-ramet communication in response to spatially heterogeneous nitrogen availability is not well understood. We studied the response of ramet pairs to heterogeneous nitrogen availability using a split hydroponic system that allowed each ramet root to be exposed to different conditions. Ammonium uptake was compensatively enhanced in the sufficient-side root when roots of the ramet pairs were exposed to ammonium-sufficient and ammonium-deficient conditions. Comparative transcriptome analysis revealed that a gene regulatory network for effective ammonium assimilation and amino acid biosynthesis was activated in the sufficient-side roots. Allocation of absorbed nitrogen from the nitrogen-sufficient to the nitrogen-deficient ramets was rather limited. Nitrogen was preferentially used for newly growing axillary buds on the sufficient-side ramets. Biosynthesis of trans-zeatin (tZ), a cytokinin, was upregulated in response to the nitrogen supply, but tZ appeared not to target the compensatory regulation. Our results also implied that the O. longistaminata putative ortholog of rice (Oryza sativa) C-terminally encoded peptide1 plays a role as a nitrogen-deficient signal in inter-ramet communication, providing compensatory upregulation of nitrogen assimilatory genes. These results provide insights into the molecular basis for efficient growth strategies of asexually proliferating plants growing in areas where the distribution of ammonium ions is spatially heterogeneous.


Asunto(s)
Compuestos de Amonio , Oryza , Compuestos de Amonio/metabolismo , Citocininas/metabolismo , Perfilación de la Expresión Génica , Nitrógeno/metabolismo , Oryza/genética , Oryza/metabolismo , Raíces de Plantas/metabolismo
6.
Plant Cell Physiol ; 63(4): 484-493, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35134216

RESUMEN

Previous studies suggest that root-derived cytokinins (CKs) contribute to shoot growth via long-distance transport; therefore, we hypothesized that an increase in root-derived CKs enhances shoot growth. To verify this, we grafted Arabidopsis Col-0 (wild type, WT) scion onto rootstock originated from WT or a double-knockout mutant of CK receptors Arabidopsis histidine kinase 2 (AHK2) and AHK3 (ahk2-5 ahk3-7; ahk23) because this mutant overaccumulates CKs in the body probably due to feedback homeostasis regulation. The grafted plants (scion/rootstock: WT/WT and WT/ahk23) were grown in vermiculite pots or solid media for vegetative growth and biochemical analysis. The root-specific deficiency of AHK2 and AHK3 increased root concentrations of trans-zeatin (tZ)-type and N6-(Δ2-isopentenyl) adenine (iP)-type CKs, induced CK biosynthesis genes and repressed CK degradation genes in the root. The WT/ahk23 plants had significantly larger shoot weight, rosette diameter and leaves area than did the WT/WT plants. Shoot concentrations of tZ-type CKs showed increasing trends in the WT/ahk23 plants. Moreover, the root-specific deficiency of AHK2 and AHK3 enhanced shoot growth in the WT scion more strongly than in the ahk23 scion, suggesting that shoot growth enhancement could occur through increased shoot perception of CKs. In the WT/ahk23 shoots compared with the WT/WT shoots, however, induction of most of CK-inducible response regulator genes was not statistically significant. Thus we suggest that the root-specific reduction of CK perception enhances shoot growth only partly by increasing the amount of root-derived tZ-type CKs and their perception by shoots. The unknown mechanism(s) distinct from CK signaling would also be involved in the shoot growth enhancement.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Percepción , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo
7.
Plant Cell Physiol ; 63(6): 842-854, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35445268

RESUMEN

Nutrient distribution within the soil is generally heterogeneous. Plants, therefore, have evolved sophisticated systemic processes enabling them to optimize their nutrient acquisition efficiency. By organ-to-organ communication in Arabidopsis thaliana, for instance, iron (Fe) starvation in one part of a root drives the upregulation of a high-affinity Fe-uptake system in other root regions surrounded by sufficient levels of Fe. This compensatory response through Fe-starvation-triggered organ-to-organ communication includes the upregulation of Iron-regulated transporter 1 (IRT1) gene expression on the Fe-sufficient side of the root; however, the molecular basis underlying this long-distance signaling remains unclear. Here, we analyzed gene expression by RNA-seq analysis of Fe-starved split-root cultures. Genome-wide expression analysis showed that localized Fe depletion in roots upregulated several genes involved in Fe uptake and signaling, such as IRT1, in a distant part of the root exposed to Fe-sufficient conditions. This result indicates that long-distance signaling for Fe demand alters the expression of a subset of genes responsible for Fe uptake and coumarin biosynthesis to maintain a level of Fe acquisition sufficient for the entire plant. Loss of IRON MAN/FE-UPTAKE-INDUCING PEPTIDE (IMA/FEP) leads to the disruption of compensatory upregulation of IRT1 in the root surrounded by sufficient Fe. In addition, our split-root culture-based analysis provides evidence that the IMA3/FEP1-MYB10/72 pathway mediates long-distance signaling in Fe homeostasis through the regulation of coumarin biosynthesis. These data suggest that the signaling of IMA/FEP, a ubiquitous family of metal-binding peptides, is critical for organ-to-organ communication in response to Fe starvation under heterogeneous Fe conditions in the surrounding environment.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hierro/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cumarinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Humanos , Proteínas de Transporte de Membrana/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
8.
Biochem Biophys Res Commun ; 621: 39-45, 2022 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-35810589

RESUMEN

Plasma membrane (PM) H+-ATPase contributes to nutrient uptake and stomatal opening by creating proton gradient across the membrane. Previous studies report that a dominant mutation in the OPEN STOMATA2 locus (OST2-2D) constitutively activates Arabidopsis PM H+-ATPase 1 (AHA1), which enlarges proton motive force for root nutrient uptake. However, the stomatal opening is also constitutively enhanced in the ost2-2D, causing drought hypersensitivity. To develop plants with improved nutrient acquisition and normal stomatal movement, we generated grafted plants (scion/rootstock: Col-0 (WT)/ost2-2D), and compared their growth, nutrient element content, and transcriptomes with those of control plants (WT/WT) under nutrient-rich or nutrient-poor conditions. WT/ost2-2D shoots had larger weights, rosette diameter, leaf blade area, and content of C, N, K, Ca, S, P, Mg, Na, Mn, B, Co, and Mo under nutrient-poor conditions compared with WT/WT shoots. The root weights and primary root length were greater in WT/ost2-2D plants than in WT/WT plants under both nutrient conditions. Root expression of the high-affinity nitrate transporter NRT2.1, potassium transporter HAK5, and divalent cation transporter IRT1 was higher in WT/ost2-2D plants than in WT/WT plants under nutrient-poor conditions. These results suggest that root-specific activation of PM H+-ATPase enhances plant growth by increasing root uptake of nutrient elements under nutrient-poor conditions. Our study presents a novel approach to improving nutrient uptake efficiency in crops for low-input sustainable agriculture.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Nutrientes , Raíces de Plantas/metabolismo , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo
9.
Biosci Biotechnol Biochem ; 84(1): 154-158, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31794328

RESUMEN

Malectin is a maltose-binding endoplasmic reticulum protein conserved in animals. In Arabidopsis thaliana, we identified four genes that encode malectin-like domain (MLD)- and leucine-rich repeat (LRR)-containing proteins (AtMLLRs): two were receptor-like proteins (AtMLLR1 and 2) and the other two were extracellular proteins (AtMLLR3 and 4). The promoter:G3GFP+promoter:GUS assay indicated the organ- and cell-specific expression of the AtMLLR2 and AtMLLR3 genes.Abbreviations: Cmr: chloramphenicol-resistance marker; G3GFP: G3 green fluorescent protein; GUS: ß-glucuronidase; KD: kinase domain; LRR: leucine-rich repeat; MLD: malectin-like domain; RLK: receptor-like kinase; SP: signal peptide; TMD: transmembrane domain; Tnos: nopaline synthase terminator.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Expresión Génica , Lectinas/genética , Proteínas de la Membrana/genética , Proteínas/genética , Retículo Endoplásmico/metabolismo , Glucuronidasa/química , Proteínas Fluorescentes Verdes/química , Leucina/genética , Proteínas Repetidas Ricas en Leucina , Microscopía Fluorescente , Filogenia , Plantas Modificadas Genéticamente , Dominios Proteicos/genética , Coloración y Etiquetado
10.
J Exp Bot ; 68(10): 2501-2512, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28007951

RESUMEN

Nitrogen (N) availability is a major factor determining plant growth and productivity. Plants acquire inorganic N from the soil, mainly in the form of nitrate and ammonium. To date, researchers have focused on these N sources, and demonstrated that plants exhibit elaborate responses at both physiological and morphological levels. Mixtures of nitrate and ammonium are beneficial in terms of plant growth, as compared to nitrate or ammonium alone, and therefore synergistic responses to both N sources are predicted at different steps ranging from acquisition to assimilation. In this review, we summarize interactions between nitrate and ammonium with respect to uptake, allocation, assimilation, and signaling. Given that cultivated land often contains both nitrate and ammonium, a better understanding of the synergism between these N sources should help to identify targets with the potential to improve crop productivity.


Asunto(s)
Compuestos de Amonio/metabolismo , Productos Agrícolas/fisiología , Nitratos/metabolismo , Fenómenos Fisiológicos de las Plantas , Transporte Biológico , Producción de Cultivos , Transducción de Señal
11.
Plant Cell Physiol ; 57(11): 2440-2450, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27615794

RESUMEN

Ferredoxin:NADP(H) oxidoreductase (FNR) plays a key role in redox metabolism in plastids. Whereas leaf FNR (LFNR) is required for photosynthesis, root FNR (RFNR) is believed to provide electrons to ferredoxin (Fd)-dependent enzymes, including nitrite reductase (NiR) and Fd-glutamine-oxoglutarate aminotransferase (Fd-GOGAT) in non-photosynthetic conditions. In some herbal species, however, most nitrate reductase activity is located in photosynthetic organs, and ammonium in roots is assimilated mainly by Fd-independent NADH-GOGAT. Therefore, RFNR might have a limited impact on N assimilation in roots grown with nitrate or ammonium nitrogen sources. AtRFNR genes are rapidly induced by application of toxic nitrite. Thus, we tested the hypothesis that RFNR could contribute to nitrite reduction in roots by comparing Arabidopsis thaliana seedlings of the wild type with loss-of-function mutants of RFNR2 When these seedlings were grown under nitrate, nitrite or ammonium, only nitrite nutrition caused impaired growth and nitrite accumulation in roots of rfnr2 Supplementation of nitrite with nitrate or ammonium as N sources did not restore the root growth in rfnr2 Also, a scavenger for nitric oxide (NO) could not effectively rescue the growth impairment. Thus, nitrite toxicity, rather than N depletion or nitrite-dependent NO production, probably causes the rfnr2 root growth defect. Our results strongly suggest that RFNR2 has a major role in reduction of toxic nitrite in roots. A specific set of genes related to nitrite reduction and the supply of reducing power responded to nitrite concomitantly, suggesting that the products of these genes act co-operatively with RFNR2 to reduce nitrite in roots.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Nitritos/metabolismo , Oxidorreductasas/metabolismo , Raíces de Plantas/enzimología , Compuestos de Amonio/farmacología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Inactivación Metabólica/efectos de los fármacos , Mutagénesis Insercional/genética , Mutación/genética , Nitritos/farmacología , Nitrógeno/farmacología , Oxidorreductasas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Isoformas de Proteínas/metabolismo
12.
Curr Genet ; 61(1): 43-53, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25119673

RESUMEN

It is unclear whether local anesthetics, such as tetracaine, and antipsychotics, such as phenothiazines, act on lipids or proteins. In Saccharomyces cerevisiae, these drugs inhibit growth, translation initiation, and actin polarization, and induce cell lysis at high concentrations. These activities are likely due to the cationic amphiphilic structure common to these agents. Although drug-induced translational inhibition is conserved in mammalian cells, other mechanisms, including the phosphorylation of eIF2α, a eukaryotic translational initiation factor, remain poorly understood. At a concentration of 10 mM, tetracaine rapidly inhibited translation initiation and lysed cells, whereas, at 2.5 mM, it slowly induced inhibition without lysis. The pat1 disruptant defective in mRNA decapping and the xrn1 disruptant defective in 5'-3' exoribonuclease were partially resistant to translational inhibition by tetracaine at each concentration, but the gcn2 disruptant defective in the eIF2α kinase was not. Phosphorylation of eIF2α was induced by 10 mM but not by 2.5 mM tetracaine, whereas processing bodies (P-bodies) were formed at 2.5 mM in Pat1-dependent and -independent manners. Therefore, administration of tetracaine inhibits translation initiation with P-body formation at both concentrations but acts via the Gcn2-eIF2α system only at the higher concentration. Because other local anesthetics and phenothiazines induced Pat1-dependent P-body formation, the mechanisms involved in translational inhibition by these cationic amphiphiles are similar. These results suggest that this dose-dependent biphasic translational inhibition by tetracaine results from an increase in membrane proteins that are indirectly inhibited by nonspecific interactions of cationic amphiphiles with membrane lipids.


Asunto(s)
Anestésicos Locales/farmacología , Factor 2 Eucariótico de Iniciación/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Tetracaína/farmacología , Levaduras/efectos de los fármacos , Levaduras/fisiología , Mutación , Fosforilación/efectos de los fármacos , Transporte de Proteínas , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Plant Mol Biol ; 85(4-5): 411-28, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24793022

RESUMEN

We used four mutants having albino or pale green phenotypes with disrupted nuclear-encoded chloroplast proteins to analyze the regulatory system of metabolites in chloroplast. We performed an integrated analyses of transcriptomes and metabolomes of the four mutants. Transcriptome analysis was carried out using the Agilent Arabidopsis 2 Oligo Microarray, and metabolome analysis with two mass spectrometers; a direct-infusion Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR/MS) and a gas chromatograph-time of flight mass spectrometer. Among approximately 200 known metabolites detected by the FT-ICR/MS, 71 metabolites showed significant changes in the mutants when compared with controls (Ds donor plants). Significant accumulation of several amino acids (glutamine, glutamate and asparagine) was observed in the albino and pale green mutants. Transcriptome analysis revealed altered expressions of genes in several metabolic pathways. For example, genes involved in the tricarboxylic acid cycle, the oxidative pentose phosphate pathway, and the de novo purine nucleotide biosynthetic pathway were up-regulated. These results suggest that nitrogen assimilation is constitutively promoted in the albino and pale green mutants. The accumulation of ammonium ions in the albino and pale green mutants was consistently higher than in Ds donor lines. Furthermore, genes related to pyridoxin accumulation and the de novo purine nucleotide biosynthetic pathway were up-regulated, which may have occurred as a result of the accumulation of glutamine in the albino and pale green mutants. The difference in metabolic profiles seems to be correlated with the disruption of chloroplast internal membrane structures in the mutants. In albino mutants, the alteration of metabolites accumulation and genes expression is stronger than pale green mutants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Metaboloma , Transcriptoma , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos/genética , Análisis por Conglomerados , Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Mutación , Análisis de Componente Principal
14.
Plant Cell Physiol ; 55(2): 269-80, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24401956

RESUMEN

Biomass allocation between shoots and roots is an important strategy used by plants to optimize growth in various environments. Root to shoot mass ratios typically increase in response to high CO2, a trend particularly evident under abiotic stress. We investigated this preferential root growth (PRG) in Arabidopsis thaliana plants cultivated under low pH/high CO2 or low nitrogen (N)/high CO2 conditions. Previous studies have suggested that changes in plant hormone, carbon (C) and N status may be related to PRG. We therefore examined the mechanisms underlying PRG by genetically modifying cytokinin (CK) levels, C and N status, and sugar signaling, performing sugar application experiments and determining primary metabolites, plant hormones and expression of related genes. Both low pH/high CO2 and low N/high CO2 stresses induced increases in lateral root (LR) number and led to high C/N ratios; however, under low pH/high CO2 conditions, large quantities of C were accumulated, whereas under low N/high CO2 conditions, N was severely depleted. Analyses of a CK-deficient mutant and a starchless mutant, in conjunction with sugar application experiments, revealed that these stresses induce PRG via different mechanisms. Metabolite and hormone profile analysis indicated that under low pH/high CO2 conditions, excess C accumulation may enhance LR number through the dual actions of increased auxin and decreased CKs.


Asunto(s)
Arabidopsis/fisiología , Dióxido de Carbono/farmacología , Nitrógeno/deficiencia , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Biomasa , Carbohidratos/análisis , Dióxido de Carbono/metabolismo , Citocininas/análisis , Citocininas/metabolismo , Concentración de Iones de Hidrógeno , Ácidos Indolacéticos/análisis , Ácidos Indolacéticos/metabolismo , Nitrógeno/metabolismo , Reguladores del Crecimiento de las Plantas/análisis , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/fisiología , Transducción de Señal , Suelo , Estrés Fisiológico
15.
Biomolecules ; 14(8)2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39199377

RESUMEN

The conversion of nitrate to ammonium, i.e., nitrate reduction, is a major consumer of reductants in plants. Previous studies have reported that the mitochondrial alternative oxidase (AOX) is upregulated under limited nitrate reduction conditions, including no/low nitrate or when ammonium is the sole nitrogen (N) source. Electron transfer from ubiquinone to AOX bypasses the proton-pumping complexes III and IV, thereby consuming reductants efficiently. Thus, upregulated AOX under limited nitrate reduction may dissipate excessive reductants and thereby attenuate oxidative stress. Nevertheless, so far there is no firm evidence for this hypothesis due to the lack of experimental systems to analyze the direct relationship between nitrate reduction and AOX. We therefore developed a novel culturing system for A. thaliana that manipulates shoot activities of nitrate reduction and AOX separately without causing N starvation, ammonium toxicity, or lack of nitrate signal. Using shoots processed with this system, we examined genome-wide gene expression and growth to better understand the relationship between AOX and nitrate reduction. The results showed that, only when nitrate reduction was limited, AOX deficiency significantly upregulated genes involved in mitochondrial oxidative stress, reductant shuttles, and non-phosphorylating bypasses of the respiratory chain, and inhibited growth. Thus, we conclude that AOX alleviates mitochondrial oxidative stress and sustains plant growth under limited nitrate reduction.


Asunto(s)
Arabidopsis , Mitocondrias , Proteínas Mitocondriales , Nitratos , Oxidación-Reducción , Estrés Oxidativo , Oxidorreductasas , Proteínas de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Nitratos/metabolismo , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Mitocondrias/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Compuestos de Amonio/metabolismo
16.
Plant Cell Physiol ; 53(3): 577-91, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22318863

RESUMEN

When ammonium is the sole nitrogen (N) source, plant growth is suppressed compared with the situation where nitrate is the N source. This is commonly referred to as ammonium toxicity. It is widely known that a combination of nitrate and ammonium as N source alleviates this ammonium toxicity (nitrate-dependent alleviation of ammonium toxicity), but the underlying mechanisms are still not completely understood. In plants, ammonium toxicity is often accompanied by a depletion of organic acids and inorganic cations, and by an accumulation of ammonium. All these factors have been considered as possible causes for ammonium toxicity. Thus, we hypothesized that nitrate could alleviate ammonium toxicity by lessening these symptoms. We analyzed growth, inorganic N and cation content and various primary metabolites in shoots of Arabidopsis thaliana seedlings grown on media containing various concentrations of nitrate and/or ammonium. Nitrate-dependent alleviation of ammonium toxicity was not accompanied by less depletion of organic acids and inorganic cations, and showed no reduction in ammonium accumulation. On the other hand, shoot growth was significantly correlated with the nitrate concentration in the shoots. This suggests that nitrate-dependent alleviation of ammonium toxicity is related to physiological processes that are closely linked to nitrate signaling, uptake and reduction. Based on transcript analyses of various genes related to nitrate signaling, uptake and reduction, possible underlying mechanisms for the nitrate-dependent alleviation are discussed.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Ácidos Carboxílicos/metabolismo , Nitratos/farmacología , Compuestos de Amonio Cuaternario/metabolismo , Compuestos de Amonio Cuaternario/toxicidad , Aminoácidos/biosíntesis , Arabidopsis/genética , Biomasa , Tampones (Química) , Cationes , Ciclo del Ácido Cítrico/efectos de los fármacos , Medios de Cultivo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Glucólisis/efectos de los fármacos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Nitrógeno/farmacología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Extractos de Tejidos
17.
Biochem Biophys Rep ; 30: 101241, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35280522

RESUMEN

Arabidopsis thaliana contains a family of nine genes known as plant intracellular Ras-group related leucine-rich repeat (LRR) proteins (PIRLs). These are structurally similar to animals and fungal LRR proteins and play important roles in developmental pathways. However, to date, no detailed tissue-specific expression analysis of these PIRLs has been performed. Therefore, in this study, we generated promoter:GUS transgenic plants for the nine A. thaliana PIRL genes and identified their expression patterns in seedlings and floral organs at different developmental stages. Most PIRL members showed expression in the root apical region and in the vascular tissue of primary and lateral roots. Shoot apex-specific expression was recorded for PIRL1 and PIRL8. Furthermore, PIRL1, PIRL3, PIRL5, PIRL6, and PIRL7 showed distinct expression patterns in flowers, especially in pollen and anthers. In addition, co-expression network analysis identified cases where PIRLs were co-expressed with other genes known to have specific functions related to growth and development. Taken together, the tissue-specific expression patterns of PIRL genes improve our understanding of the functions of this gene family in plant growth and development.

18.
Plant Cell Environ ; 34(4): 618-28, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21251020

RESUMEN

In order to ensure the cooperative function with the photosynthetic system, the mitochondrial respiratory chain needs to flexibly acclimate to a fluctuating light environment. The non-phosphorylating alternative oxidase (AOX) is a notable respiratory component that may support a cellular redox homeostasis under high-light (HL) conditions. Here we report the distinct acclimatory manner of the respiratory chain to long- and short-term HL conditions and the crucial function of AOX in Arabidopsis thaliana leaves. Plants grown under HL conditions (HL plants) possessed a larger ubiquinone (UQ) pool and a higher amount of cytochrome c oxidase than plants grown under low light conditions (LL plants). These responses in HL plants may be functional for efficient ATP production and sustain the fast plant growth. When LL plants were exposed to short-term HL stress (sHL), the UQ reduction level was transiently elevated. In the wild-type plant, the UQ pool was re-oxidized concomitantly with an up-regulation of AOX. On the other hand, the UQ reduction level of the AOX-deficient aox1a mutant remained high. Furthermore, the plastoquinone pool was also more reduced in the aox1a mutant under such conditions. These results suggest that AOX plays an important role in rapid acclimation of the respiratory chain to sHL, which may support efficient photosynthetic performance.


Asunto(s)
Arabidopsis/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Luz , Mitocondrias/metabolismo , Oxidorreductasas/metabolismo , Aclimatación/genética , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte de Electrón/genética , Transporte de Electrón/fisiología , Transporte de Electrón/efectos de la radiación , Complejo IV de Transporte de Electrones/genética , Ambiente , Regulación Enzimológica de la Expresión Génica/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Mitocondrias/genética , Mitocondrias/efectos de la radiación , Proteínas Mitocondriales , Mutagénesis Insercional , Oxidorreductasas/genética , Fenotipo , Fotosíntesis/genética , Hojas de la Planta/enzimología , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas , Factores de Tiempo , Ubiquinona , Regulación hacia Arriba
19.
Plant Cell Rep ; 30(2): 195-204, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21132432

RESUMEN

Nitrogen (N) availability is widely known as a determinant of plant growth and respiration rate. However, less attention has been paid to the effect of the type of N source (nitrate, nitrite or ammonium) on the respiratory system. This review summarizes the latest findings on this topic, with an emphasis on the effect of ammonium and nitric oxide (NO) on the respiratory system, and the physiological role of alternative oxidase (AOX). First, concentrated ammonium has been found to increase plant respiration rate (ammonium-dependent respiratory increase, ARI). We will introduce two hypotheses to explain ARI, futile ammonium cycling and excess reducing equivalents, and verify the validity of each hypothesis. We suggest that these two hypotheses are not necessarily mutually exclusive. Second, gene expression of AOX is suppressed when N is predominately available as nitrate instead of ammonium. We will discuss possible signaling pathways leading to this expression pattern. Third, while AOX expression is induced by NO, AOX activity itself is insensitive to NO. In contrast, activity of cytochrome c oxidase (COX) is sensitive to NO. We outline the NO production pathway, focusing on nitrite-dependent NO production, and discuss the physiological significance of the fact that AOX activity is insensitive to NO. Finally, this review aims to build an integrated scheme of the respiratory response to the type of N source, considering leaves in high light conditions or hypoxic roots.


Asunto(s)
Respiración de la Célula/fisiología , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Oxidorreductasas/fisiología , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Transporte de Electrón/genética , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Luz , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales , Nitrógeno/metabolismo , Especificidad de Órganos , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Hojas de la Planta/genética , Proteínas de Plantas , Raíces de Plantas/genética , Transducción de Señal/genética
20.
J Plant Res ; 124(3): 425-30, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21052766

RESUMEN

NRT1.1 is a putative nitrate sensor and is involved in many nitrate-dependent responses. On the other hand, a nitrate-independent function of NRT1.1 has been implied, but the clear-cut evidence is unknown. We found that NRT1.1 mutants showed enhanced tolerance to concentrated ammonium as sole N source in Arabidopsis thaliana. This unique phenotype was not observed in mutants of NLP7, which has been suggested to play a role in the nitrate-dependent signaling pathway. Our real-time PCR analysis, and evidence from a literature survey revealed that several genes relevant to the aliphatic glucosinolate-biosynthetic pathway were regulated via a nitrate-independent signal from NRT1.1. When taken together, the present study strongly suggests the existence of a nitrate-independent function of NRT1.1.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Arabidopsis/crecimiento & desarrollo , Glucosinolatos/genética , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Concentración de Iones de Hidrógeno , Mutación , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Compuestos de Amonio Cuaternario/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA