RESUMEN
Visual systems adapt to different light environments through several avenues including optical changes to the eye and neurological changes in how light signals are processed and interpreted. Spectral sensitivity can evolve via changes to visual pigments housed in the retinal photoreceptors through gene duplication and loss, differential and coexpression, and sequence evolution. Frogs provide an excellent, yet understudied, system for visual evolution research due to their diversity of ecologies (including biphasic aquatic-terrestrial life cycles) that we hypothesize imposed different selective pressures leading to adaptive evolution of the visual system, notably the opsins that encode the protein component of the visual pigments responsible for the first step in visual perception. Here, we analyze the diversity and evolution of visual opsin genes from 93 new eye transcriptomes plus published data for a combined dataset spanning 122 frog species and 34 families. We find that most species express the four visual opsins previously identified in frogs but show evidence for gene loss in two lineages. Further, we present evidence of positive selection in three opsins and shifts in selective pressures associated with differences in habitat and life history, but not activity pattern. We identify substantial novel variation in the visual opsins and, using microspectrophotometry, find highly variable spectral sensitivities, expanding known ranges for all frog visual pigments. Mutations at spectral-tuning sites only partially account for this variation, suggesting that frogs have used tuning pathways that are unique among vertebrates. These results support the hypothesis of adaptive evolution in photoreceptor physiology across the frog tree of life in response to varying environmental and ecological factors and further our growing understanding of vertebrate visual evolution.
Asunto(s)
Opsinas , Pigmentos Retinianos , Humanos , Animales , Opsinas/genética , Anuros/genética , Duplicación de Gen , MicroespectrofotometríaRESUMEN
Colour signals play pivotal roles in different communication systems, and the evolution of these characters has been associated with behavioural ecology, integumentary production processes and perceptual mechanisms of the species involved. Here, we present the first insight into the molecular and histological basis of skin colour polymorphism within a miniaturized species of pumpkin toadlet, potentially representing the lowest size threshold for colour polytypism in tetrapods. Brachycephalus actaeus exhibits a coloration ranging from cryptic green to conspicuous orange skin, and our findings suggest that colour morphs differ in their capability to be detected by potential predators. We also found that the distribution and abundance of chromatophores are variable in the different colour morphs. The expression pattern of coloration related genes was predominantly associated with melanin synthesis (including dct, edn1, mlana, oca2, pmel, slc24a5, tyrp1 and wnt9a). Up-regulation of melanin genes in grey, green and brown skin was associated with higher melanophore abundance than in orange skin, where xanthophores predominate. Our findings provide a significant foundation for comparing and understanding the diverse pathways that contribute to the evolution of pigment production in the skin of amphibians.
RESUMEN
The gut microbiome composition of terrestrial vertebrates is known to converge in response to common specialized dietary strategies, like leaf-eating (folivory) or ant- and termite-eating (myrmecophagy). To date, such convergence has been studied in mammals and birds, but has been neglected in amphibians. Here, we analysed 15 anuran species (frogs and toads) representing five Neotropical families and demonstrated the compositional convergence of the gut microbiomes of distantly related myrmecophagous species. Specifically, we found that the gut microbial communities of bufonids and microhylids, which have independently evolved myrmecophagy, were significantly more similar than expected based on their hosts' evolutionary divergence. Conversely, we found that gut microbiome composition was significantly associated with host evolutionary history in some cases. For instance, the microbiome composition of Xenohyla truncata, one of the few known amphibians that eat fruits, was not different from those of closely related tree frogs with an arthropod generalist diet. Bacterial taxa overrepresented in myrmecophagous species relative to other host families include Paludibacter, Treponema, and Rikenellaceae, suggesting diet-mediated selection and prey-to-predator transmission likely driving the observed compositional convergence. This study provides a basis for examining the roles of the gut microbiome in host tolerance and sequestration of toxic alkaloids from ants and termites.
Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Animales , Evolución Biológica , Mamíferos/microbiología , Anuros , ARN Ribosómico 16SRESUMEN
Infectious diseases of wildlife continue to pose a threat to biodiversity worldwide, yet pathogens are far from uniform in virulence or host disease outcome. Within the same pathogen species, virulence can vary considerably depending on strain or lineage, in turn eliciting variable host responses. One pathogen that has caused extensive biodiversity loss is the amphibian-killing fungus, Batrachochytrium dendrobatidis (Bd), which is comprised of a globally widespread hypervirulent lineage (Bd-GPL), and multiple geographically restricted, enzootic lineages. Whereas host immunogenomic responses to Bd-GPL have been characterized in a number of amphibian species, immunogenomic responses to geographically restricted, enzootic Bd lineages are less clear. To examine lineage-specific host immune responses to Bd, we exposed a species of pumpkin toadlet, Brachycephalus pitanga, which is endemic to Brazil's Southern Atlantic Forest, to either the Bd-GPL or the enzootic Bd-Asia-2/Brazil (hereafter Bd-Brazil) lineage. Using temporal samples from early, mid, and late infection stages, we quantified functional immunogenomic responses over the course of infection using differential gene expression tests and coexpression network analyses. Host immune responses varied significantly with Bd lineage. Relative to controls, toadlet responses to Bd-Brazil were weak at early infection (25 genes significantly differentially expressed), peaked by mid-stage infection (414 genes), and were nearly fully resolved by late-stage infection (nine genes). In contrast, responses to Bd-GPL were magnified and delayed; toadlets significantly differentially expressed 111 genes early, 87 genes at mid-stage infection, and 726 genes by late-stage infection relative to controls. Given that infection intensity did not vary between mid- and late-stage disease in either Bd-Brazil or Bd-GPL treatments, this suggests that pumpkin toadlets may be at least partially tolerant to the enzootic Bd-Brazil lineage. In contrast, late-stage immune activation against Bd-GPL was consistent with immune dysregulation previously observed in other species. Our results demonstrate that both the timing of immune response and the particular immune pathways activated are specific to Bd lineage. Within regions where multiple Bd lineages co-occur, and given continued global Bd movement, these differential host responses may influence not only individual disease outcome, but transmission dynamics at the population and community levels.
Asunto(s)
Quitridiomicetos , Micosis , Animales , Micosis/microbiología , Anfibios/microbiología , Anuros/genética , Anuros/microbiología , Animales Salvajes , BatrachochytriumRESUMEN
Given the diverse nature of traits involved in territorial defence, they may respond to different selective pressures and then exhibit distinct patterns of evolution. These selective pressures also may cause territorial behaviour to be associated with environmental and morphological variables. Such associations, however, have mostly been studied at the intraspecific level, being phylogenetic analyses of territoriality in a broad taxonomic framework rare in the literature. We used the anuran subfamily Hylinae to test (1) whether two territorial-behaviour traits with different levels of aggression-territorial call and physical combat-are evolutionarily more labile than a morphological trait used in physical combat-the spine-shaped prepollex; (2) whether reproduction in lentic waters and phytotelmata, as well as resource scarcity, might favour the occurrence of territoriality; (3) if physical combat is more important than territorial call for the evolution of body size and sexual size dimorphism and (4) the relationships between territorial-behaviour traits and lineage diversification. We mainly used the literature to build two datasets with different levels of certainty. Territorial-behaviour traits exhibited intermediate levels of phylogenetic signal in Hylinae, whereas the phylogenetic signal for the presence of the spine-shaped prepollex was strong. We found support for the hypothesis that reproduction in lentic water favours the occurrence of territorial behaviour, because the expression of territorial-behaviour traits was more associated with reproduction in lentic than in lotic waters. Territorial-behaviour traits were not correlated with annual precipitation nor with habitat complexity. Body size and sexual size dimorphism were not correlated with the presence of territorial call nor with physical combat. We identified negative correlations between diversification rates and physical combat. Relationships of territorial call and physical combat with diversification rates suggest that these territorial behaviours influence evolutionary processes in different ways.
Asunto(s)
Agresión , Territorialidad , Animales , Filogenia , Ecosistema , Anuros/genéticaRESUMEN
Many vertebrates have distinctive blue-green bones and other tissues due to unusually high biliverdin concentrations-a phenomenon called chlorosis. Despite its prevalence, the biochemical basis, biology, and evolution of chlorosis are poorly understood. In this study, we show that the occurrence of high biliverdin in anurans (frogs and toads) has evolved multiple times during their evolutionary history, and relies on the same mechanism-the presence of a class of serpin family proteins that bind biliverdin. Using a diverse combination of techniques, we purified these serpins from several species of nonmodel treefrogs and developed a pipeline that allowed us to assemble their complete amino acid and nucleotide sequences. The described proteins, hereafter named biliverdin-binding serpins (BBS), have absorption spectra that mimic those of phytochromes and bacteriophytochromes. Our models showed that physiological concentration of BBSs fine-tune the color of the animals, providing the physiological basis for crypsis in green foliage even under near-infrared light. Additionally, we found that these BBSs are most similar to human glycoprotein alpha-1-antitrypsin, but with a remarkable functional diversification. Our results present molecular and functional evidence of recurrent evolution of chlorosis, describe a biliverdin-binding protein in vertebrates, and introduce a function for a member of the serpin superfamily, the largest and most ubiquitous group of protease inhibitors.
Asunto(s)
Anuros/fisiología , Biliverdina/metabolismo , Serpinas/metabolismo , Pigmentación de la Piel/fisiología , Animales , Anuros/clasificación , Anuros/genética , Biliverdina/química , Mimetismo Biológico/fisiología , Serpinas/química , Serpinas/genética , Pigmentación de la Piel/genéticaRESUMEN
Phylogeographic studies primarily focus on the major role of landscape topography in driving lineage diversification. However, populational phylogeographic breaks may also occur as a result of either niche conservatism or divergence, in the absence of geographic barriers to gene flow. Furthermore, these two factors are not mutually exclusive and can act in concert, making it challenging to evaluate their relative importances on explaining genetic variation in nature. Herein, we use sequences of two mitochondrial and four nuclear genes to investigate the timing and diversification patterns of species pertaining to the Leptodactylus latrans complex, which harbors four morphologically cryptic species with broad distributions across environmental gradients in eastern South America. The origin of this species complex dates back to the late Miocene (ca. 5.5 Mya), but most diversification events occurred synchronically during the late Pleistocene likely as the result of ecological divergence driven by Quaternary climatic oscillations. Further, significant patterns of environmental niche divergences among species in the L. latrans complex imply that ecological isolation is the primary mode of genetic diversification, mostly because phylogenetic breaks are associated with environmental transitions rather than topographic barriers at both species and populational scales. We provided new insights about diversification patterns and processes within a species complex of broadly and continuously distributed group of frogs along South America.
Asunto(s)
Anuros , Flujo Génico , Animales , Anuros/genética , Mantequilla , Variación Genética , Filogenia , FilogeografíaRESUMEN
Species delimitation can be challenging and affected by subjectivity. Sibling lineages that occur in sympatry constitute good candidates for species delimitation regardless of the adopted species concept. The Thoropa miliaris + T. taophora species complex exhibits high genetic diversity distributed in several lineages that occur sympatrically in the southeastern Atlantic Forest of Brazil. We used 414 loci obtained by anchored hybrid enrichment to characterize genetic variation in the Thoropa miliaris species group (T. saxatilis, T megatympanum, T. miliaris, and T. taophora), combining assignment analyses with traditional and coalescent phylogeny reconstruction. We also investigated evolutionary independence in co-occurring lineages by estimating gene flow, and validated lineages under the multispecies coalescent. We recovered most previously described lineages as unique populations in assignment analyses; exceptions include two lineages within T. miliaris that are further substructured, and the merging of all T. taophora lineages. We found very low probabilities of gene flow between sympatric lineages, suggesting independent evolution. Species tree inferences and species delimitation yielded resolved relationships and indicate that all lineages constitute putative species that diverged during the Pliocene and Pleistocene, later than previously estimated.
Asunto(s)
Anuros , Simpatría , Animales , Bosques , Filogenia , RanidaeRESUMEN
Despite extensive research on biodiversity in Neotropical forests, biodiversity in seasonally dry, open biomes in South America has been underestimated until recently. We leverage a widespread group, Boana albopunctata, to uncover cryptic lineages and investigate the timing of diversification in Neotropical anurans with a focus on dry diagonal biomes (Cerrado, Caatinga and Chaco) and the ecotone between Amazonia and the Cerrado. We inferred a multilocus phylogeny of the B. albopunctata species group that includes 15 of 18 described species, recovered two cryptic species, and reconstructed the timing of diversification among species distributed across multiple South American biomes. One new potential species (B. aff. steinbachi), sampled in the Amazonian state of Acre, clustered within the B. calcara-fasciata species complex and is close to B. steinbachi. A second putative new species (B. aff. multifasciata), sampled in the Amazonia-Cerrado ecotone, is closely related to B. multifasciata. Lastly, we place a recently identified Cerrado lineage (B. aff. albopuncata) into the B. albopunctata species group phylogeny for the first time. Our ancestral range reconstruction showed that species in the B. albopuctata group likely dispersed from Amazonia-Cerrado into the dry-diagonal and Atlantic Forest. Intraspecies demography showed, for both B. raniceps and B. albopunctata, signs of rapid expansion across the dry diagonal. Similarly, for one clade of B. multifasciata, our analyses support an invasion of the Cerrado from Amazonia, followed by a rapid expansion across the open diagonal biomes. Thus, our study recovers several recent divergences along the Amazonia-Cerrado ecotone in northern Brazil. Tectonic uplift and erosion in the late Miocene and climate oscillations in the Pleistocene corresponded with estimated divergence times in the dry diagonal and Amazonia-Cerrado ecotone. Our study highlights the importance of these threatened open formations in the generation of biodiversity in the Neotropics.
Asunto(s)
Anuros , Bosques , Animales , Anuros/genética , Biodiversidad , Brasil , Filogenia , FilogeografíaRESUMEN
Amphibians are known to possess a wide variety of compounds stored in their skin glands. While significant progress has been made in understanding the chemical diversity and biological relevance of alkaloids, amines, steroids, and peptides, most aspects of the odorous secretions are completely unknown. In this study, we examined sexual variations in the volatile profile from the skin of the tree frog Boana prasina and combined culture and culture-independent methods to investigate if microorganisms might be a source of these compounds. We found that sesquiterpenes, thioethers, and methoxypyrazines are major contributors to the observed sex differences. We also observed that each sex has a distinct profile of methoxypyrazines, and that the chemical origin of these compounds can be traced to a Pseudomonas sp. strain isolated from the frog's skin. This symbiotic bacterium was present in almost all individuals examined from different sites and was maintained in captive conditions, supporting its significance as the source of methoxypyrazines in these frogs. Our results highlight the potential relevance of bacteria as a source of chemical signals in amphibians and contribute to increasing our understanding of the role that symbiotic associations have in animals.
Asunto(s)
Bacterias , Piel/microbiología , Simbiosis , Animales , Anuros , Bacterias/clasificación , Biodiversidad , Femenino , Masculino , Factores Sexuales , Compuestos Orgánicos VolátilesRESUMEN
Small nuclear RNA (snRNA) is a class of molecules involved in the processing of pre-mRNA and in regulatory cell processes. snRNAs are always associated with a set of specific proteins. The complexes are referred to as small nuclear ribonucleoproteins, and spliceosome U RNAs are their most common snRNA components. The repetitive sequences of U snDNAs have been cytogenetically mapped in several species of Arthropoda, fishes, and mammals; however, their distribution remains unknown in amphibians. Here, we show results of FISH mapping of U2 snDNA repetitive sequences in species of the amphibian genus Leptodactylus to reveal the distribution patterns of this sequence in their karyotypes. The probe hybridized in the metacentric chromosome pair 6 in Leptodactylus fuscus, L. gracilis, L. latrans, L. chaquensis, L. petersii, L. podicipinus, and L. brevipes. A different pattern was observed in L. labyrinthicus with hybridization signals in 4 chromosome pairs. The same localization of U2 gene sequences in most of the species analyzed suggests a relatively conserved pattern and a similarity of the chromosome 6 among these species of Leptodactylus.
Asunto(s)
Anuros/genética , Bandeo Cromosómico , Cariotipo , Animales , Mapeo Cromosómico , Secuencia Conservada , Citogenética , Hibridación Fluorescente in Situ , Cariotipificación , ARN Nuclear Pequeño/genética , Secuencias Repetitivas de Ácidos Nucleicos , Especificidad de la EspecieRESUMEN
In this paper we present a phylogenetic analysis of the treefrogs of the Boana pulchella Group with the goals of (1) providing a rigorous test of its monophyly; (2) providing a test of relationships supported in previous studies; and (3) exploring the relationships of the several species not included in previous analyses. The analyses included>300 specimens of 37 of the 38 species currently included in the group, plus 36 outgroups, exemplars of the diversity of Boana and the other genera of the hylid tribe Cophomantini. The dataset included eight mitochondrial genes (12S, 16S, CytB, COI, ND1, tRNAIle, tRNALeu, and tRNAVal) and five nuclear genes (RHO, TYR, RAG-1, CXCR4, SIAH1). The phylogenetic analyses recover the monophyly of the B. pulchella Group with lower support than previous studies, as a result of the inclusion of the B. claresignata Group, which is recovered as its sister taxon. Within the B. pulchella Group, the inclusion of almost all species of the group had little impact on previous notions of its phylogeny, except for the rejection of the hypothesized B. polytaenia Clade (B. goiana and B. phaeopleura are nested in the clade here called the B. prasina Clade), which is redefined. Phylogenetic support is strong for five major clades, which collectively include all but three of the species sampled: the B. balzani Clade (B. aguilari, B. balzani, B. gladiator, B. melanopleura, B. palaestes), the redefined B. polytaenia Clade (B. botumirim, B. buriti, B. cipoensis, B. jaguariaivensis, B. leptolineata, B. polytaenia, B. stenocephala, and two undescribed species), the B. prasina Clade (B. bischoffi, B. caingua, B. cordobae, B. goiana, B. guentheri, B. marginata, B. phaeopleura, B. prasina, B. pulchella, and one undescribed species), the B. riojana Clade (B. callipleura, B. marianitae, B. riojana), and the B. semiguttata Clade (B. caipora, B. curupi, B. joaquini, B. poaju, B. semiguttata, B. stellae, and two undescribed species). The monophyly of the B. prasina + B. riojana Clades, and that of the B. polytaenia + B. semiguttata Clades are well-supported. The relationships among these two clades, the B. balzani Clade, B. ericae + B. freicanecae, and B. cambui (representing the deepest phylogenetic splits within the B. pulchella Group) are recovered with weak support. We discuss the phenotypic evidence supporting the monophyly of the B. pulchella Group, and the taxonomy of several species, identifying three new synonyms of Boana polytaenia, one new synonym of Boana goiana, and one new synonym of B. riojana.
Asunto(s)
Anuros/clasificación , Filogenia , Animales , Anuros/genética , Geografía , América del SurRESUMEN
The process of diversification can be studied at the phylogeographic level by attempting to identify the environmental features that promote and maintain population divergence. Here we investigate diversification in Rhinella granulosa, a Neotropical toad from northeastern Brazil, by testing a range of hypotheses that encompass different putative mechanisms reducing gene flow among populations. We sequenced single nucleotide polymorphisms and examined individual predictions related to the role of geographic barriers (rivers), ecological gradients, historical habitat stability, and spatial variation in climate seasonality, also known as the asynchrony of seasons hypothesis. This hypothesis postulates that temporal asynchrony of wet and dry seasons over short distances causes parapatric populations to become isolated by time. After determining genetic structure, inferring past distributions, ranking demographic models, and estimating the power of monthly climatic variables, our results identified two populations that are not associated with geographic barriers, biome gradients, or historical refugia. Instead, they are predicted by spatial variation in monthly rainfall and minimum temperature, consistent with the asynchrony of seasons hypothesis, supported also by our comparative framework using multiple matrix regression and linear mixed effects modeling. Due to the toad's life history, climate likely mediates gene flow directly, with genetic differentiation being provoked by neutral mechanisms related to climate driven population isolation, and/or by natural selection against migrants from populations with different breeding times. The asynchrony of seasons hypothesis is seldom considered in phylogeographic studies, but our results indicate that it should be tested in systems where breeding is tightly coupled with climate.
Asunto(s)
Flujo Génico , Variación Genética , Ecosistema , Filogenia , Filogeografía , Estaciones del AñoRESUMEN
The relationships of the hyline tribe Dendropsophini remain poorly studied, with most published analyses dealing with few of the species groups of Dendropsophus. In order to test the monophyly of Dendropsophini, its genera, and the species groups currently recognized in Dendropsophus, we performed a total evidence phylogenetic analysis. The molecular dataset included sequences of three mitochondrial and five nuclear genes from 210 terminals, including 12 outgroup species, the two species of Xenohyla, and 93 of the 108 recognized species of Dendropsophus. The phenomic dataset includes 46 terminals, one per species (34 Dendropsophus, one Xenohyla, and 11 outgroup species). Our results corroborate the monophyly of Dendropsophini and the reciprocal monophyly of Dendropsophus and Xenohyla. Some species groups of Dendropsophus are paraphyletic (the D. microcephalus, D. minimus, and D. parviceps groups, and the D. rubicundulus clade). On the basis of our results, we recognize nine species groups; for three of them (D. leucophyllatus, D. microcephalus, and D. parviceps groups) we recognize some nominal clades to highlight specific morphology or relationships and facilitate species taxonomy. We further discuss the evolution of oviposition site selection, where our results show multiple instances of independent evolution of terrestrial egg clutches during the evolutionary history of Dendropsophus.
Asunto(s)
Anuros/clasificación , Anuros/genética , Filogenia , Animales , Núcleo Celular/genética , Genes Mitocondriales , ARN Ribosómico 16S , Análisis de Secuencia de ADNRESUMEN
The South American and West Indian Casque-headed Treefrogs (Hylidae: Hylinae: Lophyohylini) include 85 species. These are notably diverse in morphology (e.g. disparate levels of cranial hyperossification) and life history (e.g. different reproductive modes, chemical defences), have a wide distribution, and occupy habitats from the tropical rainforests to semiarid scrubland. In this paper, we present a phylogenetic analysis of this hylid tribe based on sequence fragments of up to five mitochondrial (12S, 16S, ND1, COI, Cytb) and six nuclear genes (POMC, RAG-1, RHOD, SIAH, TNS3, TYR). We included most of its species (> 96%), in addition to a number of new species. Our results indicate: (i) the paraphyly of Trachycephalus with respect to Aparasphenodon venezolanus; (ii) the nonmonophyly of Aparasphenodon, with Argenteohyla siemersi, Corythomantis galeata and Nyctimantis rugiceps nested within it, and Ap. venezolanus nested within Trachycephalus; (iii) the polyphyly of Corythomantis; (iv) the nonmonophyly of the recognized species groups of Phyllodytes; and (v) a pervasive low support for the deep relationships among the major clades of Lophyohylini, including C. greeningi and the monotypic genera Itapotihyla and Phytotriades. To remedy the nonmonophyly of Aparasphenodon, Corythomantis, and Trachycephalus, we redefined Nyctimantis to include Aparasphenodon (with the exception of Ap. venezolanus, which we transferred to Trachycephalus), Argenteohyla, and C. galeata. Additionally, our results indicate the need for taxonomic work in the following clades: (i) Trachycephalus dibernardoi and Tr. imitatrix; (ii) Tr. atlas, Tr. mambaiensis and Tr. nigromaculatus; and (iii) Phyllodytes. On the basis of our phylogenetic results, we analyzed the evolution of skull hyperossification and reproductive biology, with emphasis on the multiple independent origins of phytotelm breeding, in the context of Anura. We also analyzed the inter-related aspects of chemical defences, venom delivery, phragmotic behaviour, co-ossification, and prevention of evaporative water loss.
Asunto(s)
Anuros/clasificación , Anuros/genética , Filogenia , Animales , Evolución Biológica , Núcleo Celular/genética , Genes Mitocondriales , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Cráneo/anatomía & histologíaRESUMEN
Most eukaryotic genomes contain substantial portions of repetitive DNA sequences. These are located primarily in highly compacted heterochromatin and, in many cases, are one of the most abundant components of the sex chromosomes. In this sense, the anuran Proceratophrys boiei represents an interesting model for analyses on repetitive sequences by means of cytogenetic techniques, since it has a karyotype with large blocks of heterochromatin and a ZZ/ZW sex chromosome system. The present study describes, for the first time, families of satellite DNA (satDNA) in the frog P. boiei. Its genome size was estimated at 1.6 Gb, of which 41% correspond to repetitive sequences, including satDNAs, rDNAs, transposable elements, and other elements characterized as non-repetitive. The satDNAs were mapped by FISH in the centromeric and pericentromeric regions of all chromosomes, suggesting a possible involvement of these sequences in centromere function. SatDNAs are also present in the W sex chromosome, occupying the entire heterochromatic area, indicating a probable contribution of this class of repetitive DNA to the differentiation of the sex chromosomes in this species. This study is a valuable contribution to the existing knowledge on repetitive sequences in amphibians. We show the presence of repetitive DNAs, especially satDNAs, in the genome of P. boiei that might be of relevance in genome organization and regulation, setting the stage for a deeper functional genome analysis of Proceratophrys.
Asunto(s)
Anuros/genética , ADN Satélite/genética , Genoma/genética , Cromosomas Sexuales/genética , Animales , Centrómero/genética , Evolución Molecular , Heterocromatina/genética , Hibridación Fluorescente in Situ , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos/genética , Análisis de Secuencia de ADNRESUMEN
Distributed across topographically complex landscapes that vary from lowland to high elevation, the Atlantic Forest harbors one of the richest biotas worldwide. Atlantic Forest amphibians are particularly speciose, taxonomic accounts are rising and the group is used as model for biogeographic inference. Past climate-related habitat fragmentation is often invoked to explain diversification, with montane taxa expected to become more widespread during glacial times and restrained at interglacials. In this study we investigate diversification in Ischnocnema lactea and I. holti (Anura: Brachycephalidae), two rare frog species inhabiting Atlantic Forest montane regions in Southeastern Brazil. Previous phylogenetic accounts have suggested uncertain limits between these two sister species. We assembled a multilocus DNA dataset, delimited lineages in this clade, and used ecological niche modeling to explore past and future putative ranges. Assignment analyses and traditional and coalescent phylogenetic methods confirmed the existence of a species complex of Miocene origin comprising nine lineages, most of which show very narrow ranges. Lineages were fully supported as species based in coalescent species delimitation, but the phylogenetic relationships among lineages in higher elevation were unresolved. Models of past ranges suggest extensive suitable areas at the last glacial maximum which, along with phylogenetic uncertainty, are consistent with a hypothesis that climate driven vicariance at higher elevation areas resulted in hard polytomies. Species distribution models under future climates suggest narrower ranges of the lineages relative to now, but no species are currently considered endangered. Overall, our results argue in favor for the reassessment of the taxonomic and conservation status of the I. holti - I. lactea species complex.
Asunto(s)
Anuros/clasificación , Biodiversidad , Bosques , Filogenia , Altitud , Animales , Anuros/genética , Teorema de Bayes , Brasil , Clima , Modelos Biológicos , FilogeografíaRESUMEN
The Brazilian Atlantic Forest harbors high levels of anuran diversity and endemism, including several taxa restricted to small geographic ranges. Here, we provide a multilocus phylogeny for Paratelmatobiinae, a leptodactylid subfamily composed of small-ranged species distributed in the Brazilian Atlantic Forest and in the campo rupestre ecosystem. We performed Bayesian inference and maximum likelihood analyses using three mitochondrial and five nuclear markers, and a matrix comprising a broad taxonomic sampling. We then delimitated independently evolving lineages within the group. We recovered Paratelmatobiinae and each of its four genera as monophyletic and robustly supported. Five putatively new species included in our analyses were unambiguously supported in the phylogenetic trees and delimitation analyses. We also recovered other deeply divergent and geographically structured lineages within the four genera of Paratelmatobiinae. Our estimation of divergence times indicates that diversification in the subfamily began in the Eocene and continued until the Pleistocene. We discuss possible scenarios of diversification for the four genera of Paratelmatobiinae, and outline the implications of our findings for taxonomy and conservation.
Asunto(s)
Anuros/clasificación , Biodiversidad , Bosques , Filogenia , Animales , Teorema de Bayes , Brasil , Calibración , Núcleo Celular/genética , Consenso , ADN Mitocondrial/genética , Geografía , Especificidad de la Especie , Factores de TiempoRESUMEN
Ecologists studying emerging wildlife diseases need to confront the realism of imperfect pathogen detection across heterogeneous habitats to aid in conservation decisions. For example, spatial risk assessments of amphibian disease caused by Batrachochytrium dendrobatidis (Bd) has largely ignored imperfect pathogen detection across sampling sites. Because changes in pathogenicity and host susceptibility could trigger recurrent population declines, it is imperative to understand how pathogen prevalence and occupancy vary across environmental gradients. Here, we assessed how Bd occurrence, prevalence, and infection intensity in a diverse Neotropical landscape vary across streams in relation to abiotic and biotic predictors using a hierarchical Bayesian model that accounts for imperfect Bd detection caused by qPCR error. Our model indicated that the number of streams harboring Bd-infected frogs is higher than observed, with Bd likely being present at ~ 43% more streams than it was detected. We found that terrestrial-breeders captured along streams had higher Bd prevalence, but lower infection intensity, than aquatic-breeding species. We found a positive relationship between Bd occupancy probability and stream density, and a negative relationship between Bd occupancy probability and amphibian local richness. Forest cover was a weak predictor of Bd occurrence and infection intensity. Finally, we provide estimates for the minimum number of amphibian captures needed to determine the presence of Bd at a given site where Bd occurs, thus, providing guidence for cost-effective disease risk monitoring programs.
Asunto(s)
Quitridiomicetos , Ríos , Anfibios , Animales , Anuros , Teorema de Bayes , EcosistemaRESUMEN
Cytogenetics can be a useful tool to assist in taxonomic problems by adding information to the widely used morphological and molecular approaches. These taxonomic problems are especially common in anurans, once they are very diverse, highly polymorphic, and present many cryptic species. The genus Thoropa Cope, 1865 is composed of six specialist species that reproduce in rocky outcrops and are distributed throughout the Atlantic Forest and Cerrado ecotones. Phylogenetic studies point to possible cryptic species within the T. miliaris group. To assist in the evolutionary and taxonomic understanding of this group, classical cytogenetic techniques were used to find possible molecular markers for the genus through rDNA5S, rDNA18S, and U2snDNA probes and analyze their chromosome distribution in the group of T. miliaris. Despite the well conserved karyotype under conventional staining and classical techniques, such as Ag-NOR, our C-banding results showed differences in the centromeric heterochromatin concentration between two populations of T. miliaris. Furthermore, some differences among the populations and species were found for rDNA5S and U2snDNA. This study contributes to a better understanding of the evolutionary relationships within the genus; however, the use of different probe sequences, such as satDNA, is essential for a more robust cytogenetic analysis.