Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Kidney Int ; 105(5): 980-996, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38423182

RESUMEN

Collapsing focal segmental glomerulosclerosis (FSGS), also known as collapsing glomerulopathy (CG), is the most aggressive variant of FSGS and is characterized by a rapid progression to kidney failure. Understanding CG pathogenesis represents a key step for the development of targeted therapies. Previous work implicated the telomerase protein component TERT in CG pathogenesis, as transgenic TERT expression in adult mice resulted in a CG resembling that seen in human primary CG and HIV-associated nephropathy (HIVAN). Here, we used the telomerase-induced mouse model of CG (i-TERTci mice) to identify mechanisms to inhibit CG pathogenesis. Inactivation of WIP1 phosphatase, a p53 target acting in a negative feedback loop, blocked disease initiation in i-TERTci mice. Repression of disease initiation upon WIP1 deficiency was associated with senescence enhancement and required transforming growth factor-ß functions. The efficacy of a pharmacologic treatment to reduce disease severity in both i-TERTci mice and in a mouse model of HIVAN (Tg26 mice) was then assessed. Pharmacologic inhibition of WIP1 enzymatic activity in either the telomerase mice with CG or in the Tg26 mice promoted partial remission of proteinuria and ameliorated kidney histopathologic features. Histological as well as high-throughput sequencing methods further showed that selective inhibition of WIP1 does not promote kidney fibrosis or inflammation. Thus, our findings suggest that targeting WIP1 may be an effective therapeutic strategy for patients with CG.


Asunto(s)
Nefropatía Asociada a SIDA , Glomeruloesclerosis Focal y Segmentaria , Insuficiencia Renal , Telomerasa , Adulto , Humanos , Ratones , Animales , Glomeruloesclerosis Focal y Segmentaria/patología , Telomerasa/uso terapéutico , Nefropatía Asociada a SIDA/patología , Proteinuria , Insuficiencia Renal/complicaciones , Modelos Animales de Enfermedad
2.
NPJ Regen Med ; 7(1): 15, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35149726

RESUMEN

Homeostatic renal filtration relies on the integrity of podocytes, which function in glomerular filtration. These highly specialized cells are damaged in 90% of chronic kidney disease, representing the leading cause of end-stage renal failure. Although modest podocyte renewal has been documented in adult mice, the mechanisms regulating this process remain largely unknown and controversial. Using a mouse model of Adriamycin-induced nephropathy, we find that the recovery of filtration function requires up-regulation of the endogenous telomerase component TERT. Previous work has shown that transient overexpression of catalytically inactive TERT (i-TERTci mouse model) has an unexpected role in triggering dramatic podocyte proliferation and renewal. We therefore used this model to conduct specific and stochastic lineage-tracing strategies in combination with high throughput sequencing methods. These experiments provide evidence that TERT drives the activation and clonal expansion of podocyte progenitor cells. Our findings demonstrate that the adult kidney bears intrinsic regenerative capabilities involving the protein component of telomerase, paving the way for innovative research toward the development of chronic kidney disease therapeutics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA