Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.293
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 21(8): e3002227, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37531320

RESUMEN

Phosphoinositide-dependent kinase-1 (PDK1) is a master kinase of the protein A, G, and C (AGC) family kinases that play important roles in regulating cancer cell proliferation, survival, and metabolism. Besides phosphorylating/activating AKT at the cell membrane in a PI3K-dependent manner, PDK1 also exhibits constitutive activity on many other AGC kinases for tumor-promoting activity. In the latter case, PDK1 protein levels dominate its activity. We previously reported that MAPK4, an atypical MAPK, can PI3K-independently promote AKT activation and tumor growth. Here, using triple-negative breast cancer (TNBC) cell models, we demonstrate that MAPK4 can also enhance PDK1 protein synthesis, thus phosphorylate/activate PDK1 substrates beyond AKT. This new MAPK4-PDK1 axis alone lacks vigorous tumor-promoting activity but cooperates with our previously reported MAPK4-AKT axis to promote tumor growth. Besides enhancing resistance to PI3K blockade, MAPK4 also promotes cancer cell resistance to the more stringent PI3K and PDK1 co-blockade, a recently proposed therapeutic strategy. Currently, there is no MAPK4 inhibitor to treat MAPK4-high cancers. Based on the concerted action of MAPK4-AKT and MAPK4-PDK1 axis in promoting cancer, we predict and confirm that co-targeting AKT and PDK1 effectively represses MAPK4-induced cancer cell growth, suggesting a potential therapeutic strategy to treat MAPK4-high cancers.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Proteínas Quinasas Activadas por Mitógenos , Neoplasias , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neoplasias/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
2.
Proc Natl Acad Sci U S A ; 120(33): e2220472120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549269

RESUMEN

Dysregulation of histone lysine methyltransferases and demethylases is one of the major mechanisms driving the epigenetic reprogramming of transcriptional networks in castration-resistant prostate cancer (CRPC). In addition to their canonical histone targets, some of these factors can modify critical transcription factors, further impacting oncogenic transcription programs. Our recent report demonstrated that LSD1 can demethylate the lysine 270 of FOXA1 in prostate cancer (PCa) cells, leading to the stabilization of FOXA1 chromatin binding. This process enhances the activities of the androgen receptor and other transcription factors that rely on FOXA1 as a pioneer factor. However, the identity of the methyltransferase responsible for FOXA1 methylation and negative regulation of the FOXA1-LSD1 oncogenic axis remains unknown. SETD7 was initially identified as a transcriptional activator through its methylation of histone 3 lysine 4, but its function as a methyltransferase on nonhistone substrates remains poorly understood, particularly in the context of PCa progression. In this study, we reveal that SETD7 primarily acts as a transcriptional repressor in CRPC cells by functioning as the major methyltransferase targeting FOXA1-K270. This methylation disrupts FOXA1-mediated transcription. Consistent with its molecular function, we found that SETD7 confers tumor suppressor activity in PCa cells. Moreover, loss of SETD7 expression is significantly associated with PCa progression and tumor aggressiveness. Overall, our study provides mechanistic insights into the tumor-suppressive and transcriptional repression activities of SETD7 in mediating PCa progression and therapy resistance.


Asunto(s)
Histonas , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Histonas/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Lisina/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Metiltransferasas/metabolismo , Histona Demetilasas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismo
3.
Circulation ; 149(20): 1578-1597, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38258575

RESUMEN

BACKGROUND: Calcification of the aortic valve leads to increased leaflet stiffness and consequently results in the development of calcific aortic valve disease (CAVD). However, the underlying molecular and cellular mechanisms of calcification remain unclear. Here, we identified a novel aortic valve calcification-associated PIWI-interacting RNA (piRNA; AVCAPIR) that increases valvular calcification and promotes CAVD progression. METHODS: Using piRNA sequencing, we identified piRNAs contributing to the pathogenesis of CAVD that we termed AVCAPIRs. High-cholesterol diet-fed ApoE-/- mice with AVCAPIR knockout were used to examine the role of AVCAPIR in aortic valve calcification (AVC). Gain- and loss-of-function assays were conducted to determine the role of AVCAPIR in the induced osteogenic differentiation of human valvular interstitial cells. To dissect the mechanisms underlying AVCAPIR-elicited procalcific effects, we performed various analyses, including an RNA pulldown assay followed by liquid chromatography-tandem mass spectrometry, methylated RNA immunoprecipitation sequencing, and RNA sequencing. RNA pulldown and RNA immunoprecipitation assays were used to study piRNA interactions with proteins. RESULTS: We found that AVCAPIR was significantly upregulated during AVC and exhibited potential diagnostic value for CAVD. AVCAPIR deletion markedly ameliorated AVC in high-cholesterol diet-fed ApoE-/- mice, as shown by reduced thickness and calcium deposition in the aortic valve leaflets, improved echocardiographic parameters (decreased peak transvalvular jet velocity and mean transvalvular pressure gradient, as well as increased aortic valve area), and diminished levels of osteogenic markers (Runx2 and Osterix) in aortic valves. These results were confirmed in osteogenic medium-induced human valvular interstitial cells. Using unbiased protein-RNA screening and molecular validation, we found that AVCAPIR directly interacts with FTO (fat mass and obesity-associated protein), subsequently blocking its N6-methyladenosine demethylase activity. Further transcriptomic and N6-methyladenosine modification epitranscriptomic screening followed by molecular validation confirmed that AVCAPIR hindered FTO-mediated demethylation of CD36 mRNA transcripts, thus enhancing CD36 mRNA stability through the N6-methyladenosine reader IGF2BP1 (insulin-like growth factor 2 mRNA binding protein 1). In turn, the AVCAPIR-dependent increase in CD36 stabilizes its binding partner PCSK9 (proprotein convertase subtilisin/kexin type 9), a procalcific gene, at the protein level, which accelerates the progression of AVC. CONCLUSIONS: We identified a novel piRNA that induced AVC through an RNA epigenetic mechanism and provide novel insights into piRNA-directed theranostics in CAVD.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Calcinosis , ARN Interferente Pequeño , Animales , Calcinosis/metabolismo , Calcinosis/genética , Calcinosis/patología , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Válvula Aórtica/anomalías , Humanos , Ratones , Estenosis de la Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/genética , Estenosis de la Válvula Aórtica/patología , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/genética , Masculino , Osteogénesis , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales de Enfermedad , Enfermedad de la Válvula Aórtica/metabolismo , Enfermedad de la Válvula Aórtica/genética , Enfermedad de la Válvula Aórtica/patología , ARN de Interacción con Piwi
4.
Cell ; 141(6): 943-55, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20550931

RESUMEN

Reprogramming of somatic cells achieved by combination of the four transcription factors Oct4, Sox2, Klf4, and c-Myc has very low efficiency. To increase the reprogramming efficiency and better understand the process, we sought to identify factors that mediate reprogramming with higher efficiency. We established an assay to screen nuclear fractions from extracts of pluripotent mouse cells based on Oct4 reactivation. Using proteomics, we identified components of the ATP-dependent BAF chromatin-remodeling complex, which significantly increases reprogramming efficiency when used together with the four factors. The reprogrammed cells could transmit to the germline and exhibited pluripotency. Reprogramming remained highly efficient when c-Myc was not present but BAF components were overexpressed. BAF complex components mediate this effect by facilitating enhanced Oct4 binding to target promoters during reprogramming. Thus, somatic cell reprogramming using chromatin-remodeling molecules represents an efficient method of generating reprogrammed cells.


Asunto(s)
Reprogramación Celular , Ensamble y Desensamble de Cromatina , Animales , Línea Celular , Cromatina/metabolismo , ADN Helicasas/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica , Factor 4 Similar a Kruppel , Ratones , Proteínas Nucleares/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/metabolismo
5.
Cell ; 143(4): 617-27, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-21056461

RESUMEN

Embryonic stem cells (ESCs) comprise at least two populations of cells with divergent states of pluripotency. Here, we show that epiblast stem cells (EpiSCs) also comprise two distinct cell populations that can be distinguished by the expression of a specific Oct4-GFP marker. These two subpopulations, Oct4-GFP positive and negative EpiSCs, are capable of converting into each other in vitro. Oct4-GFP positive and negative EpiSCs are distinct from ESCs with respect to global gene expression pattern, epigenetic profile, and Oct4 enhancer utilization. Oct4-GFP negative cells share features with cells of the late mouse epiblast and cannot form chimeras. However, Oct4-GFP positive EpiSCs, which only represent a minor EpiSC fraction, resemble cells of the early epiblast and can readily contribute to chimeras. Our findings suggest that the rare ability of EpiSCs to contribute to chimeras is due to the presence of the minor EpiSC fraction representing the early epiblast.


Asunto(s)
Estratos Germinativos/citología , Ratones/embriología , Células Madre/citología , Animales , Femenino , Perfilación de la Expresión Génica , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Factor 3 de Transcripción de Unión a Octámeros/análisis , Factor 3 de Transcripción de Unión a Octámeros/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo
6.
Nucleic Acids Res ; 51(D1): D708-D716, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36271801

RESUMEN

Fungal taxonomy is a complex and rapidly changing subject, which makes proper naming of fungi challenging for taxonomists. A registration platform with a standardized and information-integrated database is a powerful tool for efficient research on fungal taxonomy. Fungal Names (FN, https://nmdc.cn/fungalnames/; launched in 2011) is one of the three official fungal nomenclatural repositories authorized by the International Nomenclature Committee for Fungi (NCF). Currently, FN includes >567 000 taxon names from >10 000 related journals and books published since 1596 and covers >147 000 collection records of type specimens/illustrations from >5000 preserving agencies. FN is also a knowledge base that integrates nomenclature information with specimens, culture collections and herbaria/fungaria, publications and taxonomists, and represents a summary of the history and recent advances in fungal taxonomy. Published fungal names are categorized based on well-accepted nomenclature rules and can be readily searched with different keywords and strategies. In combination with a standardized name checking tool and a sequence alignment-based identification package, FN makes the registration and typification of nomenclatural novelties of fungi convenient and accurate.


Asunto(s)
Hongos , Bases del Conocimiento , Manejo de Datos , Bases de Datos Factuales , Alineación de Secuencia , Hongos/clasificación , Terminología como Asunto
7.
Differentiation ; 135: 100742, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38104501

RESUMEN

Hepatic organoids might provide a golden opportunity for realizing precision medicine in various hepatic diseases. Previously described hepatic organoid protocols from pluripotent stem cells rely on complicated multiple differentiation steps consisting of both 2D and 3D differentiation procedures. Therefore, the spontaneous formation of hepatic organoids from 2D monolayer culture is associated with a low-throughput production, which might hinder the standardization of hepatic organoid production and hamper the translation of this technology to the clinical or industrial setting. Here we describe the stepwise and fully 3D production of hepatic organoids from human pluripotent stem cells. We optimized every differentiation step by screening for optimal concentrations and timing of differentiation signals in each differentiation step. Hepatic organoids are stably expandable without losing their hepatic functionality. Moreover, upon treatment of drugs with known hepatotoxicity, we found hepatic organoids are more sensitive to drug-induced hepatotoxicity compared with 2D hepatocytes differentiated from PSCs, making them highly suitable for in vitro toxicity screening of drug candidates. The standardized fully 3D protocol described in the current study for producing functional hepatic organoids might serve as a novel platform for the industrial and clinical translation of hepatic organoid technology.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Diferenciación Celular/genética , Organoides
8.
J Proteome Res ; 23(3): 1075-1087, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38376246

RESUMEN

Severe acute pancreatitis (SAP) is a highly fatal abdominal emergency, and its association with protein arginine methyltransferase 7 (PRMT7), the sole known type III enzyme responsible for the monomethylation of arginine residue, remains unexplored. In this study, we observe an increase in the PRMT7 levels in the pancreas of SAP mice and Cerulein-LPS-stimulated AR42J cells. Overexpression of Prmt7 exacerbated pancreatic damage in SAP, while the inhibition of PRMT7 improved SAP-induced pancreatic damage. Furthermore, PRMT7 overexpression promoted inflammation, oxidative stress, and ferroptosis during SAP. Mechanically, PRMT7 catalyzed monomethylation at histone H4 arginine 3 (H4R3me1) at the promoter region of high mobility group proteins 2 (HMGB2), thereby enhancing its transcriptional activity. Subsequently, HMGB2 facilitated Acyl CoA synthase long-chain family member 1 (ACSL1) transcription by binding to its promoter region, resulting in the activation of ferroptosis. Inhibition of PRMT7 effectively alleviated ferroptosis in Cerulein-LPS-induced AR42J cells by suppressing the HMGB2-ACSL1 pathway. Overall, our study reveals that PRMT7 plays a crucial role in promoting SAP through its regulation of the HMGB2-ACSL1 pathway to accelerate ferroptosis.


Asunto(s)
Ferroptosis , Pancreatitis , Animales , Ratones , Enfermedad Aguda , Arginina , Ceruletida , Ferroptosis/genética , Proteína HMGB2 , Lipopolisacáridos , Pancreatitis/inducido químicamente , Pancreatitis/genética , Proteína-Arginina N-Metiltransferasas/genética , Factores de Transcripción , Activación Transcripcional
9.
BMC Genomics ; 25(1): 28, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172677

RESUMEN

BACKGROUND: Enterococcus faecium and E. lactis are phylogenetically closely related lactic acid bacteria that are ubiquitous in nature and are known to be beneficial or pathogenic. Despite their considerable industrial and clinical importance, comprehensive studies on their evolutionary relationships and genomic, metabolic, and pathogenic traits are still lacking. Therefore, we conducted comparative pangenome analyses using all available dereplicated genomes of these species. RESULTS: E. faecium was divided into two subclades: subclade I, comprising strains derived from humans, animals, and food, and the more recent phylogenetic subclade II, consisting exclusively of human-derived strains. In contrast, E. lactis strains, isolated from diverse sources including foods, humans, animals, and the environment, did not display distinct clustering based on their isolation sources. Despite having similar metabolic features, noticeable genomic differences were observed between E. faecium subclades I and II, as well as E. lactis. Notably, E. faecium subclade II strains exhibited significantly larger genome sizes and higher gene counts compared to both E. faecium subclade I and E. lactis strains. Furthermore, they carried a higher abundance of antibiotic resistance, virulence, bacteriocin, and mobile element genes. Phylogenetic analysis of antibiotic resistance and virulence genes suggests that E. faecium subclade II strains likely acquired these genes through horizontal gene transfer, facilitating their effective adaptation in response to antibiotic use in humans. CONCLUSIONS: Our study offers valuable insights into the adaptive evolution of E. faecium strains, enabling their survival as pathogens in the human environment through horizontal gene acquisitions.


Asunto(s)
Enterococcus faecium , Animales , Humanos , Filogenia , Enterococcus , Genómica , Antibacterianos
10.
Am J Transplant ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38561059

RESUMEN

Calcineurin inhibitors (CNIs) are essential in liver transplantation (LT); however, their long-term use leads to various adverse effects. The anti-intercellular adhesion molecule (ICAM)-1 monoclonal antibody MD3 is a potential alternative to CNI. Despite its promising results with short-term therapy, overcoming the challenge of chronic rejection remains important. Thus, we aimed to investigate the outcomes of long-term MD3 therapy with monthly MD3 monomaintenance in nonhuman primate LT models. Rhesus macaques underwent major histocompatibility complex-mismatched allogeneic LT. The conventional immunosuppression group (Con-IS, n = 4) received steroid, tacrolimus, and sirolimus by 4 months posttransplantation. The induction MD3 group (IN-MD3, n = 5) received short-term MD3 therapy for 3 months with Con-IS. The maintenance MD3 group (MA-MD3, n = 4) received MD3 for 3 months, monthly doses by 2 years, and then quarterly. The MA-MD3 group exhibited stable liver function without overt infection and had significantly better liver allograft survival than the IN-MD3 group. Development of donor-specific antibody and chronic rejection were suppressed in the MA-MD3 group but not in the IN-MD3 group. Donor-specific T cell responses were attenuated in the MA-MD3 group. In conclusion, MD3 monomaintenance therapy without maintenance CNI provides long-term liver allograft survival by suppressing chronic rejection, offering a potential breakthrough for future human trials.

11.
Anal Chem ; 96(1): 204-211, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38148285

RESUMEN

There are many flow behaviors in solid tumors, including intravascular, bloodstream, and interstitial convection. Studies have shown that tumor interstitial fluid (TIF) is an important part of tumor microenvironment regulation and affects drug delivery and metabolism between tumor cells. Magnetic resonance imaging (MRI) is suitable for detecting the flow rates of liquids in tissues. Clinical phase contrast PC-MRI technology has been designed to observe the blood flow in large vessels such as arteries and veins; however, it is not sensitive enough to deal with slow flow velocity. Our previously developed vertical plane echo PC-MRI technology, the Velocity Mapping sequence, improved the signal-to-noise ratio (SNR) for measuring slow interstitial fluid rate. In this study, this sequence was used to determine the TIF flow rate in MDA-MB-231 human breast tumor cells used in BALB/c nude male mice. Two different sizes of contrast agents were intravenously injected, and the relationship between their distribution and the TIF flow rate was studied for the first time. Combining the results of clinical scanning showed that small-molecule DTPA-Gd (diethylenetriaminepentaacetic acid-gadolinium) was distributed immediately around the tumor margin after the injection. This distribution was positively correlated to the high flow rate area of the TIF before administration. In contrast, nanoparticles NaGdF4-PEG (polyethylene glycol) entered the tumor and reached their peak at 3 h. Drug distribution was negatively correlated with the high-flow-rate region of the TIF. Investigation of the TIF velocity can help better understand the fluid behavior in tumors and its role in drug delivery.


Asunto(s)
Neoplasias de la Mama , Líquido Extracelular , Ratones , Animales , Masculino , Humanos , Líquido Extracelular/metabolismo , Imagen por Resonancia Magnética/métodos , Sistemas de Liberación de Medicamentos , Ácido Pentético , Neoplasias de la Mama/metabolismo , Medios de Contraste/metabolismo , Gadolinio DTPA/metabolismo , Microambiente Tumoral
12.
Cancer Immunol Immunother ; 73(3): 58, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38386050

RESUMEN

B cells possess anti-tumor functions mediated by granzyme B, in addition to their role in antigen presentation and antibody production. However, the variations in granzyme B+ B cells between tumor and non-tumor tissues have been largely unexplored. Therefore, we integrated 25 samples from the Gene Expression Omnibus database and analyzed the tumor immune microenvironment. The findings uncovered significant inter- and intra-tumoral heterogeneity. Notably, single-cell data showed higher proportions of granzyme B+ B cells in tumor samples compared to control samples, and these levels were positively associated with disease-free survival. The elevated levels of granzyme B+ B cells in tumor samples resulted from tumor cell chemotaxis through the MIF- (CD74 + CXCR4) signaling pathway. Furthermore, the anti-tumor function of granzyme B+ B cells in tumor samples was adversely affected, potentially providing an explanation for tumor progression. These findings regarding granzyme B+ B cells were further validated in an independent clinic cohort of 40 liver transplant recipients with intrahepatic cholangiocarcinoma. Our study unveils an interaction between granzyme B+ B cells and intrahepatic cholangiocarcinoma, opening up potential avenues for the development of novel therapeutic strategies against this disease.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Trasplante de Hígado , Humanos , Granzimas/genética , Colangiocarcinoma/genética , Colangiocarcinoma/cirugía , Pronóstico , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/cirugía , Conductos Biliares Intrahepáticos , Microambiente Tumoral
13.
Small ; 20(23): e2310734, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38143290

RESUMEN

Achieving satisfactory bone tissue regeneration in osteoporotic patients with ordinary biomaterials is challenging because of the decreased bone mineral density and aberrant bone microenvironment. In addressing this issue, a biomimetic scaffold (PMEH/SP), incorporating 4-hexylresorcinol (4HR), and substance P (SP) into the poly(lactic-go-glycolic acid) (PLGA) scaffold with magnesium hydroxide (M) and extracellular matrix (E) is introduced, enabling the consecutive release of bioactive agents. 4HR and SP induced the phosphorylation of p38 MAPK and ERK in human umbilical vein endothelial cells (HUVECs), thereby upregulating VEGF expression level. The migration and tube-forming ability of endothelial cells can be promoted by the scaffold, which accelerates the formation and maturation of the bone. Moreover, 4HR played a crucial role in the inhibition of osteoclastogenesis by interrupting the IκB/NF-κB signaling pathway and exhibiting SP, thereby enhancing the migration and angiogenesis of HUVECs. Based on such a synergistic effect, osteoporosis can be suppressed, and bone regeneration can be achieved by inhibiting the RANKL pathway in vitro and in vivo, which is a commonly known mechanism of bone physiology. Therefore, the study presents a promising approach for developing a multifunctional regenerative material for sophisticated osteoporotic bone regeneration.


Asunto(s)
Regeneración Ósea , Células Endoteliales de la Vena Umbilical Humana , Osteoporosis , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Andamios del Tejido , Regeneración Ósea/efectos de los fármacos , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Andamios del Tejido/química , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Animales , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Osteogénesis/efectos de los fármacos
14.
Acc Chem Res ; 56(16): 2213-2224, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37527443

RESUMEN

ConspectusWith the escalating demands of portable electronics, electric vehicles, and grid-scale energy storage systems, the development of next-generation rechargeable batteries, which boasts high energy density, cost effectiveness, and environmental sustainability, becomes imperative. Accelerating these advancements could substantially mitigate detrimental carbon emissions. The pursuit of main objectives has kindled interest in pure silicon as a high-capacity electroactive material, capable of further enhancing the gravimetric and volumetric energy densities compared with traditional graphite counterparts. Despite such promising attributes, pure silicon materials face significant hurdles, primarily due to their drastic volumetric changes during the lithiation/delithiation processes. Volume changes give rise to severe side effects, such as fracturing, pulverization, and delamination, triggering rapid capacity decay. Therefore, mitigating silicon particle fracture remains a primary challenge. Importantly, nanoscale silicon (below 150 nm in size) has shown resilience to stresses induced by repeated volume changes, thereby highlighting its potential as an anode-active material. However, the volume expansion stress not only affects the internal structure of the particle but also disrupts the solid-electrolyte interphase (SEI) layer, formed spontaneously on the outer surface of silicon, causing adverse side reactions. Therefore, despite silicon nanoparticles offering new opportunities, overcoming the associated issues is of paramount importance.Thus, this Account aims to spotlight the significant strides made in the development of pure silicon anodes with particular attention to feature size. From the emergence of nanoscale silicon, the following nanotechnology played a crucial role in growing the particle through nano/microstructuring. Similarly, bulk silicon microparticles gradually surfaced with the post-engineering methods owing to their practical advantages. We briefly discuss the special characteristics of representative examples from bulk silicon engineering and nano/microstructuring, all aimed at overcoming intrinsic challenges, such as limiting large volume changes and stabilizing SEI formation during electrochemical cycling. Subsequently, we outline guidelines for advancing pure silicon anodes to incorporate high mass loading and high energy density. Importantly, these advancements require superior material design and the incorporation of exceptional battery components to ensure compatibility and yield synergistic effects. By broadening the cooperative strategies at the cell and system levels, we anticipate that this Account will provide an insightful analysis of pure silicon anodes and catalyze their practical applications in real battery systems.

15.
Arch Biochem Biophys ; 753: 109904, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253247

RESUMEN

Excessive angiogenesis in subchondral bone is a pathological feature of osteoarthritis (OA). Tanshinone IIA (TIIA), an active compound found in Salvia miltiorrhiza, demonstrates significant anti-angiogenic properties. However, the effect of TIIA on abnormal subchondral angiogenesis in OA is still unclear. This study aims to investigate the mechanism of TIIA in modulating subchondral bone angiogenesis during OA and assess its therapeutic potential in OA. Our findings demonstrate that TIIA attenuated articular cartilage degeneration, normalized subchondral bone remodeling, and effectively suppressed aberrant angiogenesis within subchondral bone in monosodium iodoacetate (MIA)-induced OA mice. Additionally, the angiogenesis capacity of primary CD31hiEmcnhi endothelial cells was observed to be significantly reduced after treatment with TIIA in vitro. Mechanically, TIIA diminished the proportion of hypertrophic chondrocytes, ultimately leading to a substantial reduction in the secretion of vascular endothelial growth factor A (VEGFA). The supernatant of hypertrophic chondrocytes promoted the tube formation of CD31hiEMCNhi endothelial cells, whereas TIIA inhibited this process. Furthermore, TIIA effectively suppressed the expression of vascular endothelial growth factor receptor 2 (VEGFR2) along with its downstream MAPK pathway in CD31hiEmcnhi endothelial cells. In conclusion, our data indicated that TIIA could effectively inhibit the abnormal angiogenesis in subchondral bone during the progression of OA by suppressing the VEGFA/VEFGR2/MAPK pathway. These findings significantly contribute to our understanding of the abnormal angiogenesis in OA and offer a promising therapeutic target for OA treatment.


Asunto(s)
Abietanos , Cartílago Articular , Osteoartritis , Ratones , Animales , Factor A de Crecimiento Endotelial Vascular , Células Endoteliales/metabolismo , Angiogénesis , Osteoartritis/metabolismo
16.
BMC Cancer ; 24(1): 704, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849770

RESUMEN

BACKGROUND: The axillary lymph-node metastatic burden is closely associated with treatment decisions and prognosis in breast cancer patients. This study aimed to explore the value of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT)-based radiomics in combination with ultrasound and clinical pathological features for predicting axillary lymph-node metastatic burden in breast cancer. METHODS: A retrospective analysis was conducted and involved 124 patients with pathologically confirmed early-stage breast cancer who had undergone 18F-FDG PET/CT examination. The ultrasound, PET/CT, and clinical pathological features of all patients were analysed, and radiomic features from PET images were extracted to establish a multi-parameter predictive model. RESULTS: The ultrasound lymph-node positivity rate and PET lymph-node positivity rate in the high nodal burden group were significantly higher than those in the low nodal burden group (χ2 = 19.867, p < 0.001; χ2 = 33.025, p < 0.001). There was a statistically significant difference in the PET-based radiomics score (RS) for predicting axillary lymph-node burden between the high and low lymph-node burden groups. (-1.04 ± 0.41 vs. -1.47 ± 0.41, t = -4.775, p < 0.001). The ultrasound lymph-node positivity (US_LNM) (odds ratio [OR] = 3.264, 95% confidence interval [CI] = 1.022-10.423), PET lymph-node positivity (PET_LNM) (OR = 14.242, 95% CI = 2.960-68.524), and RS (OR = 5.244, 95% CI = 3.16-20.896) are all independent factors associated with high lymph-node burden (p < 0.05). The area under the curve (AUC) of the multi-parameter (MultiP) model was 0.895, which was superior to those of US_LNM, PET_LNM, and RS models (AUC = 0.703, 0.814, 0.773, respectively), with statistically significant differences (Z = 2.888, 3.208, 3.804, respectively; p = 0.004, 0.002, < 0.001, respectively). Decision curve analysis indicated that the MultiP model provided a higher net benefit for all patients. CONCLUSION: A MultiP model based on PET-based radiomics was able to effectively predict axillary lymph-node metastatic burden in breast cancer. TRIAL REGISTRATION: This study was registered with ClinicalTrials.gov (registration number: NCT05826197) on May 7, 2023.


Asunto(s)
Axila , Neoplasias de la Mama , Fluorodesoxiglucosa F18 , Ganglios Linfáticos , Metástasis Linfática , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Persona de Mediana Edad , Metástasis Linfática/diagnóstico por imagen , Estudios Retrospectivos , Adulto , Anciano , Ganglios Linfáticos/patología , Ganglios Linfáticos/diagnóstico por imagen , Radiofármacos , Pronóstico , Estadificación de Neoplasias , Radiómica
17.
FASEB J ; 37(4): e22867, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36906288

RESUMEN

Inflammatory osteolysis occurs primarily in the context of osteoarthritis, aseptic inflammation, prosthesis loosening, and other conditions. An excessive immune inflammatory response causes excessive activation of osteoclasts, leading to bone loss and bone destruction. The signaling protein stimulator of interferon gene (STING) can regulate the immune response of osteoclasts. C-176 is a furan derivative that can inhibit activation of the STING pathway and exert anti-inflammatory effects. The effect of C-176 on osteoclast differentiation is not yet clear. In this study, we found that C-176 could inhibit STING activation in osteoclast precursor cells and inhibit osteoclast activation induced by nuclear factor κB ligand receptor activator in a dose-dependent manner. After treatment with C-176, the expression of the osteoclast differentiation marker genes nuclear factor of activated T-cells c1(NFATc1), cathepsin K, calcitonin receptor, and V-ATPase a3 decreased. In addition, C-176 reduced actin loop formation and bone resorption capacity. The WB results showed that C-176 downregulated the expression of the osteoclast marker protein NFATc1 and inhibited activation of the STING-mediated NF-κB pathway. We also found that C-176 could inhibit the phosphorylation of mitogen-activated protein kinase signaling pathway factors induced by RANKL. Moreover, we verified that C-176 could reduce LPS-induced bone absorption in mice, reduce joint destruction in knee arthritis induced by meniscal instability, and protect against cartilage matrix loss in ankle arthritis induced by collagen immunity. In summary, our findings demonstrated that C-176 could inhibit the formation and activation of osteoclasts and could be used as a potential therapeutic agent for inflammatory osteolytic diseases.


Asunto(s)
Artritis , Resorción Ósea , Osteólisis , Animales , Ratones , Osteoclastos/metabolismo , Diferenciación Celular , Resorción Ósea/metabolismo , Transducción de Señal , Osteólisis/metabolismo , FN-kappa B/metabolismo , Ligando RANK/metabolismo , Factores de Transcripción NFATC/metabolismo , Osteogénesis
18.
Artículo en Inglés | MEDLINE | ID: mdl-38728177

RESUMEN

Two Gram-stain-negative, rod-shaped bacteria, designated as strains KJ10-1T and KJ40-1T, were isolated from marine brown algae. Both strains were catalase-positive, oxidase-positive, and facultative aerobic. Strain KJ10-1T exhibited optimal growth at 25 °C, pH 7.0, and 3 % NaCl, whereas strain KJ40-1T showed optimal growth at 25 °C, pH 7.0, and 2 % NaCl. The respiratory quinones of strain KJ10-1T were ubiquinone-8, ubiquinone-7, menaquinone-7, and methylated menaquinone-7, while the respiratory quinone of strain KJ40-1T was only ubiquinone-8. As major fatty acids, strain KJ10-1T contained C16 : 0, C17 : 1 ω8c, iso-C15 : 0, and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and strain KJ40-1T contained C16 : 0 and summed features 3 and 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The major polar lipids in strain KJ10-1T were phosphatidylethanolamine, phosphatidylglycerol, and an unidentified aminolipid, whereas those in strain KJ40-1T were phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. The DNA G+C contents of strains KJ10-1T and KJ40-1T were 42.1 and 40.8 mol%, respectively. Based on 16S rRNA gene sequences, strains KJ10-1T and KJ40-1T exhibited the closest relatedness to Shewanella saliphila MMS16-UL250T (98.6 %) and Vibrio rumoiensis S-1T (95.4 %), respectively. Phylogenetic analyses, based on both 16S rRNA and 92 housekeeping genes, showed that the strains formed distinct phylogenic lineages within the genera Shewanella and Vibrio. Digital DNA-DNA hybridization and orthologous average nucleotide identity values between strain KJ10-1T and other Shewanella species, as well as between strain KJ40-1T and other Vibrio species, were below the thresholds commonly accepted for prokaryotic species delineation. Based on the phenotypic, chemotaxonomic, and phylogenetic data, strains KJ10-1T and KJ40-1T represent novel species of the genera Shewanella and Vibrio, respectively, for which the names Shewanella phaeophyticola sp. nov. and Vibrio algarum sp. nov. are proposed, respectively. The type strains of S. phaeophyticola and V. algarum are KJ10-1T (=KACC 22589T=JCM 35409T) and KJ40-1T (=KACC 22588T=JCM 35410T), respectively.


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Phaeophyceae , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Shewanella , Ubiquinona , Vibrio , Vitamina K 2 , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Vibrio/genética , Vibrio/clasificación , Vibrio/aislamiento & purificación , Ubiquinona/análogos & derivados , Shewanella/genética , Shewanella/aislamiento & purificación , Shewanella/clasificación , Phaeophyceae/microbiología , Vitamina K 2/análogos & derivados , Fosfolípidos , Hibridación de Ácido Nucleico , Agua de Mar/microbiología
19.
Artículo en Inglés | MEDLINE | ID: mdl-38189362

RESUMEN

Two Gram-stain-negative, obligately aerobic, motile rod bacteria, designated as G2-5T and G20-9T, exhibiting catalase- and oxidase-positive activities, were isolated from the phycosphere of a Chondrus species, a marine red alga. Strain G2-5T exhibited optimal growth at 30 °C and pH 5.0-6.0 and in the presence of 0.5-1.0% NaCl. In contrast, strain G20-9T demonstrated optimal growth at 25 °C and pH 6.0 and in the presence of 0.5-1.5% NaCl. Both strains contained ubiquinone-10, summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), C18 : 0 and 11-methyl-C18 : 1 ω7c, and diphosphatidylglycerol and phosphatidylglycerol as the major respiratory isoprenoid quinone, cellular fatty acids and polar lipids, respectively. The genomic DNA G+C contents were 57.2 mol% for strain G2-5T and 57.5 mol% for strain G20-9T. Strains G2-5T and G20-9T exhibited 98.2 % 16S rRNA gene sequence similarity, along with 82.3 % average nucleotide identity (ANI) and 25.0 % digital DNA-DNA hybridization (dDDH) values, indicating that they represent different species. Phylogenetic analyses based on both 16S rRNA gene and genome sequences revealed that strains G2-5T and G20-9T formed distinct phylogenic lineages within the genus Devosia. Strains G2-5T and G20-9T were most closely related to Devosia limi DSM 17137T and Devosia beringensis S02T with 97.7 and 96.9 % 16S rRNA gene sequence similarities, respectively. The ANI and dDDH values between strains G2-5T and G20-9T and other Devosia species were lower than 73.9 and 19.2 %, respectively, suggesting that they constitute novel species within the genus Devosia. Based on their distinct phenotypic, chemotaxonomic, and molecular characteristics, strains G2-5T and G20-9T represent two novel species of the genus Devosia, for which the names Devosia rhodophyticola sp. nov. (G2-5T=KACC 22601T=JCM 35404T) and Devosia algicola sp. nov. (G20-9T=KACC 22650T=JCM 35405T) are proposed, respectively.


Asunto(s)
Gammaproteobacteria , Rhodophyta , Composición de Base , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Cloruro de Sodio , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Nucleótidos
20.
Gastric Cancer ; 27(2): 210-220, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38070008

RESUMEN

BACKGROUND: Double-strand break repair protein (RAD50) gene plays important roles in genomic integrity, DNA double-strand break repair, cell cycle checkpoint activation, telomere maintenance, and meiotic recombination. The risk allele of RAD50 may negatively affect cancer by reducing the DNA repair capacity. Additionally, Sodium intake and Helicobacter pylori (H. pylori) infection are major risk factors for gastric cancer (GC). Our study investigated the association between polymorphisms in RAD50 gene and the risk of GC case-fatality. We evaluated whether the association differed with sodium intake or H. pylori infection. METHODS: We enrolled 490 patients from two hospitals between 2002 and 2006. Their survival or death was prospectively followed up until December 31, 2016, through a review of medical records and telephone surveys. The GC survival was assessed using the Cox proportional hazards regression analysis. RESULTS: In 319 GC cases, the total person-years were 1928.3, and the median survival years was 5.4 years. A total of 137 GC deaths were recorded. Our fully adjusted model showed that the GG type of RAD50 rs17772583 polymorphism is significantly associated with an increased risk of GC case-fatality (hazard ratio [HR] = 2.20, 95% confidence interval [CI] = 1.28-3.77) compared to that associated with the homozygous AA type. In the high sodium intake group, patients with the GG type of RAD50 rs17772583 showed a significantly higher GC case-fatality (HR = 8.61, 95% CI = 2.58-26.68) than that of patients with homozygous AA type. In the positive-H. pylori infection group, patients with GG-type RAD50 rs17772583 showed a significantly higher GC case-fatality (HR = 10.11, 95% CI = 2.81-36.35) than that of with AA homozygotes. CONCLUSIONS: Patients with GG-type RAD50 rs17772583, high sodium intake, or a positive-H. pylori infection are at a significantly increased risk of GC case-fatality compared to that associated with the absence of these risk factors.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Sodio en la Dieta , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/complicaciones , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/genética , Factores de Riesgo , República de Corea/epidemiología , Estudios de Casos y Controles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA