Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 687
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(16): 2899-2917.e31, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35914528

RESUMEN

Glioblastomas are incurable tumors infiltrating the brain. A subpopulation of glioblastoma cells forms a functional and therapy-resistant tumor cell network interconnected by tumor microtubes (TMs). Other subpopulations appear unconnected, and their biological role remains unclear. Here, we demonstrate that whole-brain colonization is fueled by glioblastoma cells that lack connections with other tumor cells and astrocytes yet receive synaptic input from neurons. This subpopulation corresponds to neuronal and neural-progenitor-like tumor cell states, as defined by single-cell transcriptomics, both in mouse models and in the human disease. Tumor cell invasion resembled neuronal migration mechanisms and adopted a Lévy-like movement pattern of probing the environment. Neuronal activity induced complex calcium signals in glioblastoma cells followed by the de novo formation of TMs and increased invasion speed. Collectively, superimposing molecular and functional single-cell data revealed that neuronal mechanisms govern glioblastoma cell invasion on multiple levels. This explains how glioblastoma's dissemination and cellular heterogeneity are closely interlinked.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Astrocitos/patología , Encéfalo/patología , Neoplasias Encefálicas/patología , Glioblastoma/genética , Glioblastoma/patología , Humanos , Ratones , Invasividad Neoplásica , Neuronas/fisiología
2.
Nature ; 613(7942): 179-186, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36517594

RESUMEN

Diffuse gliomas, particularly glioblastomas, are incurable brain tumours1. They are characterized by networks of interconnected brain tumour cells that communicate via Ca2+ transients2-6. However, the networks' architecture and communication strategy and how these influence tumour biology remain unknown. Here we describe how glioblastoma cell networks include a small, plastic population of highly active glioblastoma cells that display rhythmic Ca2+ oscillations and are particularly connected to others. Their autonomous periodic Ca2+ transients preceded Ca2+ transients of other network-connected cells, activating the frequency-dependent MAPK and NF-κB pathways. Mathematical network analysis revealed that glioblastoma network topology follows scale-free and small-world properties, with periodic tumour cells frequently located in network hubs. This network design enabled resistance against random damage but was vulnerable to losing its key hubs. Targeting of autonomous rhythmic activity by selective physical ablation of periodic tumour cells or by genetic or pharmacological interference with the potassium channel KCa3.1 (also known as IK1, SK4 or KCNN4) strongly compromised global network communication. This led to a marked reduction of tumour cell viability within the entire network, reduced tumour growth in mice and extended animal survival. The dependency of glioblastoma networks on periodic Ca2+ activity generates a vulnerability7 that can be exploited for the development of novel therapies, such as with KCa3.1-inhibiting drugs.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Ratones , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , FN-kappa B/metabolismo , Sistema de Señalización de MAP Quinasas , Señalización del Calcio , Muerte Celular , Análisis de Supervivencia , Calcio/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 326(3): H522-H537, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38180450

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) afflicts over half of all patients with heart failure and is a debilitating and fatal syndrome affecting postmenopausal women more than any other demographic. This bias toward older females calls into question the significance of menopause in the development of HFpEF, but this question has not been probed in detail. In this study, we report the first investigation into the impact of ovary-intact menopause in the context of HFpEF. To replicate the human condition as faithfully as possible, vinylcyclohexene dioxide (VCD) was used to accelerate ovarian failure (AOF) in female mice while leaving the ovaries intact. HFpEF was established with a mouse model that involves two stressors typical in humans: a high-fat diet and hypertension induced from the nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester (l-NAME). In young female mice, AOF or HFpEF-associated stressors independently induced abnormal myocardial strain indicative of early subclinical systolic and diastolic cardiac dysfunction. HFpEF but not AOF was associated with elevations in systolic blood pressure. Increased myocyte size and reduced myocardial microvascular density were not observed in any group. Also, a broad panel of measurements that included echocardiography, invasive pressure measurements, histology, and serum hormones revealed no interaction between AOF and HFpEF. Interestingly, AOF did evoke a higher density of infiltrating cardiac immune cells in both healthy and HFpEF mice, suggestive of proinflammatory effects. In contrast to young mice, middle-aged "old" mice did not exhibit cardiac dysfunction from estrogen deprivation alone or from HFpEF-related stressors.NEW & NOTEWORTHY This is the first preclinical study to examine the impact of ovary-intact menopause [accelerated ovarian failure (AOF)] on HFpEF. Echocardiography of young female mice revealed early evidence of diastolic and systolic cardiac dysfunction apparent only on strain imaging in HFpEF only, AOF only, or the combination. Surprisingly, AOF did not exacerbate the HFpEF phenotype. Results in middle-aged "old" females also showed no interaction between HFpEF and AOF and, importantly, no cardiovascular impact from HFpEF or AOF.


Asunto(s)
Cardiomiopatías , Cardiopatías , Insuficiencia Cardíaca , Humanos , Persona de Mediana Edad , Femenino , Ratones , Animales , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/patología , Ovario/patología , Volumen Sistólico/fisiología , Menopausia
4.
Biochem Biophys Res Commun ; 693: 149199, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38118311

RESUMEN

With economic development and overnutrition, including high-fat diets (HFD) and high-glucose diets (HGD), the incidence of obesity in children is increasing, and thus, the incidence of precocious puberty is increasing. Therefore, it is of great importance to construct a suitable animal model of overnutrition-induced precocious puberty for further in-depth study. Here, we fed a HFD, HGD, or HFD combined with a HGD to pups after P-21 weaning, while weaned pups fed a normal diet served as the control group. The results showed that HFD combined with a HGD increased the body weight (BW) of weaned rat pups. In addition, a HFD, HGD, and HFD combined with a HGD lowered the age at which vaginal opening occurred and accelerated the vaginal cell cycle. Furthermore, a HFD combined with a HGD increased the weight of the uterus and ovaries of weaned rat pups. Additionally, a HFD combined with a HGD promoted the development of reproductive organs in weaned female rat pups. Ultimately, a HFD combined with a HGD was found to elevate the serum levels of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), follicle stimulating hormone (FSH), leptin, adiponectin, and oestradiol (E2) and increase hypothalamic GnRH, Kiss-1, and GPR54 expression levels in weaned female rat pups. The current study found that overnutrition, such as that through a HFD combined with HGD, could induce precocious puberty in weaned female rat pups. In addition, a rat model of overnutrition-induced precocious puberty was established.


Asunto(s)
Obesidad Infantil , Pubertad Precoz , Humanos , Niño , Animales , Ratas , Femenino , Ratas Sprague-Dawley , Pubertad Precoz/inducido químicamente , Obesidad Infantil/complicaciones , Hormona Liberadora de Gonadotropina , Dieta Alta en Grasa/efectos adversos , Glucosa
5.
Arch Biochem Biophys ; 754: 109962, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499055

RESUMEN

Acetohydroxyacid synthase (AHAS) is one of the key enzymes of the biosynthesis of branched-chain amino acids, it is also an effective target for the screening of herbicides and antibiotics. In this study we present a method for preparing Escherichia coli AHAS I holoenzyme (EcAHAS I) with exceptional stability, which provides a solid ground for us to re-investigate the in vitro catalytic properties of the protein. The results show EcAHAS I synthesized in this way exhibits similar function to Bacillus subtilis acetolactate synthase in its catalysis with pyruvate and 2-ketobutyrate (2-KB) as dual-substrate, producing four 2-hydroxy-3-ketoacids including (S)-2-acetolactate, (S)-2-aceto-2-hydroxybutyrate, (S)-2-propionyllactate, and (S)-2-propionyl-2-hydroxybutyrate. Quantification of the reaction indicates that the two substrates almost totally consume, and compound (S)-2-aceto-2- hydroxybutyrate forms in the highest yield among the four major products. Moreover, the protein also condenses two molecules of 2-KB to furnish (S)-2-propionyl-2-hydroxybutyrate. Further exploration manifests that EcAHAS I ligates pyruvate/2-KB and nitrosobenzene to generate two arylhydroxamic acids N-hydroxy-N-phenylacetamide and N-hydroxy-N-phenyl- propionamide. These findings enhance our comprehension of the catalytic characteristics of EcAHAS I. Furthermore, the application of this enzyme as a catalyst in construction of C-N bonds displays promising potential.


Asunto(s)
Acetolactato Sintasa , Escherichia coli , Acetolactato Sintasa/química , Glucógeno Sintasa , Hidroxibutiratos , Piruvatos , Holoenzimas
6.
Org Biomol Chem ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037740

RESUMEN

Amide bonds are one of the most prevalent phenomena in nature and are utilized frequently in drug and material design. However, forming amide bonds is not always efficient or high yielding, particularly when the amine used to conjugate to a carboxylic acid is a weak nucleophile. This limitation precludes many useful amino compounds from participating in conjugation reactions to form amides. A particularly valuable amino compound, which is also a very weak nucleophile, is the amino porphyrin, valued for its role as a photosensitizer, fluorescent agent, catalyst, or, upon metalation, even a very efficient contrast agent for magnetic resonance imaging (MRI). In this work, we propose fast and high-yield coupling of an unreactive amine - the amino porphyrin - to carboxylic acid via isothiocyanate conjugation. Reactions can be achieved in one step at room temperature in one hour, achieving quantitative conversion and near perfect selectivity. Both metalated and unmetalated porphyrin, as well as fluorescein isothiocyanate (FITC), demonstrated efficient conjugation. To illustrate the value of the proposed method, we created a new blood-pool MRI contrast agent that reversibly binds to serum albumin. This new blood-pool agent, known as MITC-Deox (MRI isothiocyanate that links with deoxycholic acid), substantially reduced T1 relaxation times in blood vessels in mice, remained stable for 1 hour, cleared from blood by 24 hours, and was eliminated from the body after 4 days. The proposed method for efficient amide formation is a superior alternative to existing coupling methods, opening a door to novel synthesis of MRI contrast agents and beyond.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38403735

RESUMEN

There is inconsistent evidence for an association of obesity with white matter microstructural alterations. Such inconsistent findings may be related to the cumulative effects of obesity and alcohol dependence. This study aimed to investigate the possible interactions between alcohol dependence and overweight/obesity on white matter microstructure in the human brain. A total of 60 inpatients with alcohol dependence during early abstinence (44 normal weight and 16 overweight/obese) and 65 controls (42 normal weight and 23 overweight/obese) were included. The diffusion tensor imaging (DTI) measures [fractional anisotropy (FA) and radial diffusivity (RD)] of the white matter microstructure were compared between groups. We observed significant interactive effects between alcohol dependence and overweight/obesity on DTI measures in several tracts. The DTI measures were not significantly different between the overweight/obese and normal-weight groups (although widespread trends of increased FA and decreased RD were observed) among controls. However, among the alcohol-dependent patients, the overweight/obese group had widespread reductions in FA and widespread increases in RD, most of which significantly differed from the normal-weight group; among those with overweight/obesity, the alcohol-dependent group had widespread reductions in FA and widespread increases in RD, most of which were significantly different from the control group. This study found significant interactive effects between overweight/obesity and alcohol dependence on white matter microstructure, indicating that these two controllable factors may synergistically impact white matter microstructure and disrupt structural connectivity in the human brain.

8.
Environ Res ; 251(Pt 2): 118640, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38479720

RESUMEN

The effects of long-term ammunition pollution on microecological characteristics were analyzed to formulate microbial remediation strategies. Specifically, the response of enzyme systems, N/O stable isotopes, ion networks, and microbial community structure/function levels were analyzed in long-term (50 years) ammunition-contaminated water/sediments from a contamination site, and a compound bacterial agent capable of efficiently degrading trinitrotoluene (TNT) while tolerating many heavy metals was selected to remediate the ammunition-contaminated soil. The basic physical and chemical properties of the water/sediment (pH (up: 0.57-0.64), nitrate (up: 1.31-4.28 times), nitrite (up: 1.51-5.03 times), and ammonium (up: 7.06-70.93 times)) were changed significantly, and the significant differences in stable isotope ratios of N and O (nitrate nitrogen) confirmed the degradability of TNT by indigenous microorganisms exposed to long-term pollution. Heavy metals, such as Pb, Zn, Cu, Cd, Cs, and Sb, have synergistic toxic effects in ammunition-contaminated sites, and significantly decreased the microbial diversity and richness in the core pollution area. However, long-term exposure in the edge pollution area induced microorganisms to use TNT as a carbon and nitrogen sources for life activities and growth and development. The Bacteroidales microbial group was significantly inhibited by ammunition contamination, whereas microorganisms such as Proteobacteria, Acidobacteriota, and Comamonadaceae gradually adapted to this environmental stress by regulating their development and stress responses. Ammunition pollution significantly affected DNA replication and gene regulation in the microecological genetic networks and increased the risk to human health. Mg and K were significantly involved in the internal mechanism of microbial transport, enrichment, and metabolism of TNT. Nine strains of TNT-utilizing microbes were screened for efficient TNT degradation and tolerance to typical heavy metals (copper, zinc and lead) found in contaminated sites, and a compound bacterial agent prepared for effective repair of ammunition-contaminated soil significantly improved the soil ecological environment.


Asunto(s)
Sedimentos Geológicos , Contaminantes Químicos del Agua , China , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Biodegradación Ambiental , Metales Pesados/toxicidad , Metales Pesados/análisis , Bacterias/metabolismo , Sustancias Explosivas/metabolismo , Trinitrotolueno/metabolismo
9.
Skin Res Technol ; 30(4): e13652, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572582

RESUMEN

OBJECTIVE: To investigate whether compression therapy after thermal ablation of varicose veins can improve the prognosis of patients. METHODS: Systematic research were applied for Chinese and English electronic databases(PubMed, Web of Science, Cochrane Library, CNKI, Wanfang, VIP Databases). Eligible prospective studies that comparing the efficacy of compression therapy and non-compression therapy on patients after thermal ablation of varicose veins were included. The interest outcome such as pain, quality of life (QOL), venous clinical severity score (VCSS), time to return to work and complications were analyzed. RESULTS: 10 studies were of high quality, and randomized controlled trials involving 1,545 patients met the inclusion criteria for this study. At the same time, the meta-analysis showed that the application of compression therapy improved pain (SMD: -0.51, 95% CI: -0.95, -0.07) but exhibited no statistically significant effect on QOL (SMD: 0.04, 95% CI: -0.08, 0.16), VCSS (MD: -0.05, 95% CI: -1.19, 1.09), time to return to work (MD: -0.43, 95% CI: -0.90, 0.03), total complications (RR: 0.54, 95% CI: 0.27, 1.09), and thrombosis (RR: 0.71, 95% CI: 0.31, 1.62). CONCLUSION: Compression therapy after thermal ablation of varicose veins can slightly relieve pain, but it has not been found to be associated with improvement in other outcomes.

10.
Biochem Genet ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864962

RESUMEN

Early metastasis of pancreatic cancer (PaC) is a major cause of its high mortality rate. Previous studies have shown that AHNAK2 is involved in the progression of some tumors and is predicted to be an independent prognostic factor for PaC; however, the specific mechanisms through which AHNAK2 regulates PaC remain unclear. In this study, we examined the role of AHNAK2 in PaC and its potential molecular mechanisms. AHNAK2 mRNA and protein expression in PaC tissues and cells were measured using qRT-PCR and western blot analysis. After AHNAK2 knockdown using small interfering RNA, PaC cells were subjected to CCK-8 scratch, and Transwell assays to assess cell proliferation, migration, and invasion, respectively. Furthermore, the validation of the mechanistic pathway was achieved by western blot analysis. AHNAK2 mRNA and protein levels were up-regulated in PaC and silencing AHNAK2 significantly inhibited the proliferation, migration, and invasion of PaC cells. Mechanistically, AHNAK2 knockdown decreased the expression of phosphorylated p65, phosphorylated IκBα, and matrix metalloproteinase-9 (MMP-9), suggesting that activation of the NF-κB/MMP-9 signaling pathway was inhibited. Importantly, activation of NF-κB reversed the effects of AHNAK2 knockdown. Our findings indicate that AHNAK2 promotes PaC progression through the NF-kB/MMP-9 pathway and provides a theoretical basis for targeting AHNAK2 for the treatment of PaC.

11.
Ecotoxicol Environ Saf ; 269: 115740, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38042131

RESUMEN

Triazine herbicides are common contaminants in coastal waters, and they are recognized as inhibitors of photosystem II, causing significant hinderance to the growth and reproduction of phytoplankton. However, the influence of these herbicides on microalgal toxin production remains unclear. This study aimed to examine this relationship by conducting a comprehensive physiological and 4D label-free quantitative proteomic analysis on the harmful dinoflagellate Karenia mikimotoi in the presence of the triazine herbicide dipropetryn. The findings demonstrated a significant decrease in photosynthetic activity and pigment content, as well as reduced levels of unsaturated fatty acids, reactive oxygen species (ROS), and hemolytic toxins in K. mikimotoi when exposed to dipropetryn. The proteomic analysis revealed a down-regulation in proteins associated with photosynthesis, ROS response, and energy metabolism, such as fatty acid biosynthesis, chlorophyll metabolism, and nitrogen metabolism. In contrast, an up-regulation of proteins related to energy-producing processes, such as fatty acid ß-oxidation, glycolysis, and the tricarboxylic acid cycle, was observed. This study demonstrated that dipropetryn disrupts the photosynthetic systems of K. mikimotoi, resulting in a notable decrease in algal toxin production. These findings provide valuable insights into the underlying mechanisms of toxin production in toxigenic microalgae and explore the potential effect of herbicide pollution on harmful algal blooms in coastal environments.


Asunto(s)
Dinoflagelados , Herbicidas , Microalgas , Especies Reactivas de Oxígeno/metabolismo , Proteómica , Dinoflagelados/metabolismo , Floraciones de Algas Nocivas , Fotosíntesis , Herbicidas/metabolismo , Ácidos Grasos/metabolismo , Triazinas/toxicidad , Triazinas/metabolismo
12.
Angew Chem Int Ed Engl ; 63(31): e202404271, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38700507

RESUMEN

Integrating controllable spin states into single-molecule magnets (SMMs) enables precise manipulation of magnetic interactions at a molecular level, but remains a synthetic challenge. Herein, we developed a 3d-4f metallacrown (MC) magnet [DyNi5(quinha)5(Clsal)2(py)8](ClO4) ⋅ 4H2O (H2quinha=quinaldichydroxamic acid, HClsal=5-chlorosalicylaldehyde) wherein a square planar NiII is stabilized by chemical stacking. Thioacetal modification was employed via post-synthetic ligand substitutions and yielded [DyNi5(quinha)5(Clsaldt)2(py)8](ClO4) ⋅ 3H2O (HClsaldt=4-chloro-2-(1,3-dithiolan-2-yl)phenol). Thanks to the additional ligations of thioacetal onto the NiII site, coordination-induced spin state switching (CISSS) took place with spin state altering from low-spin S=0 to high-spin S=1. The synergy of CISSS effect and magnetic interactions results in distinct energy splitting and magnetic dynamics. Magnetic studies indicate prominent enhancement of reversal barrier from 57 cm-1 to 423 cm-1, along with hysteresis opening and an over 200-fold increment in coercive field at 2 K. Ab initio calculations provide deeper insights into the exchange models and rationalize the relaxation/tunnelling pathways. These results demonstrate here provide a fire-new perspective in modulating the magnetization relaxation via the incorporation of controllable spin states and magnetic interactions facilitated by the CISSS approach.

13.
Mol Cancer ; 22(1): 137, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582735

RESUMEN

Glycolytic reprogramming is one of the most important features of cancer and plays an integral role in the progression of cancer. In cancer cells, changes in glucose metabolism meet the needs of self-proliferation, angiogenesis and lymphangiogenesis, metastasis, and also affect the immune escape, prognosis evaluation and therapeutic effect of cancer. The n6-methyladenosine (m6A) modification of RNA is widespread in eukaryotic cells. Dynamic and reversible m6A modifications are widely involved in the regulation of cancer stem cell renewal and differentiation, tumor therapy resistance, tumor microenvironment, tumor immune escape, and tumor metabolism. Lately, more and more evidences show that m6A modification can affect the glycolysis process of tumors in a variety of ways to regulate the biological behavior of tumors. In this review, we discussed the role of glycolysis in tumor genesis and development, and elaborated in detail the profound impact of m6A modification on different tumor by regulating glycolysis. We believe that m6A modified glycolysis has great significance and potential for tumor treatment.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Epigénesis Genética , Glucólisis , Epigenómica , Adenosina , Microambiente Tumoral/genética
14.
BMC Plant Biol ; 23(1): 423, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37700228

RESUMEN

BACKGROUND: Anthropogenic activities are causing unprecedented loss of genetic diversity in many species. However, the effects on genetic diversity from large-scale grafting onto wild plants of crop species are largely undetermined. Iron walnut (Juglans sigillata Dode) is a deciduous nut tree crop endemic to southwestern China with a long history of cultivation. Due to the rapid expansion of the walnut industry, many natural populations are now being replaced by cultivars grafted onto wild rootstocks. However, little is known about the potential genetic consequences of such action on natural populations. RESULTS: We sampled the scion and the rootstock from each of 149 grafted individuals within nine wild populations of J. sigillata from Yunnan Province which is the center of walnut diversity and cultivation in China, and examined their genetic diversity and population structure using 31 microsatellite loci. Scions had lower genetic diversity than rootstocks, and this pattern was repeated in seven of the nine examined populations. Among those seven populations, AMOVA and clustering analyses showed a clear genetic separation between all rootstocks and all scions. However, the two remaining populations, both from northern Yunnan, showed genetic similarity between scions and rootstocks, possibly indicating that wild populations here are derived from feralized local cultivars. Moreover, our data indicated probable crop-to-wild gene flow between scions and rootstocks, across all populations. CONCLUSIONS: Our results indicate that large-scale grafting has been causing genetic diversity erosion and genetic structure breakdown in the wild material of J. sigillata within Yunnan. To mitigate these effects, we caution against the overuse of grafting in wild populations of iron walnut and other crop species and recommend the preservation of natural genotypes through in situ  and ex situ conservation.


Asunto(s)
Juglans , Juglans/genética , Nueces , China , Análisis por Conglomerados , Hierro
15.
BMC Plant Biol ; 23(1): 201, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072719

RESUMEN

BACKGROUND: Common walnut (Juglans regia L.) has a long cultivation history, given its highly valuable wood and rich nutritious nuts. The Iranian Plateau has been considered as one of the last glaciation refugia and a centre of origin and domestication for the common walnut. However, a prerequisite to conserve or utilize the genetic resources of J. regia in the plateau is a comprehensive evaluation of the genetic diversity that is conspicuously lacking. In this regard, we used 31 polymorphic simple sequence repeat (SSR) markers to delineate the genetic variation and population structure of 508 J. regia individuals among 27 populations from the Iranian Plateau. RESULTS: The SSR markers expressed a high level of genetic diversity (HO = 0.438, and HE = 0.437). Genetic differentiation among the populations was moderate (FST = 0.124), and genetic variation within the populations (79%) significantly surpassed among populations (21%). The gene flow (Nm = 1.840) may have remarkably influenced the population genetic structure of J. regia, which can be attributed to anthropological activities and wind dispersal of pollen. The STRUCTURE analysis divided the 27 populations into two main clusters. Comparing the neighbor-joining and principal coordinate analysis dendrograms and the Bayesian STRUCTURE analysis revealed the general agreement between the population subdivisions and the genetic relationships among the populations. However, a few geographically close populations dispersed into different clusters. Further, the low genetic diversity of the Sulaymaniyah (SMR) population of Iraq necessitates urgent conservation by propagation and seedling management or tissue culture methods; additionally, we recommend the indispensable preservation of the Gonabad (RGR) and Arak (AKR) populations in Iran. CONCLUSIONS: These results reflected consistent high geographical affinity of the accession across the plateau. Our findings suggest that gene flow is a driving factor influencing the genetic structure of J. regia populations, whereas ecological and geological variables did not act as strong barriers. Moreover, the data reported herein provide new insights into the population structure of J. regia germplasm, which will help conserve genetic resources for the future, hence improving walnut breeding programs' efficiency.


Asunto(s)
Juglans , Juglans/genética , Nueces/genética , Irán , Teorema de Bayes , Fitomejoramiento , Variación Genética
16.
Opt Express ; 31(10): 16303-16314, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37157712

RESUMEN

We describe a method for the active control of terahertz (THz) waves using hybrid vanadium dioxide (VO2) periodic corrugated waveguide. Unlike liquid crystals, graphene and semiconductors and other active materials, VO2 exhibits a unique insulator-metal transition characteristic by the electric fields, optical, and thermal pumps, resulting in five orders of magnitude changes in its conductivity. Our waveguide consists of two gold coated plates with the VO2-embedded periodic grooves, which are placed in parallel with the grooves face to face. Simulations show that this waveguide can realize mode switching by changing the conductivity of the embedded VO2 pads, whose mechanism is attributed to the local resonance induced by defect mode. Such a VO2-embedded hybrid THz waveguide is favorable in practical applications such as THz modulators, sensors and optical switches, and provides an innovative technique for manipulating THz waves.

17.
Acta Neuropathol ; 146(3): 499-514, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37495858

RESUMEN

Immunodeficiency-associated primary CNS lymphoma (PCNSL) represents a distinct clinicopathological entity, which is typically Epstein-Barr virus-positive (EBV+) and carries an inferior prognosis. Genetic alterations that characterize EBV-related CNS lymphomagenesis remain unclear precluding molecular classification and targeted therapies. In this study, a comprehensive genetic analysis of 22 EBV+ PCNSL, therefore, integrated clinical and pathological information with exome and RNA sequencing (RNASeq) data. EBV+ PCNSL with germline controls carried a median of 55 protein-coding single nucleotide variants (SNVs; range 24-217) and 2 insertions/deletions (range 0-22). Genetic landscape was largely shaped by aberrant somatic hypermutation with a median of 41.01% (range 31.79-53.49%) of SNVs mapping to its target motifs. Tumors lacked established SNVs (MYD88, CD79B, PIM1) and copy number variants (CDKN2A, HLA loss) driving EBV- PCNSL. Instead, EBV+ PCNSL were characterized by SOCS1 mutations (26%), predicted to disinhibit JAK/STAT signaling, and mutually exclusive gain-of-function NOTCH pathway SNVs (26%). Copy number gains were enriched on 11q23.3, a locus directly targeted for chromosomal aberrations by EBV, that includes SIK3 known to protect from cytotoxic T-cell responses. Losses covered 5q31.2 (STING), critical for sensing viral DNA, and 17q11 (NF1). Unsupervised clustering of RNASeq data revealed two distinct transcriptional groups, that shared strong expression of CD70 and IL1R2, previously linked to tolerogenic tumor microenvironments. Correspondingly, deconvolution of bulk RNASeq data revealed elevated M2-macrophage, T-regulatory cell, mast cell and monocyte fractions in EBV+ PCNSL. In addition to novel insights into the pathobiology of EBV+ PCNSL, the data provide the rationale for the exploration of targeted therapies including JAK-, NOTCH- and CD70-directed approaches.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Linfoma , Humanos , Herpesvirus Humano 4/genética , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/metabolismo , Mutación , Pronóstico , Linfoma/genética , Microambiente Tumoral
18.
J Magn Reson Imaging ; 58(4): 1139-1150, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36877190

RESUMEN

BACKGROUND: A noninvasive method to track implanted biomaterials is desirable for real-time monitoring of material interactions with host tissues and assessment of efficacy and safety. PURPOSE: To explore quantitative in vivo tracking of polyurethane implants using a manganese porphyrin (MnP) contrast agent containing a covalent binding site for pairing to polymers. STUDY TYPE: Prospective, longitudinal. ANIMAL MODEL: Rodent model of dorsal subcutaneous implants (10 female Sprague Dawley rats). FIELD STRENGTH/SEQUENCE: A 3-T; two-dimensional (2D) T1-weighted spin-echo (SE), T2-weighted turbo SE, three-dimensional (3D) spoiled gradient-echo T1 mapping with variable flip angles. ASSESSMENT: A new MnP-vinyl contrast agent to covalently label polyurethane hydrogels was synthesized and chemically characterized. Stability of binding was assessed in vitro. MRI was performed in vitro on unlabeled hydrogels and hydrogels labeled at different concentrations, and in vivo on rats with unlabeled and labeled hydrogels implanted dorsally. In vivo MRI was performed at 1, 3, 5, and 7 weeks postimplantation. Implants were easily identified on T1-weighted SE, and fluid accumulation from inflammation was distinguished on T2-weighted turbo SE. Implants were segmented on contiguous T1-weighted SPGR slices using a threshold of 1.8 times the background muscle signal intensity; implant volume and mean T1 values were then calculated at each timepoint. Histopathology was performed on implants in the same plane as MRI and compared to imaging results. STATISTICAL TESTS: Unpaired t-tests and one-way analysis of variance (ANOVA) were used for comparisons. A P value <0.05 was considered to be statistically significant. RESULTS: Hydrogel labeling with MnP resulted in a significant T1 reduction in vitro (T1 = 517 ± 36 msec vs. 879 ± 147 msec unlabeled). Mean T1 values of labeled implants in rats increased significantly by 23% over time, from 1 to 7 weeks postimplantation (651 ± 49 msec to 801 ± 72 msec), indicating decreasing implant density. DATA CONCLUSION: Polymer-binding MnP enables in vivo tracking of vinyl-group coupling polymers. EVIDENCE LEVEL: 1. TECHNICAL EFFICACY: Stage 1.


Asunto(s)
Medios de Contraste , Porfirinas , Femenino , Ratas , Animales , Poliuretanos , Manganeso , Hidrogeles , Estudios Prospectivos , Ratas Sprague-Dawley , Imagen por Resonancia Magnética/métodos
19.
Inorg Chem ; 62(14): 5863-5871, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36976914

RESUMEN

It is difficult to subject simple reaction starting materials to a "one-pot" in situ tandem reaction without post-treatment under mild reaction conditions to obtain multimers with complex structural linkages. In organic synthesis, acetal reactions are often used to protect derivatives containing carbonyl functional groups. Therefore, acetal products tend to have very low stability, and performing multi-step condensation to obtain complex multimeric products is difficult. Herein, we achieved the first efficient multiple condensation of o-vanillin derivatives using Dy(OAc)3·6H2O undergoing a "one-pot" in situ tandem reaction under mild solvothermal conditions to obtain a series of dimers (I and II, clusters 1 and 2) and trimers (I and II, clusters 3 and 4). When methanol or ethanol is used as the solvent, the alcoholic solvent participates in acetal and dehydration reactions to obtain dimers (I and II). Surprisingly, when using acetonitrile as the reaction solvent, the o-vanillin derivatives undergo acetal and dehydration reactions to obtain trimers (I and II). In addition, clusters 1-4 all showed distinct single-molecule magnetic behaviors under zero-field conditions. To the best of our knowledge, this is the first time that multiple acetal reactions catalyzed by coordination-directed catalysis under "one-pot" conditions have been realized, opening a new horizon for the development of fast, facile, green, and efficient synthetic methods for complex compounds.

20.
Inorg Chem ; 62(48): 19552-19564, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37976457

RESUMEN

Pinacol lanthanide complexes PyraLn (Ln = Dy and Tb) with the restriction of intramolecular vibration were obtained for the first time via an in situ solvothermal coordination-catalyzed tandem reaction using cheap and simple starting materials, thereby avoiding complex, time-consuming, and expensive conventional organic synthesis strategies. A high-resolution electrospray ionization mass spectrometry (HRESI-MS) analysis confirmed the stability of PyraLn in an organic solution. The formation process of PyraLn was monitored in detail using time-dependent HRESI-MS, which allowed for proposing a mechanism for the formation of pinacol complexes via in situ tandem reactions under one-pot coordination-catalyzed conditions. The PyraLn complexes constructed using a pinacol ligand with a butterfly configuration exhibited distinct aggregation-induced emission (AIE) behavior, with the αAIE value as high as 60.42 according to the AIE titration curve. In addition, the PyraLn complexes in the aggregated state exhibit a rapid photoresponse to various 3d metal ions with low detection limits. These findings provide fast, facile, and high-yield access to dynamic, smart lanthanide complex emissions with bright emission and facilitate the rational construction of molecular machines for artificial intelligence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA