Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 183(6): 1617-1633.e22, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33259802

RESUMEN

Histone H3.3 glycine 34 to arginine/valine (G34R/V) mutations drive deadly gliomas and show exquisite regional and temporal specificity, suggesting a developmental context permissive to their effects. Here we show that 50% of G34R/V tumors (n = 95) bear activating PDGFRA mutations that display strong selection pressure at recurrence. Although considered gliomas, G34R/V tumors actually arise in GSX2/DLX-expressing interneuron progenitors, where G34R/V mutations impair neuronal differentiation. The lineage of origin may facilitate PDGFRA co-option through a chromatin loop connecting PDGFRA to GSX2 regulatory elements, promoting PDGFRA overexpression and mutation. At the single-cell level, G34R/V tumors harbor dual neuronal/astroglial identity and lack oligodendroglial programs, actively repressed by GSX2/DLX-mediated cell fate specification. G34R/V may become dispensable for tumor maintenance, whereas mutant-PDGFRA is potently oncogenic. Collectively, our results open novel research avenues in deadly tumors. G34R/V gliomas are neuronal malignancies where interneuron progenitors are stalled in differentiation by G34R/V mutations and malignant gliogenesis is promoted by co-option of a potentially targetable pathway, PDGFRA signaling.


Asunto(s)
Neoplasias Encefálicas/genética , Carcinogénesis/genética , Glioma/genética , Histonas/genética , Interneuronas/metabolismo , Mutación/genética , Células-Madre Neurales/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Animales , Astrocitos/metabolismo , Astrocitos/patología , Neoplasias Encefálicas/patología , Carcinogénesis/patología , Linaje de la Célula , Reprogramación Celular/genética , Cromatina/metabolismo , Embrión de Mamíferos/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Glioma/patología , Histonas/metabolismo , Lisina/metabolismo , Ratones Endogámicos C57BL , Modelos Biológicos , Clasificación del Tumor , Oligodendroglía/metabolismo , Regiones Promotoras Genéticas/genética , Prosencéfalo/embriología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transcripción Genética , Transcriptoma/genética
2.
Am J Hum Genet ; 111(10): 2265-2282, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39293448

RESUMEN

Congenital microcoria (MCOR) is a rare hereditary developmental defect of the iris dilator muscle frequently associated with high axial myopia and high intraocular pressure (IOP) glaucoma. The condition is caused by submicroscopic rearrangements of chromosome 13q32.1. However, the mechanisms underlying the failure of iris development and the origin of associated features remain elusive. Here, we present a 3D architecture model of the 13q32.1 region, demonstrating that MCOR-related deletions consistently disrupt the boundary between two topologically associating domains (TADs). Deleting the critical MCOR-causing region in mice reveals ectopic Sox21 expression precisely aligning with Dct, each located in one of the two neighbor TADs. This observation is consistent with the TADs' boundary alteration and adoption of Dct regulatory elements by the Sox21 promoter. Additionally, we identify Tgfb2 as a target gene of SOX21 and show TGFΒ2 accumulation in the aqueous humor of an MCOR-affected subject. Accumulation of TGFB2 is recognized for its role in glaucoma and potential impact on axial myopia. Our results highlight the importance of SOX21-TGFB2 signaling in iris development and control of eye growth and IOP. Insights from MCOR studies may provide therapeutic avenues for this condition but also for glaucoma and high myopia conditions, affecting millions of people.


Asunto(s)
Glaucoma , Miopía , Factor de Crecimiento Transformador beta2 , Animales , Glaucoma/genética , Glaucoma/metabolismo , Glaucoma/patología , Ratones , Factor de Crecimiento Transformador beta2/genética , Factor de Crecimiento Transformador beta2/metabolismo , Miopía/genética , Miopía/metabolismo , Humanos , Iris/metabolismo , Iris/patología , Iris/anomalías , Presión Intraocular
3.
Br J Dermatol ; 190(2): 226-243, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37831592

RESUMEN

BACKGROUND: Neurofibromatosis type 1 (NF1) is characterized by the highly variable and unpredictable development of benign peripheral nerve sheath tumours: cutaneous (cNFs), subcutaneous (scNFs) and plexiform (pNFs) neurofibromas. OBJECTIVES: To identify neurofibroma modifier genes, in order to develop a database of patients with NF1. METHODS: All patients were phenotypically evaluated by a medical practitioner using a standardized questionnaire and the causal NF1 variant identified. We enrolled 1333 patients with NF1 who were genotyped for > 7 million common variants. RESULTS: A genome-wide association case-only study identified a significant association with 9q21.33 in the pNF phenotype in the discovery cohort. Twelve, three and four regions suggestive of association at the P ≤ 1 × 10-6 threshold were identified for pNFs, cNFs and scNFs, respectively. Evidence of replication was observed for 4, 2 and 6 loci, including 168 candidate modifier protein-coding genes. Among the candidate modifier genes, some were implicated in the RAS-mitogen-activated protein kinase pathway, cell-cycle control and myelination. Using an original CRISPR/Cas9-based functional assay, we confirmed GAS1 and SPRED2 as pNF and scNF candidate modifiers, as their inactivation specifically affected NF1-mutant Schwann cell growth. CONCLUSIONS: Our study may shed new light on the pathogenesis of NF1-associated neurofibromas and will, hopefully, contribute to the development of personalized care for patients with this deleterious and life-threatening condition.


Asunto(s)
Neurofibroma Plexiforme , Neurofibroma , Neurofibromatosis 1 , Humanos , Neurofibromatosis 1/genética , Neurofibroma Plexiforme/complicaciones , Neurofibroma Plexiforme/genética , Estudio de Asociación del Genoma Completo , Neurofibroma/complicaciones , Neurofibroma/genética , Genotipo , Proteínas Represoras/genética
4.
Hum Genet ; 142(1): 1-9, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35941319

RESUMEN

Neurofibromatosis type 1 (NF1) is an autosomal dominant disease with complete penetrance but highly variable expressivity. In most patients, Next Generation Sequencing (NGS) technologies allow the identification of a loss-of-function pathogenic variant in the NF1 gene, a negative regulator of the RAS-MAPK pathway. We describe the 5-year diagnosis wandering of a patient with a clear NF1 clinical diagnosis, but no molecular diagnosis using standard molecular technologies. The patient presented with a typical NF1 phenotype but NF1 targeted NGS, NF1 transcript analysis, MLPA, and array comparative genomic hybridization failed to reveal a genetic aberration. After 5 years of unsuccessful investigations, trio WGS finally identified a de novo mosaic (VAF ~ 14%) 24.6 kb germline deletion encompassing the promoter and first exon of NF1. This case report illustrates the relevance of WGS to detect structural variants including copy number variants that would be missed by alternative approaches. The identification of the causal pathogenic variant allowed a tailored genetic counseling with a targeted non-invasive prenatal diagnosis by detecting the deletion in plasmatic cell-free DNA from the proband's pregnant partner. This report clearly highlights the need to make WGS a clinically accessible test, offering a tremendous opportunity to identify a molecular diagnosis for otherwise unsolved cases.


Asunto(s)
Neurofibromatosis 1 , Humanos , Neurofibromatosis 1/diagnóstico , Neurofibromatosis 1/genética , Genes de Neurofibromatosis 1 , Hibridación Genómica Comparativa , Exones , Secuenciación Completa del Genoma
5.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36674874

RESUMEN

This review provides an overview of histopathology, clinical presentation, molecular pathways, and potential new systemic treatments of high-grade chondrosarcomas (CS), including grade 2−3 conventional, dedifferentiated, and mesenchymal CS. The diagnosis of CS combines radiological and histological data in conjunction with patient clinical presentations. Conventional CS is the most frequent subtype of CS (85%) and represents about 25% of primary bone tumors in adults; they can be categorized according to their bone location into central, peripheral, and periosteal chondrosarcomas. Central and peripheral CS differ at the molecular level with either IDH1/2 mutations or EXT1/2 mutations, respectively. CDKN2A/B deletions are also frequent in conventional CS, as well as COL2A1 mutations. Dedifferentiated CS develops when low-grade conventional CS transforms into a high-grade sarcoma and most frequently exhibits features of osteosarcoma, fibrosarcoma, or undifferentiated pleomorphic sarcoma. Their molecular characteristics are similar to conventional CS. Mesenchymal CS is a totally different pathological entity exhibiting recurrent translocations. Their clinical presentation and management are different too. The standard treatment of CSs is wide en-bloc resection. CS are relatively radiotherapy resistant; therefore, doses >60 Gy are needed in an attempt to achieve local control in unresectable tumors. Chemotherapy is possibly effective in mesenchymal chondrosarcoma and is of uncertain value in dedifferentiated chondrosarcoma. Due to resistance to standard anticancer agents, the prognosis is poor in patients with metastatic or unresectable chondrosarcomas. Recently, the refined characterization of the molecular profile, as well as the development of new treatments, allow new therapeutic options for these rare tumors. The efficiency of IDH1 inhibitors in other malignancies suggests that these inhibitors will be part of IDH1/2 mutated conventional CS management soon. Other treatment approaches, such as PIK3-AKT-mTOR inhibitors, cell cycle inhibitors, and epigenetic or immune modulators based on improving our understanding of CS molecular biology, are emerging.


Asunto(s)
Neoplasias Óseas , Condrosarcoma , Osteosarcoma , Adulto , Humanos , Condrosarcoma/diagnóstico , Condrosarcoma/genética , Condrosarcoma/terapia , Neoplasias Óseas/diagnóstico , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Radiografía , Osteosarcoma/patología , Biología
6.
NPJ Genom Med ; 9(1): 41, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39245665

RESUMEN

We report our 5-year experience in neurofibromatosis type 1 prenatal diagnosis (PND): 205 PNDs in 146 women (chorionic villus biopsies, 88% or amniocentesis, 12%). The NF1 variant was present in 85 (41%) and absent in 122 (59%) fetuses. Among 205 pregnancies (207 fetuses), 135 were carried to term (119 unaffected and 16 NF1 affected children), 69 pregnancy terminations (affected fetuses), 2 miscarriages, and 1 in utero death. The majority of PND requests came from parents with sporadic NF1. We describe two PNDs in women with mosaic NF1. In both families, direct PND showed the absence of the maternal NF1 variant in the fetus. However, microsatellite markers analysis showed that the risk haplotype had been transmitted. These rare cases of germline mosaicism illustrate the pitfall of indirect PND. Our study illustrates the crucial consequences of PND for medical and genetic counseling decisions. We also point to the challenges of germline mosaics.

7.
Acta Neuropathol ; 125(5): 659-69, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23417712

RESUMEN

Recurrent mutations affecting the histone H3.3 residues Lys27 or indirectly Lys36 are frequent drivers of pediatric high-grade gliomas (over 30% of HGGs). To identify additional driver mutations in HGGs, we investigated a cohort of 60 pediatric HGGs using whole-exome sequencing (WES) and compared them to 543 exomes from non-cancer control samples. We identified mutations in SETD2, a H3K36 trimethyltransferase, in 15% of pediatric HGGs, a result that was genome-wide significant (FDR = 0.029). Most SETD2 alterations were truncating mutations. Sequencing the gene in this cohort and another validation cohort (123 gliomas from all ages and grades) showed SETD2 mutations to be specific to high-grade tumors affecting 15% of pediatric HGGs (11/73) and 8% of adult HGGs (5/65) while no SETD2 mutations were identified in low-grade diffuse gliomas (0/45). Furthermore, SETD2 mutations were mutually exclusive with H3F3A mutations in HGGs (P = 0.0492) while they partly overlapped with IDH1 mutations (4/14), and SETD2-mutant tumors were found exclusively in the cerebral hemispheres (P = 0.0055). SETD2 is the only H3K36 trimethyltransferase in humans, and SETD2-mutant tumors showed a substantial decrease in H3K36me3 levels (P < 0.001), indicating that the mutations are loss-of-function. These data suggest that loss-of-function SETD2 mutations occur in older children and young adults and are specific to HGG of the cerebral cortex, similar to the H3.3 G34R/V and IDH mutations. Taken together, our results suggest that mutations disrupting the histone code at H3K36, including H3.3 G34R/V, IDH1 and/or SETD2 mutations, are central to the genesis of hemispheric HGGs in older children and young adults.


Asunto(s)
Neoplasias Encefálicas/genética , Glioma/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Mutación/genética , Adolescente , Adulto , Factores de Edad , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Estudios de Casos y Controles , Niño , Estudios de Cohortes , Exoma , Glioma/metabolismo , Glioma/patología , Histona Metiltransferasas , Humanos , Lactante , Metilación , Persona de Mediana Edad , Clasificación del Tumor , Adulto Joven
8.
Acta Neuropathol ; 124(5): 615-25, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22886134

RESUMEN

Gliomas are the most common primary brain tumors in children and adults. We recently identified frequent alterations in chromatin remodelling pathways including recurrent mutations in H3F3A and mutations in ATRX (α-thalassemia/mental-retardation-syndrome-X-linked) in pediatric and young adult glioblastoma (GBM, WHO grade IV astrocytoma). H3F3A mutations were specific to pediatric high-grade gliomas and identified in only 3.4 % of adult GBM. Using sequencing and/or immunohistochemical analyses, we investigated ATRX alterations (mutation/loss of expression) and their association with TP53 and IDH1 or IDH2 mutations in 140 adult WHO grade II, III and IV gliomas, 17 pediatric WHO grade II and III astrocytomas and 34 pilocytic astrocytomas. In adults, ATRX aberrations were detected in 33 % of grade II and 46 % of grade III gliomas, as well as in 80 % of secondary and 7 % of primary GBMs. They were absent in the 17 grade II and III astrocytomas in children, and the 34 pilocytic astrocytomas. ATRX alterations closely overlapped with mutations in IDH1/2 (p < 0.0001) and TP53 (p < 0.0001) in samples across all WHO grades. They were prevalent in astrocytomas and oligoastrocytomas, but were absent in oligodendrogliomas (p < 0.0001). No significant association of ATRX mutation/loss of expression and alternative lengthening of telomeres was identified in our cohort. In summary, our data show that ATRX alterations are frequent in adult diffuse gliomas and are specific to astrocytic tumors carrying IDH1/2 and TP53 mutations. Combined alteration of these genes may contribute to drive the neoplastic growth in a major subset of diffuse astrocytomas in adults.


Asunto(s)
Astrocitoma/genética , Neoplasias Encefálicas/genética , ADN Helicasas/genética , Regulación Neoplásica de la Expresión Génica/genética , Mutación/genética , Proteínas Nucleares/genética , Proteína p53 Supresora de Tumor/genética , Adulto , Anciano , Astrocitoma/clasificación , Astrocitoma/patología , Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/patología , Femenino , Humanos , Isocitrato Deshidrogenasa/genética , Masculino , Persona de Mediana Edad , Tasa de Mutación , ARN Mensajero/metabolismo , Proteína Nuclear Ligada al Cromosoma X , Adulto Joven
9.
Nat Cancer ; 3(8): 994-1011, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35788723

RESUMEN

We analyzed the contributions of structural variants (SVs) to gliomagenesis across 179 pediatric high-grade gliomas (pHGGs). The most recurrent SVs targeted MYC isoforms and receptor tyrosine kinases (RTKs), including an SV amplifying a MYC enhancer in 12% of diffuse midline gliomas (DMG), indicating an underappreciated role for MYC in pHGG. SV signature analysis revealed that tumors with simple signatures were TP53 wild type (TP53WT) but showed alterations in TP53 pathway members PPM1D and MDM4. Complex signatures were associated with direct aberrations in TP53, CDKN2A and RB1 early in tumor evolution and with later-occurring extrachromosomal amplicons. All pHGGs exhibited at least one simple-SV signature, but complex-SV signatures were primarily restricted to subsets of H3.3K27M DMGs and hemispheric pHGGs. Importantly, DMGs with complex-SV signatures were associated with shorter overall survival independent of histone mutation and TP53 status. These data provide insight into the impact of SVs on gliomagenesis and the mechanisms that shape them.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/genética , Proteínas de Ciclo Celular/genética , Niño , Glioma/genética , Histonas/genética , Humanos , Mutación , Proteínas Proto-Oncogénicas/genética
10.
NAR Genom Bioinform ; 2(2): lqaa045, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33575597

RESUMEN

DNA replication must be faithful and follow a well-defined spatiotemporal program closely linked to transcriptional activity, epigenomic marks, intranuclear structures, mutation rate and cell fate determination. Among the readouts of the spatiotemporal program of DNA replication, replication timing analyses require not only complex and time-consuming experimental procedures, but also skills in bioinformatics. We developed a dedicated Shiny interactive web application, the START-R (Simple Tool for the Analysis of the Replication Timing based on R) suite, which analyzes DNA replication timing in a given organism with high-throughput data. It reduces the time required for generating and analyzing simultaneously data from several samples. It automatically detects different types of timing regions and identifies significant differences between two experimental conditions in ∼15 min. In conclusion, START-R suite allows quick, efficient and easier analyses of DNA replication timing for all organisms. This novel approach can be used by every biologist. It is now simpler to use this method in order to understand, for example, whether 'a favorite gene or protein' has an impact on replication process or, indirectly, on genomic organization (as Hi-C experiments), by comparing the replication timing profiles between wild-type and mutant cell lines.

12.
Aging (Albany NY) ; 9(12): 2695-2716, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29283884

RESUMEN

High proliferation rate and high mutation density are both indicators of poor prognosis in adrenocortical carcinomas. We performed a hypothesis-driven association study between clinical features in adrenocortical carcinomas and the expression levels of 136 genes involved in DNA metabolism and G1/S phase transition. In 79 samples downloaded from The Cancer Genome Atlas portal, high Cyclin Dependent Kinase 6 (CDK6) mRNA levels gave the most significant association with shorter time to relapse and poorer survival of patients. A hierarchical clustering approach assembled most tumors with high levels of CDK6 mRNA into one group. These tumors tend to cumulate mutations activating the Wnt/ß-catenin pathway and show reduced MIR506 expression. Actually, the level of MIR506 RNA is inversely correlated with the levels of both CDK6 and CTNNB1 (encoding ß-catenin). Together these results indicate that high CDK6 expression is found in aggressive tumors with activated Wnt/ß-catenin pathway. Thus we tested the impact of Food and Drug Administration-approved CDK4 and CDK6 inhibitors, namely palbociclib and ribociclib, on SW-13 and NCI-H295R cells. While both drugs reduced viability and induced senescence in SW-13 cells, only palbociclib was effective on the retinoblastoma protein (pRB)-negative NCI-H295R cells, by inducing apoptosis. In NCI-H295R cells, palbociclib induced an increase of the active form of Glycogen Synthase Kinase 3ß (GSK3ß) responsible for the reduced amount of active ß-catenin, and altered the amount of AXIN2 mRNA. Taken together, these data underline the impact of CDK4 and CDK6 inhibitors in treating adrenocortical carcinomas.


Asunto(s)
Neoplasias de la Corteza Suprarrenal/genética , Carcinoma Corticosuprarrenal/genética , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Piperazinas/farmacología , Piridinas/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/genética , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Transcriptoma
13.
Genom Data ; 9: 113-7, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27508120

RESUMEN

During the S-phase, the DNA replication process is finely orchestrated and regulated by two programs: the spatial program that determines where replication will start in the genome (Cadoret et al. (2008 Oct 14), Cayrou et al. (2011 Sep), Picard et al. (2014 May 1) [1], [2], [3]), and the temporal program that determines when during the S phase different parts of the genome are replicated and when origins are activated. The temporal program is so well conserved for each cell type from independent individuals [4] that it is possible to identify a cell type from an unknown sample just by determining its replication timing program. Moreover, replicative domains are strongly correlated with the partition of the genome into topological domains (determined by the Hi-C method, Lieberman-Aiden et al. (2009 Oct 9), Pope et al. (2014 Nov 20) [5], [6]). On the one hand, replicative areas are well defined and participate in shaping the spatial organization of the genome for a given cell type. On the other hand, studies on the timing program during cell differentiation showed a certain plasticity of this program according to the stage of cell differentiation Hiratani et al. (2008 Oct 7, 2010 Feb) [7], [8]. Domains where a replication timing change was observed went through a nuclear re-localization. Thus the temporal program of replication can be considered as an epigenetic mark Hiratani and Gilbert (2009 Feb 16) [9]. We present the genomic data of replication timing in 6 human model cell lines: U2OS (GSM2111308), RKO (GSM2111309), HEK 293T (GSM2111310), HeLa (GSM2111311), MRC5-SV (GSM2111312) and K562 (GSM2111313). A short comparative analysis was performed that allowed us to define regions common to the 6 cell lines. These replication timing data can be taken into account when performing studies that use these model cell lines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA