Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nano Lett ; 19(12): 8590-8596, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31670967

RESUMEN

Exciton-polariton condensation in organic materials, arising from the coupling of Frenkel excitons to the electromagnetic field in cavities, is a phenomenon resulting in low-threshold coherent light emission among other fascinating properties. The exact mechanisms leading to the thermalization of organic exciton-polaritons toward condensation are not yet understood, partly due to the complexity of organic molecules and partly to the canonical microcavities used in condensation studies, which limit broadband studies. Here, we exploit an entirely different cavity design, i.e., an array of plasmonic nanoparticles strongly coupled to organic molecules, to successfully measure the broadband ultrafast dynamics of the strongly coupled system. Sharp features emerge in the transient spectrum originating from the formation of a condensate with a well-defined molecular vibrational composition. These measurements represent the first direct experimental evidence that molecular vibrations drive condensation in organic systems and provide a benchmark for modeling the dynamics of organic-based exciton-polariton condensates.

2.
Phys Rev Lett ; 121(24): 243904, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30608720

RESUMEN

We demonstrate nonlinear emission from molecular layers strongly coupled to extended light fields in arrays of plasmonic nanoparticles in the presence of structural imperfections. Hybrid light-matter states, known as plasmon-exciton polaritons (PEPs), are formed by the strong coupling of Frenkel excitons in molecules to surface lattice resonances. These resonances result from the radiative coupling of localized surface plasmon polaritons in silver nanoparticles enhanced by diffraction on the array. By designing arrays with different lattice constants, we show that the nonlinear emission frequency is solely determined by the relaxation of exciton polaritons through vibrational quanta in the molecules. We also observe long-range spatial coherence in the samples, which supports the explanation in terms of a nonlinear collective emission of strongly coupled PEPs. In contrast to recent observations of exciton-polariton lasing and condensation in organic systems, photonic modes play a minor role at the emission frequency in our system, and this emission has an undefined momentum because of the structural imperfections. This remarkable result reveals the rich and distinct physics of strongly coupled organic molecules to photonic cavities.

3.
J Phys Chem A ; 120(19): 3042-8, 2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-26558888

RESUMEN

Quantum coherence is proclaimed to promote efficient energy collection by light-harvesting complexes and prototype organic photovoltaics. However, supporting spectroscopic studies are hindered by the problem of distinguishing between the excited state and ground state origin of coherent spectral transients. Coherence amplitude maps, which systematically represent quantum beats observable in two-dimensional (2D) spectroscopy, are currently the prevalent tool for making this distinction. In this article, we present coherence amplitude maps of a molecular dimer, which have become significantly distorted as a result of the finite laser bandwidth used to record the 2D spectra. We argue that under standard spectroscopic conditions similar distortions are to be expected for compounds absorbing over a spectral range similar to, or exceeding, that of the dimer. These include virtually all photovoltaic polymers and certain photosynthetic complexes. With the distortion of coherence amplitude maps, alternative ways to identify quantum coherence are called for. Here, we use numerical simulations that reproduce the essential photophysics of the dimer to unambiguously determine the excited state origin of prominent quantum beats observed in the 2D spectral measurements. This approach is proposed as a dependable method for coherence identification.


Asunto(s)
Rayos Láser , Teoría Cuántica , Carbocianinas/química , Dimerización , Modelos Moleculares , Conformación Molecular
4.
Phys Chem Chem Phys ; 16(39): 21310-20, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25178090

RESUMEN

The photocycle and vibrational dynamics of bacteriorhodopsin in a lipid nanodisc microenvironment have been studied by steady-state and time-resolved spectroscopies. Linear absorption and circular dichroism indicate that the nanodiscs do not perturb the structure of the retinal binding pocket, while transient absorption and flash photolysis measurements show that the photocycle which underlies proton pumping is unchanged from that in the native purple membranes. Vibrational dynamics during the initial photointermediate formation are subsequently studied by ultrafast broadband transient absorption spectroscopy, where the low scattering afforded by the lipid nanodisc microenvironment allows for unambiguous assignment of ground and excited state nuclear dynamics through Fourier filtering of frequency regions of interest and subsequent time domain analysis of the retrieved vibrational dynamics. Canonical ground state oscillations corresponding to high frequency ethylenic and C-C stretches, methyl rocks, and hydrogen out-of-plane wags are retrieved, while large amplitude, short dephasing time vibrations are recovered predominantly in the frequency region associated with out-of-plane dynamics and low frequency torsional modes implicated in isomerization.


Asunto(s)
Bacteriorodopsinas/química , Lípidos/química , Nanoestructuras/química , Termodinámica , Fotólisis , Vibración
5.
J Chem Phys ; 134(8): 085105, 2011 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-21361560

RESUMEN

Coherent control protocols provide a direct experimental determination of the relative importance of quantum interference or phase relationships of coupled states along a selected pathway. These effects are most readily observed in the high intensity regime where the field amplitude is sufficient to overcome decoherence effects. The coherent response of retinal photoisomerization in bacteriorhodopsin to the phase of the photoexcitation pulses was examined at fluences of 10(15) - 2.5 × 10(16) photons per square centimeter, comparable to or higher than the saturation excitation level of the S(0) - S(1) retinal electronic transition. At moderate excitation levels of ∼6 × 10(15) photons/cm(2) (<100 GW/cm(2)), chirping the excitation pulses increases the all-trans to 13-cis isomerization yield by up to 16% relative to transform limited pulses. The reported results extend previous weak-field studies [Prokhorenko et al., Science 313, 1257 (2006)] and further illustrate that quantum coherence effects persist along the reaction coordinate in strong fields even for systems as complex as biological molecules. However, for higher excitation levels of ∼200 GW/cm(2), there is a dramatic change in photophysics that leads to multiphoton generated photoproducts unrelated to the target isomerization reaction channel and drastically changes the observed isomerization kinetics that appears, in particular, as a red shift of the transient spectra. These results explain the apparent contradictions of the work by Florean et al. [Proc. Natl. Acad. Sci. U.S.A. 106, 10896 (2009)] in the high intensity regime. We are able to show that the difference in observations and interpretation is due to artifacts associated with additional multiphoton-induced photoproducts. At the proper monitoring wavelengths, coherent control in the high intensity regime is clearly observable. The present work highlights the importance of conducting coherent control experiments in the low intensity regime to access information on quantum interference effects along specific reaction coordinates.


Asunto(s)
Bacteriorodopsinas/química , Halobacterium salinarum/química , Retinaldehído/química , Diseño de Equipo , Isomerismo , Cinética , Procesos Fotoquímicos , Fotones , Espectrofotometría/instrumentación
6.
J Phys Chem Lett ; 12(4): 1360-1366, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33507078

RESUMEN

Using diffraction-limited ultrafast imaging techniques, we investigate the propagation of singlet and triplet excitons in single-crystal tetracene. Instead of an expected broadening, the distribution of singlet excitons narrows on a nanosecond time scale after photoexcitation. This narrowing results in an effective negative diffusion in which singlet excitons migrate toward the high-density region, eventually leading to a singlet exciton distribution that is smaller than the laser excitation spot. Modeling the excited-state dynamics demonstrates that the origin of the anomalous diffusion is rooted in nonlinear triplet-triplet annihilation (TTA). We anticipate that this is a general phenomenon that can be used to study exciton diffusion and nonlinear TTA rates in semiconductors relevant for organic optoelectronics.

7.
J Phys Chem Lett ; 11(10): 3889-3896, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32330041

RESUMEN

Owing to the ultrafast time scale of the photoinduced reaction and high degree of spectral overlap among the reactant, product, and excited electronic states in bacteriorhodopsin (bR), it has been a challenge for traditional spectroscopies to resolve the interplay between vibrational dynamics and electronic processes occurring in the retinal chromophore of bR. Here, we employ ultrafast two-dimensional electronic photon echo spectroscopy to follow the early excited-state dynamics of bR preceding the isomerization. We detect an early periodic photoinduced absorptive signal that, employing a hybrid multiconfigurational quantum/molecular mechanical model of bR, we attribute to periodic mixing of the first and second electronic excited states (S1 and S2, respectively). This recurrent interaction between S1 and S2, induced by a bond length alternation of the retinal chromohore, supports the hypothesis that the ultrafast photoisomerization in bR is initiated by a process involving coupled nuclear and electronic motion on three different electronic states.


Asunto(s)
Bacteriorodopsinas/química , Teoría Cuántica , Estructura Molecular , Espectroscopía de Fotoelectrones
8.
ACS Appl Mater Interfaces ; 12(35): 39764-39771, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32658444

RESUMEN

Graphene has demonstrated great promise for technological use, yet control over material growth and understanding of how material imperfections affect the performance of devices are challenges that hamper the development of applications. In this work, we reveal new insight into the connections between the performance of the graphene devices as environmental sensors and the microscopic details of the interactions at the sensing surface. We monitor changes in the resistance of the chemical-vapor deposition grown graphene devices as exposed to different concentrations of ethanol. We perform thermal surface treatments after the devices are fabricated, use scanning probe microscopy to visualize their effects down to nanometer scale and correlate them with the measured performance of the device as an ethanol sensor. Our observations are compared to theoretical calculations of charge transfers between molecules and the graphene surface. We find that, although often overlooked, the surface cleanliness after device fabrication is responsible for the device performance and reliability. These results further our understanding of the mechanisms of sensing in graphene-based environmental sensors and pave the way to optimizing such devices, especially for their miniaturization, as with decreasing size of the active zone the potential role of contaminants will rise.

9.
Opt Express ; 17(12): 9764-79, 2009 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-19506626

RESUMEN

Optical two-dimensional photon-echo spectroscopy is realized with shaped excitation pulses, allowing coherent control of twodimensional spectra. This development enables probing of state-selective quantum decoherence and phase/time sensitive couplings between states. The coherently-controlled two-dimensional photon-echo spectrometer with two pulse shapers is based on a passively stabilized four-beam interferometer with diffractive optic, and allows heterodyne detection of signals with a long-term phase stability of approximately Lambda/100. The two-dimensional spectra of Rhodamine 101 in a methanol solution, measured with unshaped and shaped pulses, exhibit significant differences. We observe in particular, the appearance of fine structure in the spectra obtained using shaped excitation pulses.


Asunto(s)
Electrónica/instrumentación , Análisis Espectral/instrumentación , Tomografía de Coherencia Óptica/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Fotones , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
10.
J Phys Chem B ; 121(16): 4040-4047, 2017 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-28358485

RESUMEN

Ultrafast photochemical reactions are initiated by vibronic transitions from the reactant ground state to the excited potential energy surface, directly populating excited-state vibrational modes. The primary photochemical reaction of vision, the isomerization of retinal in the protein rhodopsin, is known to be a vibrationally coherent reaction, but the Franck-Condon factors responsible for initiating the process have been difficult to resolve with conventional time-resolved spectroscopies. Here we employ experimental and theoretical 2D photon echo spectroscopy to directly resolve for the first time the Franck-Condon factors that initiate isomerization on the excited potential energy surface and track the reaction dynamics. The spectral dynamics reveal vibrationally coherent isomerization occurring on the fastest possible time scale, that of a single period of the local torsional reaction coordinate. We successfully model this process as coherent wavepacket motion through a conical intersection on a ∼30 fs time scale, confirming the reaction coordinate as a local torsional coordinate with a frequency of ∼570 cm-1. As a result of spectral features being spread out along two frequency coordinates, we unambiguously assign reactant and product states following passage through the conical intersection, which reveal the key vibronic transitions that initiate the vibrationally coherent photochemistry of vision.

11.
Nat Chem ; 7(12): 980-6, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26587713

RESUMEN

The role of vibrational coherence-concerted vibrational motion on the excited-state potential energy surface-in the isomerization of retinal in the protein rhodopsin remains elusive, despite considerable experimental and theoretical efforts. We revisited this problem with resonant ultrafast heterodyne-detected transient-grating spectroscopy. The enhanced sensitivity that this technique provides allows us to probe directly the primary photochemical reaction of vision with sufficient temporal and spectral resolution to resolve all the relevant nuclear dynamics of the retinal chromophore during isomerization. We observed coherent photoproduct formation on a sub-50 fs timescale, and recovered a host of vibrational modes of the retinal chromophore that modulate the transient-grating signal during the isomerization reaction. Through Fourier filtering and subsequent time-domain analysis of the transient vibrational dynamics, the excited-state nuclear motions that drive the isomerization reaction were identified, and comprise stretching, torsional and out-of-plane wagging motions about the local C11=C12 isomerization coordinate.


Asunto(s)
Rodopsina/química , Vibración , Animales , Bovinos , Isomerismo , Fotoquímica , Análisis Espectral
12.
Science ; 344(6188): 1099, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24904149

RESUMEN

Hayes et al. (Reports, 21 June 2013, p. 1431) used two-dimensional (2D) electronic spectroscopy to study molecular heterodimers and reported a general mechanism for the prolongation of electronic coherences, consistent with previous interpretations of 2D spectra for light-harvesting systems. We argue that the dynamics attributed to electronic coherences are inconclusive based on experimental inconsistencies arising from limited sample characterization and insufficient control measurements.


Asunto(s)
Fenómenos Electromagnéticos , Transferencia de Energía , Fluoresceínas/química
13.
Nat Chem ; 6(3): 196-201, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24557133

RESUMEN

The observation of persistent oscillatory signals in multidimensional spectra of protein-pigment complexes has spurred a debate on the role of coherence-assisted electronic energy transfer as a key operating principle in photosynthesis. Vibronic coupling has recently been proposed as an explanation for the long lifetime of the observed spectral beatings. However, photosynthetic systems are inherently complicated, and tractable studies on simple molecular compounds are needed to fully understand the underlying physics. In this work, we present measurements and calculations on a solvated molecular homodimer with clearly resolvable oscillations in the corresponding two-dimensional spectra. Through analysis of the various contributions to the nonlinear response, we succeed in isolating the signal due to inter-exciton coherence. We find that although calculations predict a prolongation of this coherence due to vibronic coupling, the combination of dynamic disorder and vibrational relaxation leads to a coherence decay on a timescale comparable to the electronic dephasing time.


Asunto(s)
Complejos de Proteína Captadores de Luz/química , Análisis Espectral/métodos , Dimerización , Electrones , Transferencia de Energía , Modelos Moleculares , Polímeros/química
14.
Faraday Discuss ; 153: 27-39; discussion 73-91, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22452071

RESUMEN

Using low-intensity phase-shaped excitation pulses we used two-dimensional (2D) electronic spectroscopy to follow the time dependence of the coherent correlations imposed on a solvated organic dye (Rhodamine 101 in methanol) at room temperature. Shaping of the excitation pulses strongly affects both the real and imaginary parts of the 2D-spectra, especially at small waiting times. In particular, the periodic phase modulation of the excitation pulses appears as a two-dimensional grid-like modulation in the correlation spectrum corresponding to the waiting time T = 0. By increasing the waiting time, this modulation quickly disappears in omega(t) space. However, it is still present in w, space even at very long waiting times (> or = 80 ps) where the inhomogeneous broadening is significantly reduced, and reaches its stationary value of approximately 16%. The resonant nature of this induced modulation at long waiting time allows us to conclude that phase shaping of the excitation induces a long-lived memory in solvated organic dyes that is associated with coherent population transfer.


Asunto(s)
Rodaminas/química , Metanol/química , Análisis Espectral , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA