Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Langmuir ; 39(47): 16904-16914, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37962138

RESUMEN

Herein, a series of polyimide (PI)/titanium dioxide (TiO2) organic-inorganic flexible composite microfibers with high photocatalytic performance and good reusability were prepared by combining electrospinning technology and a hydrothermal method. Under simulated sunlight, the photocatalytic characteristics of the as-prepared PI nanofibers, TiO2 nanorods, and PI/TiO2 microfibers were evaluated with photocatalytic degradation of Rhodamine B (RhB) solution. Among the tested samples, PI/TiO2-3 mL hydrochloric acid-160 °C-14 h (PI/TiO-3-160-14) (100%) exhibited a superior photocatalytic degradation rate compared to pure PI (84.0%) and TiO2 (62.2%). The enhancement of the photocatalytic performance was attributed to the Z-scheme heterojunction mechanism. When the interface was irradiated by simulated sunlight, the band edge bending, built-in electric field, and Coulomb interaction synergistically facilitated the separation and transport of electron-hole pairs in the heterojunction. This enhanced the oxidation and reduction abilities of the valence and conduction bands of PI/TiO2. These results were adequately verified by X-ray photoelectron spectroscopy (XPS) analyses and radical trapping experiments. Additionally, PI/TiO2 microfibers also demonstrated excellent photocatalytic activity toward methylene blue (MB, 81.4%), methyl orange (MO, 95.9%), and malachite green (KG, 98.9%), underscoring the versatile applicability of PI/TiO2. Further supplementary investigations illustrated that PI/TiO2 microfibers also possess excellent photostability during our extensive recycling photocatalytic experiments.

2.
Nanotechnology ; 31(22): 225701, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32167934

RESUMEN

In this work, we reported the tailored design of highly efficient Fe3O4-Au magnetic nanocomposite (MNP) catalysts. Fe3O4 nanocrystals with three different morphologies have been developed with engineered amounts of urea, and the plausible mechanism has been proposed. Then by controlling the amount of Au seeds, Fe3O4-Au MNPs with different morphologies and tunable Au deposition have been realized. Characterizations including x-ray diffraction (XRD), transmission electron microscopy (TEM), Mössbauer spectra, and elemental mapping are implemented to unveil the structural and physical characteristics of the successfully developed Fe3O4-Au MNPs with different morphologies. The catalytic ability of Fe3O4-Au MNPs with different morphologies have been compared by applying them to degrading RhB and 4-NP, meanwhile the correlation between the amount of Au seeds and the turnover frequency as well as the catalytic ability of Fe3O4-Au MNPs is investigated systematically. We found that the flower-like Fe3O4-Au MNPs with 20 ml Au seeds added achieved the best degradation efficiency of 96.7%, and their catalytic ability were almost unchanged after recycling. Out study sheds the light into the tailored design of highly efficient and recyclable catalysts for RhB and 4-NP.

3.
Environ Res ; 182: 108998, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31863945

RESUMEN

This work focused on the utilization of biological extract for the preparation of lignin-based carbon composites materials and used in the field of photocatalysis. A straightforward one-step carbonization way has been developed to prepare vanadium-doped lignin-based carbon/Bi2O3 composites photocatalyst by using sodium lignosulfonate as the carbon source and catalyst. The application of lignin as the carbon source to form photocatalyst support tends to control the uniform distribution. At the same time, sodium lignosulfonate as the catalyst could break down the BiVO4 during carbonization process. A series of characterizations demonstrated the BiVO4 was transformed into Bi2O3 and vanadium-doped lignin-based carbon. The possible synthesis process was proposed. Moreover, the novel V-doped carbon/Bi2O3 composites photocatalyst displayed higher photocatalytic activity than bare BiVO4. A possible photocatalytic mechanism was also discussed. This work provided new insight into the lignin-based carbon materials.


Asunto(s)
Carbono , Biomasa , Catálisis , Fotoquímica
4.
Nanotechnology ; 30(46): 465703, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31476137

RESUMEN

The Fe3O4@Au core-shell nanocomposites, as the multifunctional magnetic surface enhanced Raman scattering (SERS) substrates, were fabricated successfully by the seeds growth method based on the Fe3O4-Au core-satellite nanocomposites. The SERS properties of the Fe3O4-Au core-satellite nanocomposites and the Fe3O4@Au core-shell nanocomposites were compared using 4-aminothiophenol (4-ATP) as the probe molecule. It was found that Fe3O4@Au core-shell nanocomposites showed better SERS performance than Fe3O4-Au core-satellite nanocomposites. The Au shell provided an effectively large surface area for forming sufficient plasmonic hot spots and capturing target molecules. The integration of magnetic core and plasmonic Au nanocrystals endowed the Fe3O4@Au core-shell nanocomposites with highly efficient magnetic separation and enrichment ability and abundant interparticle hot spots. The Fe3O4@Au core-shell nanocomposites could be easily recycled because of the intrinsic magnetism of the Fe3O4 cores and had good reproducibility of the SERS signals. For practical application, the Fe3O4@Au core-shell nanocomposites were also used to detect thiram. There was a good linear relationship between the SERS signal intensity and the concentration of thiram from 1 × 10-3 to 1 × 10-8 M and the limit of detection was 7.69 × 10-9 M. Moreover, residual thiram on apple peel was extracted and detected with a recovery rate range of 99.3%. The resulting substrate with high SERS activity, stability and strong magnetic responsivity makes the Fe3O4@Au core-shell nanocomposites a perfect choice for practical SERS detection applications.

5.
J Mater Sci Mater Med ; 26(9): 236, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26395361

RESUMEN

ZnS:Mn(2+) quantum dots (QDs) were successfully embedded in SiO2 spheres by a reverse microemulsion method. The results showed that the monodispersed core/shell nanocomposites were uniform in size, with the majority of the SiO2 nanoparticles containing one QD in the center of the sphere. The shell thickness of SiO2 increased from 7 to 18 nm as the hydrolysis time of TEOS increased from 20 to 40 h. The quantum yield (QY) of the yellow-orange emission (coming from the Mn(2+) ions (4)T1-(6)A1 transition) for the ZnS:Mn(2+)(3 %) QDs and ZnS:Mn(2+)(3 %) QDs@SiO2 (when t = 40 h) nanocomposites was measured to be 34.5 and 22.4 %, respectively. All samples showed no significant cytotoxicity against the HeLa cells even at a high concentration of 500 µg/ml after incubation for 24 h. The red fluorescence can be observed in the cytoplasm of the HeLa cell, further proving its biolabeling applications.


Asunto(s)
Materiales Biocompatibles , Colorantes Fluorescentes/química , Manganeso/química , Nanoestructuras , Puntos Cuánticos , Dióxido de Silicio/química , Sulfuros/química , Compuestos de Zinc/química , Células HeLa , Humanos , Microscopía Confocal , Microscopía Electrónica de Transmisión , Difracción de Rayos X
6.
J Colloid Interface Sci ; 660: 1039-1047, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38199891

RESUMEN

Covalent triazine frameworks (CTFs) with tunable structure, fine molecular design and low cost have been regarded as a class of ideal electrode materials for lithium-ion batteries (LIBs). However, the tightly layered structure possessed by the CTFs leads to partial hiding of the redox active site, resulting in their unsatisfactory electrochemical performance. Herein, two CTFs (BDMI-CTF and TCNQ-CTF) with higher degree of structural distortion, more active sites exposed, and large lattice pores were prepared by dynamic trimerization reaction of cyano. As a result, BDMI-CTF as a cathode material for LIBs exhibits high initial capacity of 186.5 mAh/g at 50 mA g-1 and superior cycling stability without capacity loss after 2000 cycles at 1000 mA g-1 compared with TCNQ-CTF counterparts. Furthermore, based on their bipolar functionality, BDMI-CTF can be used as both cathode and anode materials for symmetric all-organic batteries (SAOBs), and this work will open a new window for the rational design of high performance CTF-based LIBs.

7.
Microsyst Nanoeng ; 10: 39, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505466

RESUMEN

Facile and efficient photocatalysts using sunlight, as well as fast and sensitive surface-enhanced Raman spectroscopy (SERS) substrates, are urgently needed for practical degradation of tetracycline (TC). To meet these requirements, a new paradigm for PI/TiO2/Ag organic‒inorganic ternary flexible microfibers based on semiconducting titanium dioxide (TiO2), the noble metal silver (Ag) and the conjugated polymer polyimide (PI) was developed by engineering a simple method. Under sunlight, the photocatalytic characteristics of the PI/TiO2/Ag flexible microfibers containing varying amounts of Ag quantum dots (QDs) were evaluated with photocatalytic degradation of TC in aqueous solution. The results demonstrated that the amount of Ag affected the photocatalytic activity. Among the tested samples, PI/TiO2/Ag-0.07 (93.1%) exhibited a higher photocatalytic degradation rate than PI/TiO2 (25.7%), PI/TiO2/Ag-0.05 (77.7%), and PI/TiO2/Ag-0.09 (63.3%). This observation and evaluation conducted in the present work strongly indicated a charge transfer mechanism. Moreover, the PI/TiO2/Ag-0.07 flexible microfibers exhibited highly sensitive SERS detection, as demonstrated by the observation of the Raman peaks for TC even at an extremely low concentration of 10-10 moles per liter. The excellent photocatalytic performance and SERS detection capability of the PI/TiO2/Ag flexible microfibers arose from the Schottky barrier formed between Ag and TiO2 and also from the outstanding plasmonic resonance and visible light absorptivity of Ag, along with immobilization by the PI. The successful synthesis of PI/TiO2/Ag flexible microfibers holds significant promise for sensitive detection and efficient photocatalytic degradation of antibiotics.

8.
J Colloid Interface Sci ; 635: 1-11, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36577350

RESUMEN

Surface-enhanced Raman scattering (SERS) has attracted extensive attention as an ultrasensitive detection method. However, the poor biocompatibility and expensive synthesis cost of noble metal SERS substrates have become non-negligible factors that limit the development of SERS technology. Metal chalcogenide semiconductors as an alternative to noble metal SERS substrates can avoid these disadvantages, but the enhancement effect is lower than that of noble metal substrates. Here, we report a method to co-modify MoS2 by Ni and O, which improves the carrier concentration and mobility of MoS2. The SERS effect of the modified MoS2 is comparable to that of noble metals. We found that the improved SERS performance of MoS2 can be attributed to the following two factors: strong interfacial dipole-dipole interaction and efficient charge transfer effect. During the doping process, the incorporation of Ni and O enhances the polarity and carrier concentration of MoS2, enhances the interfacial interaction of MoS2, and provides a basis for charge transfer. During the annealing process, the introduction of O atoms into the S defects reduces the internal defects of doped MoS2, improves the carrier mobility, and promotes the efficient charge transfer effect of MoS2. The final modified MoS2 as a SERS substrate realizes low-concentration detection of bilirubin, cytochrome C, and trichlorfon. This provides promising guidance for the practical inspection of metal chalcogenide semiconductor substrates.

9.
Dalton Trans ; 52(8): 2317-2325, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36723110

RESUMEN

Surface-enhanced Raman scattering (SERS) is an analytical technique for the rapid detection of low-concentration analytes. However, the lack of uniform, stable, and recyclable substrate limits its wide applications. Here, Ag-doped MoS2 (AMSx) was prepared by the hydrothermal method. Band structures, LSV, and EIS characteristics confirmed that Ag doping can reduce the indirect band gap and increase the charge transfer between substrates and molecules. As a SERS substrate, AMSx displays excellent reproducibility, stability, and recyclability, which is beneficial for the application of the SERS substrate. Meanwhile, AMSx has excellent sensitivity with an enhancement factor of 4.07 × 106, comparable to that of precious metals. In addition, AMSx exhibits ultrahigh sensitivity in sensing bilirubin and Bisphenol A (BPA); the corresponding detection limit of both is 10-9 M, also better than that of previously reported semiconductors. This work provided a novel idea to synthesize low-cost ultrasensitive SERS substrates and the strategy of improving metal-chalcogenide semiconductor sensing.

10.
J Colloid Interface Sci ; 628(Pt B): 315-326, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35998457

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) with carcinogenic, teratogenic and mutagenic properties are persistent organic pollutants in the environment. Herein, the novel multifunctional Fe3O4/Cu2O-Ag nanocomposites (NCs) have been established for ultra-sensitive surface-enhanced Raman scattering (SERS) detection and visible light-driven photocatalytic degradation of PAHs. Fe3O4/Cu2O-Ag NCs with different amounts of Ag nanocrystals were synthesized, and the effect of Ag contents on SERS performance was studied by finite-difference time-domain (FDTD) algorithm. The synergistic interplay of electromagnetic and chemical enhancement was responsible for excellent SERS sensitivity of Fe3O4/Cu2O-Ag NCs. The limit of detection (LOD) of optimal SERS substrates (FCA-2 NCs) for Nap, BaP, Pyr and Ant was as low as 10-9, 10-9, 10-9 and 10-10 M, respectively. The SERS detection of PAHs in actual soil environment was also studied. Moreover, a simple SERS method was used to monitor the photocatalytic process of PAHs. The recovery and reuse of Fe3O4/Cu2O-Ag NCs were achieved through magnetic field, and the outstanding SERS and photocatalytic performance were still maintained even after eight cycles. This magnetic multifunctional NCs provide a unique idea for the integration of ultra-sensitive SERS detection and efficient photocatalytic degradation of PAHs, and thus will have more hopeful prospects in the field of environmental protection.


Asunto(s)
Nanocompuestos , Hidrocarburos Policíclicos Aromáticos , Luz , Nanocompuestos/química , Contaminantes Orgánicos Persistentes , Suelo , Plata/química
11.
Chem Asian J ; 16(14): 1973-1978, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34057815

RESUMEN

Organic carbonyl electrode materials are widely employed for alkali metal-ion secondary batteries in terms of their sustainability, structure designability and abundant resources. As a typical redox-active organic electrode materials, pyrene-4, 5, 9, 10-tetraone (PT) shows high theoretical capacity due to the rich carbonyl active sites. But its electrochemical behavior in secondary batteries still needs further exploration. Herein, PT-based linear polymers (PPTS) is synthesized with thioether bond as bridging group and then employed as an anode material for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). As expected, PPTS shows improved conductivity and insolubility in the non-aqueous electrolyte. When used as an anode material for LIBs, PPTS delivers a high reversible specific capacity of 697.1 mAh g-1 at 0.1 A g-1 and good rate performance (335.4 mAh g-1 at 1 A g-1 ). Moreover, a reversible specific capacity of 205.2 mAh g-1 at 0.05 A g-1 could be obtained as an anode material for SIBs.

12.
Microsyst Nanoeng ; 7: 23, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567737

RESUMEN

Ternary noble metal-semiconductor nanocomposites (NCs) with core-shell-satellite nanostructures have received widespread attention due to their outstanding performance in detecting pollutants through surface-enhanced Raman scattering (SERS) and photodegradation of organic pollutants. In this work, ternary Au@Cu2O-Ag NCs were designed and prepared by a galvanic replacement method. The effect of different amounts of Ag nanocrystals adsorbed on the surfaces of Au@Cu2O on the SERS activity was investigated based on the SERS detection of 4-mercaptobenzoic acid (4-MBA) reporter molecules. Based on electromagnetic field simulations and photoluminescence (PL) results, a possible SERS enhancement mechanism was proposed and discussed. Moreover, Au@Cu2O-Ag NCs served as SERS substrates, and highly sensitive SERS detection of malachite green (MG) with a detection limit as low as 10-9 M was achieved. In addition, Au@Cu2O-Ag NCs were recycled due to their superior self-cleaning ability and could catalyze the degradation of MG driven by visible light. This work demonstrates a wide range of possibilities for the integration of recyclable SERS detection and photodegradation of organic dyes and promotes the development of green testing techniques.

13.
Light Sci Appl ; 9: 117, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32685138

RESUMEN

Surface-enhanced Raman scattering (SERS) and photoluminescence (PL) are important photoexcitation spectroscopy techniques; however, understanding how to analyze and modulate the relationship between SERS and PL is rather important for enhancing SERS, having a great effect on practical applications. In this work, a charge-transfer (CT) mechanism is proposed to investigate the change and relationships between SERS and PL. Analyzing the change in PL and SERS before and after the adsorption of the probe molecules on Nd-doped ZnO indicates that the unique optical characteristics of Nd3+ ions increase the SERS signal. On the other hand, the observed SERS can be used to explain the cause of PL background reduction. This study demonstrates that modulating the interaction between the probe molecules and the substrate can not only enhance Raman scattering but also reduce the SERS background. Our work also provides a guideline for the investigation of CT as well as a new method for exploring fluorescence quenching.

14.
ACS Appl Mater Interfaces ; 12(37): 41446-41453, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32830485

RESUMEN

In the past few years, the power conversion efficiencies (PCEs) of perovskite solar cells (PSCs) have increased from 3.81 to 25.2%, surpassing those of all almost all thin films solar cells. For high-performance PSCs, it is pivotal to finely regulate the charge dynamics and light management between perovskite and charge-transfer materials to balance the trade-off between optical and electrical properties. In this study, a hemispherical core-shell silver oxide (AgOx) @ silver nanoparticles (Ag NPs) were grown onto the surface of the mesoporous titanium dioxide (m-TiO2) electron-transport layer (ETL) to improve the photogenerated charge transfer without sacrificing the stability of the devices. The results show that the electrical properties of m-TiO2 have been enhanced owing to the injection of a hot carrier in Ag NPs into the m-TiO2 ETL filling the trap states of m-TiO2. However, AgOx on the Ag NP surfaces can isolate the touch between Ag NPs and perovskite, thereby prohibiting the perovskite decomposition. Compared with the control device, the PCE was increased from 17.87 to 20.33% for the device with HOAPs. In the meantime, the long-term stability of the PSCs is not sacrificed, which is pivotal for fabricating PSCs and optoelectronic devices.

15.
Sci Rep ; 9(1): 13876, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31554893

RESUMEN

A commercial SERS substrate does not only require strong enhancement, but also can be reused and recycled in actual application. Herein, Fe3O4/SiO2/ZnO/Ag (FSZA) have been synthesised, which consisted of Fe3O4 core with strong magnetic field response and an intermediate SiO2 layer as an electronic barrier to keep the stability of magnetite particles and outer ZnO and Ag as the effective layers for detecting pollutants. The SERS enhancement factor (EF) of the FSZA was ~8.2 × 105. The enhancement mechanism of the FSZA core-shell microspheres were anatomized. The electromagnetic enhancement of surface deposited Ag, charge transfer, and molecular and exciton resonances act together to cause such high enhancement factors. For practical application, the FSZA core-shell microspheres were also used to detect thiram, moreover, which was collected and separated by an external magnetic field, and maintained the SERS activity without significant decline during multiple tests. So the good enhancement performance and magnetic recyclability make the FSZA core-shell microspheres a promising candidates for practical SERS detection applications.

16.
Adv Sci (Weinh) ; 6(4): 1801170, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30828521

RESUMEN

The breakthrough of organometal halide perovskite solar cells (PSCs) based on mesostructured composites is regarded as a viable member of next generation photovoltaics. In high efficiency PSCs, it is crucial to finely optimize the charge dynamics and optical properties matching between the perovskites and electron transporting materials to relax the trade-off between the optical and electrical requirements. Here, a simple antipolar route with H2O as the additive is proposed to prepare hierarchical electron transporting layers to boost the efficiency of dopant-free PSCs. The photovoltaic performance of the PSCs is enhanced owing to increased light-scattering, improved Ostwald ripening, and photo-generated electron extraction. Optimization of the H2O addition enables a valid power conversion efficiency of 19.9% (reverse scan: 20.02%) to be achieved. The device can retain more than 90% of its initial performance after storage in air more than 30 days. These results are inspiring in that they present that a mesoporous transporting layer could be easily re-constructed to hierarchical architecture by the antipolar method to further improve the performance of PSCs.

17.
Sci Rep ; 9(1): 16863, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31728036

RESUMEN

A new paradigm for photocatalysts based on two different hierarchically structured honeycomb and porous cylindrical Au-ZnO heterostructures was successfully developed via a straightforward and cost-effective hydrothermal method under different preparation conditions, which can be promising for industrial applications. The photocatalytic performance of all as-prepared samples under the illumination of sunlight was evaluated by the photocatalytic degradation of rhodamine B (RhB) and malachite green (MG) aqueous solutions. The results show that the photocatalytic degradation efficiency of RhB and MG was 55.3% and 40.7% for ZnO, 95.3% and 93.4% for the porous cylindrical Au-ZnO heterostructure, and 98.6% and 99.5% for the honeycomb Au-ZnO heterostructure, respectively. Compared with those from the ZnO, the results herein demonstrate an excellent reduction in the photoluminescence and improvement in the photocatalysis for the Au-ZnO hybrids with different morphologies. These results were attributed not only to the greatly improved sunlight utilization efficiency due to the surface plasmon resonance (SPR) absorption of Au nanoparticles in the visible region coupled with the UV light utilization by the ZnO nanostructures and multi-reflections of the incident light in the pore structures of their interior cavities but also to the high charge separation efficiency and low Schottky barrier generated by the combination of Au nanoparticles and ZnO micromaterials. Moreover, the honeycomb Au-ZnO heterostructure had a high Au content, surface area and surface oxygen vacancy (OV), which enabled photocatalytic properties that were higher than those of the porous cylindrical Au-ZnO heterostructures. In addition, two different formation mechanisms for the morphology and possible photocatalytic mechanisms are proposed in this paper.

18.
J Phys Chem Lett ; 9(20): 6047-6051, 2018 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-30188128

RESUMEN

We discuss how the controllable carrier influences the localized surface plasmon resonance (LSPR) and charge transfer (CT) in the same system based on ultraviolet-visible and surface-enhanced Raman scattering (SERS) measurements. The LSPR can be easily tuned from 580 to 743 nm by changing the sputtering power of Cu2S in the Ag and Cu2S composite substrate. During this process, surprisingly, we find that the LSPR is proportional to the sputtering power of Cu2S. This observation indicates that LSPR can be accurately adjusted by changing the content of the semiconductor, or even the carrier density. Moreover, we characterize the carrier density through the detection of the Hall effect to analyze the Raman shift caused by CT and obtain the relationships between them. These fundamental discussions provide a guideline for tunable LSPR and the investigation of CT.

19.
Nanomaterials (Basel) ; 9(1)2018 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-30583591

RESUMEN

Equipped with staggered gap p-n heterojunctions, a new paradigm of photocatalysts based on hierarchically structured nano-match-shaped heterojunctions (NMSHs) Cu2S quantum dots (QDs)@ZnO nanoneedles (NNs) are successfully developed via engineering the successive ionic layer adsorption and reaction (SILAR). Under UV and visible light illumination, the photocatalytic characteristics of Cu2S@ZnO heterojunctions with different loading amounts of Cu2S QDs are evaluated by the corresponding photocatalytic degradation of rhodamine B (RhB) aqueous solution. The results elaborate that the optimized samples (S3 serial specimens with six cycles of SILAR reaction) by means of tailored the band diagram exhibit appreciable improvement of photocatalytic activities among all synthesized samples, attributing to the sensitization of a proper amount of Cu2S QDs. Such developed architecture not only could form p⁻n junctions with ZnO nanoneedles to facilitate the separation of photo-generated carries but also interact with the surface defects of ZnO NNs to reduce the electron and hole recombination probability. Moreover, the existence of Cu2S QDs could also extend the light absorption to improve the utilization rate of sunlight. Importantly, under UV light S3 samples demonstrate the remarkably enhanced RhB degradation efficiency, which is clearly testified upon the charge transfer mechanism discussions and evaluations in the present work. Further supplementary investigations illustrate that the developed nanoscale Cu2S@ZnO heterostructures also possess an excellent photo-stability during our extensive recycling photocatalytic experiments, promising for a wide range of highly efficient and sustainably recyclable photocatalysts applications.

20.
Nanomaterials (Basel) ; 8(5)2018 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789457

RESUMEN

In this work, we report the enhanced catalytic reduction of 4-nitrophenol driven by Fe3O4-Au magnetic nanocomposite interface engineering. A facile solvothermal method is employed for Fe3O4 hollow microspheres and Fe3O4-Au magnetic nanocomposite synthesis via a seed deposition process. Complementary structural, chemical composition and valence state studies validate that the as-obtained samples are formed in a pure magnetite phase. A series of characterizations including conventional scanning/transmission electron microscopy (SEM/TEM), Mössbauer spectroscopy, magnetic testing and elemental mapping is conducted to unveil the structural and physical characteristics of the developed Fe3O4-Au magnetic nanocomposites. By adjusting the quantity of Au seeds coating on the polyethyleneimine-dithiocarbamates (PEI-DTC)-modified surfaces of Fe3O4 hollow microspheres, the correlation between the amount of Au seeds and the catalytic ability of Fe3O4-Au magnetic nanocomposites for 4-nitrophenol (4-NP) is investigated systematically. Importantly, bearing remarkable recyclable features, our developed Fe3O4-Au magnetic nanocomposites can be readily separated with a magnet. Such Fe3O4-Au magnetic nanocomposites shine the light on highly efficient catalysts for 4-NP reduction at the mass production level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA