Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Methods ; 12(2): 115-21, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25633503

RESUMEN

Bioconductor is an open-source, open-development software project for the analysis and comprehension of high-throughput data in genomics and molecular biology. The project aims to enable interdisciplinary research, collaboration and rapid development of scientific software. Based on the statistical programming language R, Bioconductor comprises 934 interoperable packages contributed by a large, diverse community of scientists. Packages cover a range of bioinformatic and statistical applications. They undergo formal initial review and continuous automated testing. We present an overview for prospective users and contributors.


Asunto(s)
Biología Computacional , Perfilación de la Expresión Génica , Genómica/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Programas Informáticos , Lenguajes de Programación , Interfaz Usuario-Computador
2.
Toxicol Pathol ; 45(1): 119-126, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27932582

RESUMEN

The emerging field of translational safety genetics is providing new opportunities to enhance drug discovery and development. Genetic variation in therapeutic drug targets, off-target interactors and relevant drug metabolism/disposition pathways can contribute to diverse drug pharmacologic and toxicologic responses between different animal species, strains and geographic origins. Recent advances in the sequencing of rodent, canine, nonhuman primate, and minipig genomes have dramatically improved the ability to select the most appropriate animal species for preclinical drug toxicity studies based on genotypic characterization of drug targets/pathways and drug metabolism and/or disposition, thus avoiding inconclusive or misleading animal studies, consistent with the principles of the 3Rs (replacement, reduction and refinement). The genetic background of individual animals should also be taken into consideration when interpreting phenotypic outcomes from toxicity studies and susceptibilities to spontaneous safety-relevant background findings.


Asunto(s)
Animales de Laboratorio/genética , Evaluación Preclínica de Medicamentos/métodos , Pruebas de Toxicidad/métodos , Investigación Biomédica Traslacional/métodos , Animales , Variación Genética , Guías como Asunto , Proyectos de Investigación , Especificidad de la Especie
3.
Bioinformatics ; 31(7): 1130-2, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25417205

RESUMEN

UNLABELLED: QuasR is a package for the integrated analysis of high-throughput sequencing data in R, covering all steps from read preprocessing, alignment and quality control to quantification. QuasR supports different experiment types (including RNA-seq, ChIP-seq and Bis-seq) and analysis variants (e.g. paired-end, stranded, spliced and allele-specific), and is integrated in Bioconductor so that its output can be directly processed for statistical analysis and visualization. AVAILABILITY AND IMPLEMENTATION: QuasR is implemented in R and C/C++. Source code and binaries for major platforms (Linux, OS X and MS Windows) are available from Bioconductor (www.bioconductor.org/packages/release/bioc/html/QuasR.html). The package includes a 'vignette' with step-by-step examples for typical work flows. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional , Mapeo Contig , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Algoritmos , Humanos
4.
Cytometry A ; 77(2): 121-31, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19899135

RESUMEN

Between-sample variation in high-throughput flow cytometry data poses a significant challenge for analysis of large-scale data sets, such as those derived from multicenter clinical trials. It is often hard to match biologically relevant cell populations across samples because of technical variation in sample acquisition and instrumentation differences. Thus, normalization of data is a critical step before analysis, particularly in large-scale data sets from clinical trials, where group-specific differences may be subtle and patient-to-patient variation common. We have developed two normalization methods that remove technical between-sample variation by aligning prominent features (landmarks) in the raw data on a per-channel basis. These algorithms were tested on two independent flow cytometry data sets by comparing manually gated data, either individually for each sample or using static gating templates, before and after normalization. Our results show a marked improvement in the overlap between manual and static gating when the data are normalized, thereby facilitating the use of automated analyses on large flow cytometry data sets. Such automated analyses are essential for high-throughput flow cytometry.


Asunto(s)
Algoritmos , Citometría de Flujo/métodos , Anticuerpos , Antígenos CD/inmunología , Células Sanguíneas/citología , Células Sanguíneas/metabolismo , Separación Celular , Procesamiento Automatizado de Datos/métodos , Citometría de Flujo/estadística & datos numéricos , Antígenos HLA-DR/inmunología , Humanos , Ganglios Linfáticos/citología , Ganglios Linfáticos/metabolismo
5.
BMC Bioinformatics ; 10: 145, 2009 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-19442304

RESUMEN

BACKGROUND: As a high-throughput technology that offers rapid quantification of multidimensional characteristics for millions of cells, flow cytometry (FCM) is widely used in health research, medical diagnosis and treatment, and vaccine development. Nevertheless, there is an increasing concern about the lack of appropriate software tools to provide an automated analysis platform to parallelize the high-throughput data-generation platform. Currently, to a large extent, FCM data analysis relies on the manual selection of sequential regions in 2-D graphical projections to extract the cell populations of interest. This is a time-consuming task that ignores the high-dimensionality of FCM data. RESULTS: In view of the aforementioned issues, we have developed an R package called flowClust to automate FCM analysis. flowClust implements a robust model-based clustering approach based on multivariate t mixture models with the Box-Cox transformation. The package provides the functionality to identify cell populations whilst simultaneously handling the commonly encountered issues of outlier identification and data transformation. It offers various tools to summarize and visualize a wealth of features of the clustering results. In addition, to ensure its convenience of use, flowClust has been adapted for the current FCM data format, and integrated with existing Bioconductor packages dedicated to FCM analysis. CONCLUSION: flowClust addresses the issue of a dearth of software that helps automate FCM analysis with a sound theoretical foundation. It tends to give reproducible results, and helps reduce the significant subjectivity and human time cost encountered in FCM analysis. The package contributes to the cytometry community by offering an efficient, automated analysis platform which facilitates the active, ongoing technological advancement.


Asunto(s)
Análisis por Conglomerados , Citometría de Flujo/métodos , Modelos Estadísticos , Programas Informáticos , Antígenos CD/metabolismo , Bases de Datos Factuales , Enfermedad Injerto contra Huésped/metabolismo , Reproducibilidad de los Resultados
6.
BMC Bioinformatics ; 10: 106, 2009 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-19358741

RESUMEN

BACKGROUND: Recent advances in automation technologies have enabled the use of flow cytometry for high throughput screening, generating large complex data sets often in clinical trials or drug discovery settings. However, data management and data analysis methods have not advanced sufficiently far from the initial small-scale studies to support modeling in the presence of multiple covariates. RESULTS: We developed a set of flexible open source computational tools in the R package flowCore to facilitate the analysis of these complex data. A key component of which is having suitable data structures that support the application of similar operations to a collection of samples or a clinical cohort. In addition, our software constitutes a shared and extensible research platform that enables collaboration between bioinformaticians, computer scientists, statisticians, biologists and clinicians. This platform will foster the development of novel analytic methods for flow cytometry. CONCLUSION: The software has been applied in the analysis of various data sets and its data structures have proven to be highly efficient in capturing and organizing the analytic work flow. Finally, a number of additional Bioconductor packages successfully build on the infrastructure provided by flowCore, open new avenues for flow data analysis.


Asunto(s)
Biología Computacional/métodos , Citometría de Flujo , Programas Informáticos , Sistemas de Administración de Bases de Datos , Descubrimiento de Drogas , Almacenamiento y Recuperación de la Información , Interfaz Usuario-Computador
7.
BMC Bioinformatics ; 9: 3, 2008 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-18177498

RESUMEN

BACKGROUND: High-throughput technologies like functional screens and gene expression analysis produce extended lists of candidate genes. Gene-Set Enrichment Analysis is a commonly used and well established technique to test for the statistically significant over-representation of particular pathways. A shortcoming of this method is however, that most genes that are investigated in the experiments have very sparse functional or pathway annotation and therefore cannot be the target of such an analysis. The approach presented here aims to assign lists of genes with limited annotation to previously described functional gene collections or pathways. This works by comparing InterPro domain signatures of the candidate gene lists with domain signatures of gene sets derived from known classifications, e.g. KEGG pathways. RESULTS: In order to validate our approach, we designed a simulation study. Based on all pathways available in the KEGG database, we create test gene lists by randomly selecting pathway genes, removing these genes from the known pathways and adding variable amounts of noise in the form of genes not annotated to the pathway. We show that we can recover pathway memberships based on the simulated gene lists with high accuracy. We further demonstrate the applicability of our approach on a biological example. CONCLUSION: Results based on simulation and data analysis show that domain based pathway enrichment analysis is a very sensitive method to test for enrichment of pathways in sparsely annotated lists of genes. An R based software package domainsignatures, to routinely perform this analysis on the results of high-throughput screening, is available via Bioconductor.


Asunto(s)
Algoritmos , Bases de Datos de Proteínas , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Proteínas/química , Proteínas/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Sistemas de Administración de Bases de Datos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Relación Estructura-Actividad
8.
Nucleic Acids Res ; 34(Database issue): D415-8, 2006 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16381901

RESUMEN

LIFEdb (http://www.LIFEdb.de) integrates data from large-scale functional genomics assays and manual cDNA annotation with bioinformatics gene expression and protein analysis. New features of LIFEdb include (i) an updated user interface with enhanced query capabilities, (ii) a configurable output table and the option to download search results in XML, (iii) the integration of data from cell-based screening assays addressing the influence of protein-overexpression on cell proliferation and (iv) the display of the relative expression ('Electronic Northern') of the genes under investigation using curated gene expression ontology information. LIFEdb enables researchers to systematically select and characterize genes and proteins of interest, and presents data and information via its user-friendly web-based interface.


Asunto(s)
Bases de Datos Genéticas , Expresión Génica , Genómica , Proteínas/análisis , Proteínas/genética , Proliferación Celular , Biología Computacional , ADN Complementario/química , Genes , Internet , Proteínas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Integración de Sistemas , Interfaz Usuario-Computador
9.
J Biomol Screen ; 12(4): 510-20, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17478479

RESUMEN

After sequencing the human genome, the challenge ahead is to systematically analyze the functions and disease relation of the proteins encoded. Here the authors describe the application of a flow cytometry-based high-throughput assay to screen for apoptosis-activating proteins in transiently transfected cells. The assay is based on the detection of activated caspase-3 with a specific antibody, in cells overexpressing proteins tagged C- or N-terminally with yellow fluorescent protein. Fluorescence intensities are measured using a flow cytometer integrated with a high-throughput autosampler. The applicability of this screen has been tested in a pilot screen with 200 proteins. The candidate proteins were all verified in an independent microscopy-based nuclear fragmentation assay, finally resulting in the identification of 6 apoptosis inducers.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/análisis , Proteínas Reguladoras de la Apoptosis/biosíntesis , Apoptosis/fisiología , Citometría de Flujo , Caspasa 3/análisis , Caspasa 3/biosíntesis , Línea Celular , Humanos , Proyectos Piloto
10.
Cancer Res ; 65(17): 7733-42, 2005 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16140941

RESUMEN

Cancer transcription microarray studies commonly deliver long lists of "candidate" genes that are putatively associated with the respective disease. For many of these genes, no functional information, even less their relevance in pathologic conditions, is established as they were identified in large-scale genomics approaches. Strategies and tools are thus needed to distinguish genes and proteins with mere tumor association from those causally related to cancer. Here, we describe a functional profiling approach, where we analyzed 103 previously uncharacterized genes in cancer relevant assays that probed their effects on DNA replication (cell proliferation). The genes had previously been identified as differentially expressed in genome-wide microarray studies of tumors. Using an automated high-throughput assay with single-cell resolution, we discovered seven activators and nine repressors of DNA replication. These were further characterized for effects on extracellular signal-regulated kinase 1/2 (ERK1/2) signaling (G1-S transition) and anchorage-independent growth (tumorigenicity). One activator and one inhibitor protein of ERK1/2 activation and three repressors of anchorage-independent growth were identified. Data from tumor and functional profiling make these proteins novel prime candidates for further in-depth study of their roles in cancer development and progression. We have established a novel functional profiling strategy that links genomics to cell biology and showed its potential for discerning cancer relevant modulators of the cell cycle in the candidate lists from microarray studies.


Asunto(s)
Genes cdc , Neoplasias/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Animales , Ciclo Celular/genética , Replicación del ADN , Perfilación de la Expresión Génica/métodos , Humanos , Sistema de Señalización de MAP Quinasas/genética , Ratones , Células 3T3 NIH , Neoplasias/metabolismo , Neoplasias/patología , ARN Mensajero/biosíntesis , ARN Mensajero/genética
11.
Methods Mol Biol ; 1418: 335-51, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27008022

RESUMEN

The Gviz package offers a flexible framework to visualize genomic data in the context of a variety of different genome annotation features. Being tightly embedded in the Bioconductor genomics landscape, it nicely integrates with the existing infrastructure, but also provides direct data retrieval from external sources like Ensembl and UCSC and supports most of the commonly used annotation file types. Through carefully chosen default settings the package greatly facilitates the production of publication-ready figures of genomic loci, while still maintaining high flexibility due to its ample customization options.


Asunto(s)
Biología Computacional/métodos , Genómica/métodos , Programas Informáticos , Bases de Datos Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Internet , Anotación de Secuencia Molecular/métodos
12.
Clin Epigenetics ; 8: 15, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26855684

RESUMEN

BACKGROUND: Fragile X syndrome (FXS) is the most common form of inherited intellectual disability, resulting from the loss of function of the fragile X mental retardation 1 (FMR1) gene. The molecular pathways associated with FMR1 epigenetic silencing are still elusive, and their characterization may enhance the discovery of novel therapeutic targets as well as the development of novel clinical biomarkers for disease status. RESULTS: We have deployed customized epigenomic profiling assays to comprehensively map the FMR1 locus chromatin landscape in peripheral mononuclear blood cells (PBMCs) from eight FXS patients and in fibroblast cell lines derived from three FXS patient. Deoxyribonucleic acid (DNA) methylation (5-methylcytosine (5mC)) and hydroxymethylation (5-hydroxymethylcytosine (5hmC)) profiling using methylated DNA immunoprecipitation (MeDIP) combined with a custom FMR1 microarray identifies novel regions of DNA (hydroxy)methylation changes within the FMR1 gene body as well as in proximal flanking regions. At the region surrounding the FMR1 transcriptional start sites, increased levels of 5mC were associated to reciprocal changes in 5hmC, representing a novel molecular feature of FXS disease. Locus-specific validation of FMR1 5mC and 5hmC changes highlighted inter-individual differences that may account for the expected DNA methylation mosaicism observed at the FMR1 locus in FXS patients. Chromatin immunoprecipitation (ChIP) profiling of FMR1 histone modifications, together with 5mC/5hmC and gene expression analyses, support a functional relationship between 5hmC levels and FMR1 transcriptional activation and reveal cell-type specific differences in FMR1 epigenetic regulation. Furthermore, whilst 5mC FMR1 levels positively correlated with FXS disease severity (clinical scores of aberrant behavior), our data reveal for the first time an inverse correlation between 5hmC FMR1 levels and FXS disease severity. CONCLUSIONS: We identify novel, cell-type specific, regions of FMR1 epigenetic changes in FXS patient cells, providing new insights into the molecular mechanisms of FXS. We propose that the combined measurement of 5mC and 5hmC at selected regions of the FMR1 locus may significantly enhance FXS clinical diagnostics and patient stratification.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Silenciador del Gen , Adolescente , Adulto , Niño , Inmunoprecipitación de Cromatina , Epigénesis Genética/genética , Epigenómica , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Marcadores Genéticos , Humanos , Masculino , Persona de Mediana Edad , Interferencia de ARN , Adulto Joven
13.
PLoS One ; 8(1): e52442, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23300973

RESUMEN

MicroRNAs are short non-coding RNAs that regulate gene expression at the post-transcriptional level and play key roles in heart development and cardiovascular diseases. Here, we have characterized the expression and distribution of microRNAs across eight cardiac structures (left and right ventricles, apex, papillary muscle, septum, left and right atrium and valves) in rat, Beagle dog and cynomolgus monkey using microRNA sequencing. Conserved microRNA signatures enriched in specific heart structures across these species were identified for cardiac valve (miR-let-7c, miR-125b, miR-127, miR-199a-3p, miR-204, miR-320, miR-99b, miR-328 and miR-744) and myocardium (miR-1, miR-133b, miR-133a, miR-208b, miR-30e, miR-499-5p, miR-30e*). The relative abundance of myocardium-enriched (miR-1) and valve-enriched (miR-125b-5p and miR-204) microRNAs was confirmed using in situ hybridization. MicroRNA-mRNA interactions potentially relevant for cardiac functions were explored using anti-correlation expression analysis and microRNA target prediction algorithms. Interactions between miR-1/Timp3, miR-125b/Rbm24, miR-204/Tgfbr2 and miR-208b/Csnk2a2 were identified and experimentally investigated in human pulmonary smooth muscle cells and luciferase reporter assays. In conclusion, we have generated a high-resolution heart structure-specific mRNA/microRNA expression atlas for three mammalian species that provides a novel resource for investigating novel microRNA regulatory circuits involved in cardiac molecular physiopathology.


Asunto(s)
Regulación de la Expresión Génica , Corazón/fisiología , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Transcriptoma , Animales , Línea Celular , Mapeo Cromosómico/métodos , Perros , Femenino , Válvulas Cardíacas/metabolismo , Humanos , Hibridación in Situ , Macaca fascicularis , Masculino , Miocardio/patología , Procesamiento Postranscripcional del ARN , Ratas , Ratas Wistar , Especificidad de la Especie
14.
Toxicol Sci ; 131(2): 375-86, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23091169

RESUMEN

The molecular events during nongenotoxic carcinogenesis and their temporal order are poorly understood but thought to include long-lasting perturbations of gene expression. Here, we have investigated the temporal sequence of molecular and pathological perturbations at early stages of phenobarbital (PB) mediated liver tumor promotion in vivo. Molecular profiling (mRNA, microRNA [miRNA], DNA methylation, and proteins) of mouse liver during 13 weeks of PB treatment revealed progressive increases in hepatic expression of long noncoding RNAs and miRNAs originating from the Dlk1-Dio3 imprinted gene cluster, a locus that has recently been associated with stem cell pluripotency in mice and various neoplasms in humans. PB induction of the Dlk1-Dio3 cluster noncoding RNA (ncRNA) Meg3 was localized to glutamine synthetase-positive hypertrophic perivenous hepatocytes, suggesting a role for ß-catenin signaling in the dysregulation of Dlk1-Dio3 ncRNAs. The carcinogenic relevance of Dlk1-Dio3 locus ncRNA induction was further supported by in vivo genetic dependence on constitutive androstane receptor and ß-catenin pathways. Our data identify Dlk1-Dio3 ncRNAs as novel candidate early biomarkers for mouse liver tumor promotion and provide new opportunities for assessing the carcinogenic potential of novel compounds.


Asunto(s)
Biomarcadores de Tumor/genética , Impresión Genómica , Péptidos y Proteínas de Señalización Intercelular/genética , Yoduro Peroxidasa/genética , Neoplasias Hepáticas Experimentales/genética , Familia de Multigenes , ARN no Traducido/genética , Animales , Proteínas de Unión al Calcio , Receptor de Androstano Constitutivo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Reacción en Cadena de la Polimerasa , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , Transcriptoma , beta Catenina/metabolismo
15.
Expert Opin Drug Metab Toxicol ; 7(12): 1497-511, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22050465

RESUMEN

INTRODUCTION: The goal of early predictive safety assessment (PSA) is to keep compounds with detectable liabilities from progressing further in the pipeline. Such compounds jeopardize the core of pharmaceutical research and development and limit the timely delivery of innovative therapeutics to the patient. Computational methods are increasingly used to help understand observed data, generate new testable hypotheses of relevance to safety pharmacology, and supplement and replace costly and time-consuming experimental procedures. AREAS COVERED: The authors survey methods operating on different scales of both physical extension and complexity. After discussing methods used to predict liabilities associated with structures of individual compounds, the article reviews the use of adverse event data and safety profiling panels. Finally, the authors examine the complexities of toxicology data from animal experiments and how these data can be mined. EXPERT OPINION: A significant obstacle for data-driven safety assessment is the absence of integrated data sets due to a lack of sharing of data and of using standard ontologies for data relevant to safety assessment. Informed decisions to derive focused sets of compounds can help to avoid compound liabilities in screening campaigns, and improved hit assessment of such campaigns can benefit the early termination of undesirable compounds.


Asunto(s)
Biología Computacional/métodos , Evaluación Preclínica de Medicamentos/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Preparaciones Farmacéuticas/metabolismo , Animales , Fenómenos Químicos , Simulación por Computador , Determinación de Punto Final , Humanos
16.
Adv Bioinformatics ; : 103839, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20049160

RESUMEN

Flow cytometry (FCM) has become an important analysis technology in health care and medical research, but the large volume of data produced by modern high-throughput experiments has presented significant new challenges for computational analysis tools. The development of an FCM software suite in Bioconductor represents one approach to overcome these challenges. In the spirit of the R programming language (Tree Star Inc., "FlowJo," http://www.owjo.com), these tools are predominantly console-driven, allowing for programmatic access and rapid development of novel algorithms. Using this software requires a solid understanding of programming concepts and of the R language. However, some of these tools|in particular the statistical graphics and novel analytical methods|are also useful for nonprogrammers. To this end, we have developed an open source, extensible graphical user interface (GUI) iFlow, which sits on top of the Bioconductor backbone, enabling basic analyses by means of convenient graphical menus and wizards. We envision iFlow to be easily extensible in order to quickly integrate novel methodological developments.

17.
Adv Bioinformatics ; : 356141, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19956418

RESUMEN

Flow cytometry (FCM) software packages from R/Bioconductor, such as flowCore and flowViz, serve as an open platform for development of new analysis tools and methods. We created plateCore, a new package that extends the functionality in these core packages to enable automated negative control-based gating and make the processing and analysis of plate-based data sets from high-throughput FCM screening experiments easier. plateCore was used to analyze data from a BD FACS CAP screening experiment where five Peripheral Blood Mononucleocyte Cell (PBMC) samples were assayed for 189 different human cell surface markers. This same data set was also manually analyzed by a cytometry expert using the FlowJo data analysis software package (TreeStar, USA). We show that the expression values for markers characterized using the automated approach in plateCore are in good agreement with those from FlowJo, and that using plateCore allows for more reproducible analyses of FCM screening data.

18.
Genome Biol ; 7(8): R77, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16916453

RESUMEN

Highthroughput cell-based assays with flow cytometric readout provide a powerful technique for identifying components of biologic pathways and their interactors. Interpretation of these large datasets requires effective computational methods. We present a new approach that includes data pre-processing, visualization, quality assessment, and statistical inference. The software is freely available in the Bioconductor package prada. The method permits analysis of large screens to detect the effects of molecular interventions in cellular systems.


Asunto(s)
Enfermedades Genéticas Congénitas/epidemiología , Programas Informáticos , Bases de Datos Factuales , Procesamiento Automatizado de Datos/métodos , Procesamiento Automatizado de Datos/normas , Perfilación de la Expresión Génica , Humanos , Modelos Genéticos , Modelos Estadísticos , Oportunidad Relativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA