Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 29(50): e202301855, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37313627

RESUMEN

Fluorometric assays are one of the most frequently used methods in medicinal chemistry. Over the last 50 years, the reporter molecules for the detection of protease activity have evolved from first-generation colorimetric p-nitroanilides, through FRET substrates, and 7-amino-4-methyl coumarin (AMC)-based substrates. The aim of further substrate development is to increase sensitivity and reduce vulnerability to assay interferences. Herein, we describe a new generation of substrates for protease assays based on 7-nitrobenz-2-oxa-1,3-diazol-4-yl-amides (NBD-amides). In this study, we synthesized and tested substrates for 10 different proteases from the serine-, cysteine-, and metalloprotease classes. Enzyme- and substrate-specific parameters as well as the inhibitory activity of literature-known inhibitors confirmed their suitability for application in fluorometric assays. Hence, we were able to present NBD-based alternatives for common protease substrates. In conclusion, these NBD substrates are not only less susceptible to common assay interference, but they are also able to replace FRET-based substrates with the requirement of a prime site amino acid residue.


Asunto(s)
Amidas , Péptido Hidrolasas , Colorantes Fluorescentes/metabolismo , Fluorometría , Endopeptidasas
2.
Arch Pharm (Weinheim) ; 356(4): e2200518, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36480352

RESUMEN

Cyclization of small molecules is a widely applied strategy in drug design for ligand optimization to improve affinity, as it eliminates the putative need for structural preorganization of the ligand before binding, or to improve pharmacokinetic properties. In this work, we provide a deeper insight into the binding thermodynamics of a macrocyclic Zika virus NS2B/NS3 protease inhibitor and its linear analogs. Characterization of the thermodynamic binding profiles by isothermal titration calorimetry experiments revealed an unfavorable entropy of the macrocycle compared to the open linear reference ligands. Molecular dynamic simulations and X-ray crystal structure analysis indicated only minor benefits from macrocyclization to fixate a favorable conformation, while linear ligands retained some flexibility even in the protein-bound complex structure, possibly explaining the initially surprising effect of a higher entropic penalty for the macrocyclic ligand.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Virus Zika/metabolismo , Ligandos , Proteínas no Estructurales Virales , Conformación Proteica , Relación Estructura-Actividad , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/farmacología , Termodinámica , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química
3.
Arch Pharm (Weinheim) ; 356(8): e2300207, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37255416

RESUMEN

COVID-19 has caused many deaths since the first outbreak in 2019. The burden on healthcare systems around the world has been reduced by the success of vaccines. However, population adherence and the occurrence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are still challenging tasks to be affronted. In addition, the newly approved drug presents some limitations in terms of side effects and drug interference, highlighting the importance of searching for new antiviral agents against SARS-CoV-2. The SARS-CoV-2 main protease (Mpr o ) represents a versatile target to search for new drug candidates due to its essential role in proteolytic activities responsible for the virus replication. In this work, a series of 190 compounds, composed of 27 natural ones and 163 synthetic compounds, were screened in vitro for their inhibitory effects against SARS-CoV-2 Mpro . Twenty-five compounds inhibited Mpro with inhibitory constant values (Ki ) between 23.2 and 241 µM. Among them, a thiosemicarbazone derivative was the most active compound. Molecular docking studies using Protein Data Bank ID 5RG1, 5RG2, and 5RG3 crystal structures of Mpro revealed important interactions identified as hydrophobic, hydrogen bonding and steric interactions with amino acid residues in the active site cavity. Overall, our findings indicate the described thiosemicarbazones as good candidates to be further explored to develop antiviral leads against SARS-CoV-2. Moreover, the studies showed the importance of careful evaluation of test results to detect and exclude false-positive findings.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Relación Estructura-Actividad , Antivirales/farmacología , Antivirales/química , Simulación de Dinámica Molecular
4.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37108388

RESUMEN

Covalent peptidomimetic protease inhibitors have gained a lot of attention in drug development in recent years. They are designed to covalently bind the catalytically active amino acids through electrophilic groups called warheads. Covalent inhibition has an advantage in terms of pharmacodynamic properties but can also bear toxicity risks due to non-selective off-target protein binding. Therefore, the right combination of a reactive warhead with a well-suited peptidomimetic sequence is of great importance. Herein, the selectivities of well-known warheads combined with peptidomimetic sequences suited for five different proteases were investigated, highlighting the impact of both structure parts (warhead and peptidomimetic sequence) for affinity and selectivity. Molecular docking gave insights into the predicted binding modes of the inhibitors inside the binding pockets of the different enzymes. Moreover, the warheads were investigated by NMR and LC-MS reactivity assays against serine/threonine and cysteine nucleophile models, as well as by quantum mechanics simulations.


Asunto(s)
Peptidomiméticos , Inhibidores de Proteasas , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Peptidomiméticos/farmacología , Simulación del Acoplamiento Molecular , Aminoácidos/química , Cisteína/metabolismo
5.
J Chem Inf Model ; 61(4): 2062-2073, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33784094

RESUMEN

During almost all 2020, coronavirus disease 2019 (COVID-19) pandemic has constituted the major risk for the worldwide health and economy, propelling unprecedented efforts to discover drugs for its prevention and cure. At the end of the year, these efforts have culminated with the approval of vaccines by the American Food and Drug Administration (FDA) and the European Medicines Agency (EMA) giving new hope for the future. On the other hand, clinical data underscore the urgent need for effective drugs to treat COVID-19 patients. In this work, we embarked on a virtual screening campaign against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Mpro chymotrypsin-like cysteine protease employing our in-house database of peptide and non-peptide ligands characterized by different types of warheads acting as Michael acceptors. To this end, we employed the AutoDock4 docking software customized to predict the formation of a covalent adduct with the target protein. In vitro verification of the inhibition properties of the most promising candidates allowed us to identify two new lead inhibitors that will deserve further optimization. From the computational point of view, this work demonstrates the predictive power of AutoDock4 and suggests its application for the in silico screening of large chemical libraries of potential covalent binders against the SARS-CoV-2 Mpro enzyme.


Asunto(s)
COVID-19 , Inhibidores de Proteasas , Antivirales/farmacología , Humanos , Simulación del Acoplamiento Molecular , Pandemias , Inhibidores de Proteasas/farmacología , SARS-CoV-2
6.
Bioorg Med Chem ; 47: 116392, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34509861

RESUMEN

In recent years, dengue virus (DENV) and Zika virus (ZIKV), both mosquito-borne members of the Flaviviridae family, have emerged as intercontinental health issues since their vectors have spread from their tropical origins to temperate climate zones due to climate change and increasing globalization. DENV and ZIKV are positive-sense, single-stranded RNA viruses, whose genomes consist of three structural (capsid, membrane precursor, envelope) and seven non-structural (NS) proteins, all of which are initially expressed as a single precursor polyprotein. For virus maturation, the polyprotein processing is accomplished by host proteases and the viral NS2B/NS3 protease complex, whose inhibitors have been shown to be effective antiviral agents with loss of viral pathogenicity. In this work, we elucidate new structure-activity relationships of benzo[d]thiazole-based allosteric NS2B/NS3 inhibitors. We developed a new series of Y-shaped inhibitors, which, with its larger hydrophobic contact surface, should bind to previously unaddressed regions of the allosteric NS2B/NS3 binding pocket. By scaffold-hopping, we varied the benzo[d]thiazole core and identified benzofuran as a new lead scaffold shifting the selectivity of initially ZIKV-targeting inhibitors to higher activities towards the DENV protease. In addition, we were able to increase the ligand efficiency from 0.27 to 0.41 by subsequent inhibitor truncation and identified N-(5,6-dihydroxybenzo[d]thiazol-2-yl)-4-iodobenzamide as a novel sub-micromolar NS2B/NS3 inhibitor. Utilizing cell-based assays, we could prove the antiviral activity in cellulo. Overall, we report new series of sub-micromolar allosteric DENV and ZIKV inhibitors with good efficacy profile in terms of cytotoxicity and protease inhibition selectivity.


Asunto(s)
Benzotiazoles/farmacología , Inhibidores de Proteasas/farmacología , Serina Endopeptidasas/metabolismo , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas Virales/antagonistas & inhibidores , Regulación Alostérica/efectos de los fármacos , Benzotiazoles/síntesis química , Benzotiazoles/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/química , Relación Estructura-Actividad , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/metabolismo
7.
Biospektrum (Heidelb) ; 27(3): 254-256, 2021.
Artículo en Alemán | MEDLINE | ID: mdl-33994673

RESUMEN

The SARS-CoV-encoded papain-like cysteine protease (PLpro) plays crucial roles in viral replication and maturation processes. It is required to cleave the precursor polyproteins into functional proteins. Thus, it is considered to be a promising target for developing specific drugs. For rational optimization of hit compounds, information about the structure-activity relationship (SAR) is fundamental. Herein, we characterize isoindolines as a new class of PLpro inhibitors.

8.
Respirology ; 19(1): 67-73, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23796194

RESUMEN

BACKGROUND AND OBJECTIVE: In cases of infection-induced acute lung injury, mechanical ventilation might be necessary to maintain oxygenation. Although low tidal volume ventilation is applied, alveolar over-distension may occur and result in ventilator-induced lung injury. In this study, we investigate (i) the influence of lipopolysaccharide (LPS) stimulation on high-amplitude stretching; and (ii) the effect of stretching on LPS-mediated immune response in isolated rat alveolar type II cells. METHODS: Type II cells were incubated with LPS and stretched for 24 h on elastic membranes. Initially we examined apoptosis and lactic acid dehydrogenase release in LPS-treated stretched cells. Furthermore we determined toll-like receptor (TLR) 4 expression, TLR4 signalling by analysis of nuclear factor κB (NF-κB) activation and the secretion of inflammatory cytokines (monocyte chemoattractant protein-1, macrophage inflammatory protein-2, interleukin-1 beta, tumour necrosis factor alpha). RESULTS: Our results show that LPS increases apoptosis and cytotoxicity in high amplitude stretched cells. Stretching and LPS activate NF-κB. The LPS influence is the prevailing one while no synergistic effects were observed by additional stretching. LPS stimulates an increased secretion of the inflammatory mediators only. Stretching had no influence on cytokines secretion. CONCLUSIONS: We conclude that activation of TLR4 mediated immunity intensifies cell damage caused by stretching whereas in return stretching had no influence on TLR4 mediated innate immunity.


Asunto(s)
Lesión Pulmonar Aguda/inmunología , Células Epiteliales Alveolares/inmunología , Apoptosis/inmunología , Inmunidad Innata/fisiología , Receptores de Estiramiento Pulmonares/metabolismo , Receptor Toll-Like 4/metabolismo , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Animales , Western Blotting , Células Cultivadas , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Inmunohistoquímica , Masculino , Receptores de Estiramiento Pulmonares/inmunología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/inmunología , Receptor Toll-Like 4/inmunología
9.
Commun Chem ; 7(1): 15, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238420

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic continues to represent a global public health issue. The viral main protease (Mpro) represents one of the most attractive targets for the development of antiviral drugs. Herein we report peptidyl nitroalkenes exhibiting enzyme inhibitory activity against Mpro (Ki: 1-10 µM) good anti-SARS-CoV-2 infection activity in the low micromolar range (EC50: 1-12 µM) without significant toxicity. Additional kinetic studies of compounds FGA145, FGA146 and FGA147 show that all three compounds inhibit cathepsin L, denoting a possible multitarget effect of these compounds in the antiviral activity. Structural analysis shows the binding mode of FGA146 and FGA147 to the active site of the protein. Furthermore, our results illustrate that peptidyl nitroalkenes are effective covalent reversible inhibitors of the Mpro and cathepsin L, and that inhibitors FGA145, FGA146 and FGA147 prevent infection against SARS-CoV-2.

10.
Respiration ; 85(4): 319-25, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23128844

RESUMEN

BACKGROUND: A high flow of air applied by large bore nasal cannulae has been suggested to improve symptoms of chronic respiratory insufficiency. In pediatric patients, nasal high-flow (nHF) ventilation was similarly effective compared to noninvasive ventilation with a face mask. OBJECTIVES: The aim of this study was to describe changes in respiratory parameters. METHODS: We measured pressure amplitudes during the respiratory cycle and mean pressures in patients with idiopathic pulmonary fibrosis (IPF) and COPD. In order to achieve tidal volume and minute volume measurements, we used a polysomnography device. Capillary blood was taken for blood gas analysis before and after nHF breathing (8 h). RESULTS: nHF led to an increase in pressure amplitude and mean pressure in healthy volunteers and in patients with COPD and IPF in comparison with spontaneous breathing. In COPD, nHF increased tidal volume, while no difference in tidal volume was observed in patients with IPF. Interestingly, tidal volume decreased in healthy volunteers. Breathing rates and minute volumes were reduced in all groups. Capillary pCO2 decreased in patients with IPF and COPD. CONCLUSIONS: nHF resulted in significant effects on respiratory parameters in patients with obstructive and restrictive pulmonary diseases. The rise in pressure amplitude and mean pressure and the decrease in breathing rate and minute volume will support inspiratory efforts, helps to increase effectiveness of ventilation and will contribute to a reduction in the work of breathing. A CO2 wash-out effect in the upper airway part of the anatomical dead space may contribute to the beneficial effects of the nHF instrument.


Asunto(s)
Presión de las Vías Aéreas Positiva Contínua , Fibrosis Pulmonar Idiopática/fisiopatología , Ventilación no Invasiva , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Ventilación Pulmonar/fisiología , Adolescente , Adulto , Anciano , Resistencia de las Vías Respiratorias/fisiología , Estudios de Cohortes , Femenino , Humanos , Fibrosis Pulmonar Idiopática/terapia , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/terapia , Frecuencia Respiratoria/fisiología , Volumen de Ventilación Pulmonar/fisiología , Adulto Joven
11.
Protein Sci ; 32(1): e4526, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461913

RESUMEN

Ligand binding to proteins often is accompanied by conformational transitions. Here, we describe a competition assay based on single molecule Förster resonance energy transfer (smFRET) to investigate the ligand-induced conformational changes of the dengue virus (DENV) NS2B-NS3 protease, which can adopt at least two different conformations. First, a competitive ligand was used to stabilize the closed conformation of the protease. Subsequent addition of the allosteric inhibitor reduced the fraction of the closed conformation and simultaneously increased the fraction of the open conformation, demonstrating that the allosteric inhibitor stabilizes the open conformation. In addition, the proportions of open and closed conformations at different concentrations of the allosteric inhibitor were used to determine its binding affinity to the protease. The KD value observed is in accordance with the IC50 determined in the fluorometric assay. Our novel approach appears to be a valuable tool to study conformational transitions of other proteases and enzymes.


Asunto(s)
Virus del Dengue , Virus del Dengue/metabolismo , Péptido Hidrolasas/metabolismo , Ligandos , Transferencia Resonante de Energía de Fluorescencia , Proteínas no Estructurales Virales/química , Antivirales/química
12.
RSC Med Chem ; 14(5): 969-982, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37252099

RESUMEN

Understanding different contributions to the binding entropy of ligands is of utmost interest to better predict affinity and the thermodynamic binding profiles of protein-ligand interactions and to develop new strategies for ligand optimization. To these means, the largely neglected effects of introducing higher ligand symmetry, thereby reducing the number of energetically distinguishable binding modes on binding entropy using the human matriptase as a model system, were investigated. A set of new trivalent phloroglucinol-based inhibitors that address the roughly symmetric binding site of the enzyme was designed, synthesized, and subjected to isothermal titration calorimetry. These highly symmetric ligands that can adopt multiple indistinguishable binding modes exhibited high entropy-driven affinity in line with affinity-change predictions.

13.
Eur J Med Chem ; 258: 115573, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37379675

RESUMEN

Zika and dengue viruses cause mosquito-borne diseases of high epidemic relevance. The viral NS2B-NS3 proteases play crucial roles in the pathogen replication cycle and are validated drug targets. They can adopt at least two conformations depending on the position of the NS2B cofactor. Recently, we reported ligand-induced conformational changes of dengue virus NS2B-NS3 protease by single-molecule Förster resonance energy transfer (smFRET). Here, we investigated the conformational dynamics of the homologous Zika virus protease through an integrated methodological approach combining smFRET, thermal shift assays (DSF and nanoDSF) and 19F NMR spectroscopy. Our results show that allosteric inhibitors favor the open conformation and competitive inhibitors stabilize the closed conformation of the Zika virus protease.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Animales , Péptido Hidrolasas , Transferencia Resonante de Energía de Fluorescencia , Serina Endopeptidasas/metabolismo , Proteínas no Estructurales Virales , Conformación Proteica , Espectroscopía de Resonancia Magnética , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química
14.
Eur J Med Chem ; 247: 115021, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36549112

RESUMEN

Despite several major achievements in the development of vaccines and antivirals, the fight against SARS-CoV-2 and the health problems accompanying COVID-19 are still ongoing. SARS-CoV-2 main protease (Mpro), an essential viral cysteine protease, is a crucial target for the development of antiviral agents. A virtual screening analysis of in-house cysteine protease inhibitors against SARS-CoV-2 Mpro allowed us to identify two hits (i.e., 1 and 2) bearing a methyl vinyl ketone warhead. Starting from these compounds, we herein report the development of Michael acceptors targeting SARS-CoV-2 Mpro, which differ from each other for the warhead and for the amino acids at the P2 site. The most promising vinyl methyl ketone-containing analogs showed sub-micromolar activity against the viral protease. SPR38, SPR39, and SPR41 were fully characterized, and additional inhibitory properties towards hCatL, which plays a key role in the virus entry into host cells, were observed. SPR39 and SPR41 exhibited single-digit micromolar EC50 values in a SARS-CoV-2 infection model in cell culture.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Inhibidores de Proteasas/química , Proteínas no Estructurales Virales , Antivirales/química , Péptidos , Cetonas/farmacología , Simulación del Acoplamiento Molecular
15.
Curr Med Chem ; 29(4): 635-665, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34042026

RESUMEN

Due to its fast international spread and substantial mortality, the coronavirus disease COVID-19 evolved to a global threat. Since there is currently no causative drug against this viral infection available, science is striving for new drugs and other approaches to treat the new disease. Studies have shown that the cell entry of coronaviruses into host cells takes place through the binding of the viral spike (S) protein to cell receptors. Priming of the S protein occurs via hydrolysis by different host proteases. The inhibition of these proteases could impair the processing of the S protein, thereby affecting the interaction with the host-cell receptors and preventing virus cell entry. Hence, inhibition of these proteases could be a promising strategy for treatment against SARSCoV- 2. In this review, we discuss the current state of the art of developing inhibitors against the entry proteases furin, the transmembrane serine protease type-II (TMPRSS2), trypsin, and cathepsin L.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Humanos , Serina Proteasas , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
16.
HardwareX ; 11: e00256, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35509940

RESUMEN

Differential scanning fluorimetry (DSF) is a widely used biophysical technique with applications to drug discovery and protein biochemistry. DSF experiments are commonly performed in commercial real-time polymerase chain reaction (qPCR) thermal cyclers or nanoDSF instruments. Here, we report the construction, validation, and example applications of an open-source DSF system for 176 €, which, in addition to protein-DSF experiments, also proved to be a versatile biophysical instrument for less conventional RNA-DSF experiments. Using 3D-printed parts made of polyoxymethylene, we were able to fabricate a thermostable machine chassis for protein-melting experiments. The combination of blue high-power LEDs as the light source and stage light foil as filter components was proven to be a reliable and affordable alternative to conventional optics equipment for the detection of SYPRO Orange or Sybr Gold fluorescence. The ESP32 microcontroller is the core piece of this openDSF instrument, while the in-built I2S interface was found to be a powerful analog-to-digital converter for fast acquisition of fluorescence and temperature data. Airflow heating and inline temperature control by thermistors enabled high-accuracy temperature management in PCR tubes (±0.1 °C) allowing us to perform high-resolution thermal shift assays (TSA) from exemplary biological applications.

17.
ACS Chem Biol ; 17(3): 576-589, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35262340

RESUMEN

Protease inhibitors represent a promising therapeutic option for the treatment of parasitic diseases such as malaria and human African trypanosomiasis. Falcitidin was the first member of a new class of inhibitors of falcipain-2, a cysteine protease of the malaria parasite Plasmodium falciparum. Using a metabolomics dataset of 25 Chitinophaga strains for molecular networking enabled identification of over 30 natural analogues of falcitidin. Based on MS/MS spectra, they vary in their amino acid chain length, sequence, acyl residue, and C-terminal functionalization; therefore, they were grouped into the four falcitidin peptide families A-D. The isolation, characterization, and absolute structure elucidation of two falcitidin-related pentapeptide aldehyde analogues by extensive MS/MS spectrometry and NMR spectroscopy in combination with advanced Marfey's analysis was in agreement with the in silico analysis of the corresponding biosynthetic gene cluster. Total synthesis of chosen pentapeptide analogues followed by in vitro testing against a panel of proteases revealed selective parasitic cysteine protease inhibition and, additionally, low-micromolar inhibition of α-chymotrypsin. The pentapeptides investigated here showed superior inhibitory activity compared to falcitidin.


Asunto(s)
Antimaláricos , Proteasas de Cisteína , Malaria , Parásitos , Animales , Antimaláricos/farmacología , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/farmacología , Humanos , Plasmodium falciparum , Espectrometría de Masas en Tándem
18.
ACS Med Chem Lett ; 13(7): 1083-1090, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35859868

RESUMEN

Human African Trypanosomiasis (HAT) is a neglected tropical disease widespread in sub-Saharan Africa. Rhodesain, a cysteine protease of Trypanosoma brucei rhodesiense, has been identified as a valid target for the development of anti-HAT agents. Herein, we report a series of urea-bond-containing Michael acceptors, which were demonstrated to be potent rhodesain inhibitors with K i values ranging from 0.15 to 2.51 nM, and five of them showed comparable k 2nd values to that of K11777, a potent antitrypanosomal agent. Moreover, most of the urea derivatives exhibited single-digit micromolar activity against the protozoa, and the presence of substituents at the P3 position appears to be essential for the antitrypanosomal effect. Replacement of Phe with Leu at the P2 site kept unchanged the inhibitory properties. Compound 7 (SPR7) showed the best compromise in terms of rhodesain inhibition, selectivity, and antiparasitic activity, thus representing a new lead compound for future SAR studies.

19.
Transl Lung Cancer Res ; 11(10): 2010-2021, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36386456

RESUMEN

Background: Immune checkpoint inhibitors (ICIs) with or without chemotherapy represent first-line standard of care for patients with advanced non-small cell lung cancer (NSCLC) without targetable driver mutations. The most appropriate second-line therapy after failing immunochemotherapy remains an open question. Nintedanib, an oral triple angiokinase inhibitor that targets the vascular endothelial growth factor receptor, fibroblast growth factor receptor, and, platelet-derived growth factor receptor, in combination with docetaxel, is approved for treatment of advanced NSCLC (adenocarcinoma histology) following progression on first-line chemotherapy. Methods: VARGADO (NCT02392455) is an ongoing, prospective, non-interventional study investigating the efficacy and safety of nintedanib plus docetaxel following first-line chemotherapy with or without ICIs in patients with locally advanced, metastatic, or locally recurrent NSCLC of adenocarcinoma histology. This analysis focuses on Cohort C, which enrolled patients who had received prior first line chemotherapy with ICIs. Patients received second-line docetaxel (75 mg/m2) by intravenous infusion on Day 1, plus oral nintedanib (200 mg twice daily) on Days 2-21 of each 21-day cycle during routine clinical care. The primary endpoint is overall survival (OS) rate 1 year after the start of treatment with nintedanib plus docetaxel. Secondary endpoints include progression-free survival (PFS), OS, and disease control rate (DCR). Safety was also assessed. Results: Among 137 patients treated, the median age was 63 years (range, 37-84); 57 patients (41.6%) were female, most patients had Eastern Cooperative Oncology Group performance status of 0 (28.5%) or 1 (43.1%); 118 (86.1%) had stage IV NSCLC and 27 (19.7%) had brain metastases. Most (n=120, 87.6%) patients had received pembrolizumab/pemetrexed/platinum-based chemotherapy as first-line treatment. In 80 patients with available response data, the DCR was 72.5% (complete response: 1.3%; partial response: 36.3%; stable disease: 35.0%). Median progression-free survival was 4.8 months (95% confidence interval: 3.7-6.6). OS data were immature. Grade ≥3 treatment-emergent adverse events (TEAEs), serious TEAEs, and TEAEs leading to treatment discontinuation were reported in 62 (45.3%), 50 (36.5%), and 40 patients (29.2%), respectively. Conclusions: This analysis indicates that nintedanib plus docetaxel represents an effective second-line treatment option in patients with advanced adenocarcinoma NSCLC following progression on first-line immunochemotherapy. The safety profile was manageable with no unexpected signals.

20.
J Antibiot (Tokyo) ; 75(6): 321-332, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35440771

RESUMEN

Staphylococcus aureus is one of the most dangerous pathogens commonly associated with high levels of morbidity and mortality. Sortase A is considered as a promising molecular target for the development of antistaphylococcal agents. Using hybrid virtual screening approach and FRET analysis, we have identified five compounds able to decrease the activity of sortase A by more than 50% at the concentration of 200 µM. The most promising compound was 2-(2-amino-3-chloro-benzoylamino)-benzoic acid which was able to inhibit S. aureus sortase A at the IC50 value of 59.7 µM. This compound was selective toward sortase A compared to other four cysteine proteases - cathepsin L, cathepsin B, rhodesain, and the SARS-CoV2 main protease. Microscale thermophoresis experiments confirmed that this compound bound sortase A with KD value of 189 µM. Antibacterial and antibiofilm assays also confirmed high specificity of the hit compound against two standard and three wild-type, S. aureus hospital infection isolates. The effect of the compound on biofilms produced by two S. aureus ATCC strains was also observed suggesting that the compound reduced biofilm formation by changing the biofilm structure and thickness.


Asunto(s)
COVID-19 , Infecciones Estafilocócicas , Aminoaciltransferasas , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Biopelículas , Cisteína Endopeptidasas , Humanos , Pruebas de Sensibilidad Microbiana , ARN Viral/farmacología , SARS-CoV-2 , Staphylococcus aureus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA