Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Plant Cell ; 36(4): 1159-1181, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38134410

RESUMEN

Plants have unique responses to fluctuating light conditions. One such response involves chloroplast photorelocation movement, which optimizes photosynthesis under weak light by the accumulation of chloroplasts along the periclinal side of the cell, which prevents photodamage under strong light by avoiding chloroplast positioning toward the anticlinal side of the cell. This light-responsive chloroplast movement relies on the reorganization of chloroplast actin (cp-actin) filaments. Previous studies have suggested that CHLOROPLAST UNUSUAL POSITIONING 1 (CHUP1) is essential for chloroplast photorelocation movement as a regulator of cp-actin filaments. In this study, we conducted comprehensive analyses to understand CHUP1 function. Functional, fluorescently tagged CHUP1 colocalized with and was coordinately reorganized with cp-actin filaments on the chloroplast outer envelope during chloroplast movement in Arabidopsis thaliana. CHUP1 distribution was reversibly regulated in a blue light- and phototropin-dependent manner. X-ray crystallography revealed that the CHUP1-C-terminal domain shares structural homology with the formin homology 2 (FH2) domain, despite lacking sequence similarity. Furthermore, the CHUP1-C-terminal domain promoted actin polymerization in the presence of profilin in vitro. Taken together, our findings indicate that CHUP1 is a plant-specific actin polymerization factor that has convergently evolved to assemble cp-actin filaments and enables chloroplast photorelocation movement.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Actinas , Proteínas de Arabidopsis/genética , Polimerizacion , Proteínas de Cloroplastos/genética , Arabidopsis/genética , Citoesqueleto de Actina , Cloroplastos/fisiología , Luz , Movimiento
2.
Molecules ; 23(9)2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30227680

RESUMEN

In the course of screening for microbes with antifungal activity, we found that the culture filtrate of the IUM00035 isolate exhibited strong antifungal activity against Magnaporthe oryzae and Colletotrichum coccodes in planta. Based on the phylogenetic analysis with the ITS region, the IUM00035 isolate was identified as Crinipellis rhizomaticola. To identify antifungal compounds from the C. rhizomaticola IUM00035 isolate, the culture filtrate of the isolate was partitioned with ethyl acetate and n-butanol and, consequently, two active compounds were isolated from the ethyl acetate extract. The chemical structures of the isolated compounds were determined as crinipellin A (1) and a new crinipellin derivative, crinipellin I (2), by NMR spectral analyses and a comparison of their NMR and MS data with those reported in the literature. Crinipellin A (1) exhibited a wide range of antifungal activity in vitro against C. coccodes, M. oryzae, Botrytis cinerea, and Phytophthora infestans (MICs = 1, 8, 31, and 31 µg/mL, respectively). Furthermore, when plants were treated with crinipellin A (1) (500 µg/mL) prior to inoculation with fungal pathogens, crinipellin A (1) exhibited disease control values of 88%, 65%, and 60% compared with non-treatment control against tomato late blight, pepper anthracnose, and wheat leaf rust, respectively. In contrast to crinipellin A (1), crinipellin I (2) showed weak or no activity (MICs > 250 µg/mL). Taken together, our results show that the C. rhizomaticola IUM00035 isolate suppresses the development of plant fungal diseases, in part through the production of crinipellin A (1).


Asunto(s)
Antifúngicos/farmacología , Basidiomycota/química , Diterpenos/farmacología , Compuestos Orgánicos/farmacología , Antifúngicos/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Diterpenos/química , Diterpenos/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Compuestos Orgánicos/química , Compuestos Orgánicos/aislamiento & purificación , Filogenia , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Espectroscopía de Protones por Resonancia Magnética , Solventes , Factores de Tiempo
3.
World J Microbiol Biotechnol ; 34(11): 163, 2018 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-30368604

RESUMEN

Aromatic polyketides are secondary metabolites widely found in bacteria, fungi, and plants, which are well-known for their diverse chemical structures and biological functions. The structural diversity of aromatic polyketides arises from a series of enzymatic modifications of the linear poly-ß-ketone intermediates during biosynthesis. Their versatile bioactivities are exemplified by reports of their use as antibacterials, antifungals, antivirals, and antiparasitics. Despite many reports on the antimicrobial nature of aromatic polyketides, their potential use as plant disease control agents has still not been systematically explored and discussed. This review highlights examples of the use of aromatic polyketides as plant disease control agents and discusses their function and merits as agrochemicals.


Asunto(s)
Antifúngicos/farmacología , Hongos/efectos de los fármacos , Enfermedades de las Plantas/prevención & control , Plantas/microbiología , Policétidos/farmacología , Antifúngicos/química , Hongos/fisiología , Enfermedades de las Plantas/microbiología , Policétidos/química
4.
J Environ Sci Health B ; 53(2): 135-140, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29173073

RESUMEN

As an alternative to synthetic pesticides, natural materials such as plant extracts and microbes have been considered to control plant diseases. In this study, methanol extracts of 120 plants were explored for in vivo antifungal activity against Rhizoctonia solani, Botrytis cinerea, Phytophthora infestans, Puccinia triticina, and Blumeria graminis f. sp. hordei. Of the 120 plant extracts, eight plant extracts exhibited a disease control efficacy of more than 90% against at least one of five plant diseases. In particular, a methanol extract of Curcuma zedoaria rhizomes exhibited strong activity against wheat leaf rust caused by P. triticina. When the C. zedoaria methanol extracts were partitioned with various solvents, the layers of n-hexane, methylene chloride, and ethyl acetate showed disease control values of 100, 80, and 43%, respectively, against wheat leaf rust. From the C. zedoaria rhizome extracts, an antifungal substance was isolated and identified as a sesquiterpene ketolactone based on the mass and nuclear magnetic resonance spectral data. The active compound controlled the development of rice sheath blight, wheat leaf rust, and tomato late blight. Considering the in vivo antifungal activities of the sesquiterpene ketolactone and the C. zedoaria extracts, these results suggest that C. zedoaria can be used as a potent fungicide in organic agriculture.


Asunto(s)
Curcuma/química , Fungicidas Industriales/farmacología , Lactonas/farmacología , Enfermedades de las Plantas/prevención & control , Extractos Vegetales/farmacología , Sesquiterpenos/farmacología , Acetatos/química , Basidiomycota/efectos de los fármacos , Basidiomycota/patogenicidad , Fungicidas Industriales/química , Hexanos , Lactonas/química , Lactonas/aislamiento & purificación , Solanum lycopersicum/microbiología , Metanol/química , Estructura Molecular , Agricultura Orgánica/métodos , Oryza/microbiología , Extractos Vegetales/química , Rhizoctonia/efectos de los fármacos , Rhizoctonia/patogenicidad , Rizoma/química , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Solventes/química , Triticum/microbiología
5.
Arch Microbiol ; 198(10): 1027-1034, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27577932

RESUMEN

Endophytic bacteria may act individually or in consortia in controlling certain plant diseases. In this study, pepper plants (Capsicum annuum L. cv. Nokkwang) were cultivated in glasshouse conditions using field soils collected from two different geographic locations, Deokso (DS) and Gwangyang (GY) in Korea. Community structure and antifungal activity of pepper endophytic bacteria were analyzed using culture-independent (PCR-DGGE) and culture-dependent (plating) methods, respectively. Dissimilarities were observed between DGGE profiles of DS and GY samples at all plant tissues. However, sequencing of the major DGGE bands revealed an enrichment of Firmicutes in the leaves of plants propagated in either soil. Similar results were observed with the culturable assays. Firmicutes dominated the isolates from both leaf samples, DS leaf (100 %) and GY leaf (83.3 %), although the genus compositions of DS leaf and GY leaf isolates were different. We assessed the antifungal activity of each isolate recovered to better understand the potential role that these endophytic bacteria may play. Of the 27 representative isolates from DS plant samples, 17 isolates (63.0 %) had antagonistic activity against at least one of the fungi tested. Seventeen isolates from GY plant samples (58.6 %) displayed antagonistic properties. The results show that the endophytic communities differ in the same plant species when propagated in different soils. Exploring the internal tissues of plants growing in diverse soil environments could be a way to find potential candidates for biocontrol agents.


Asunto(s)
Antifúngicos/aislamiento & purificación , Bacterias/crecimiento & desarrollo , Capsicum/microbiología , Endófitos/crecimiento & desarrollo , Hongos/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Endófitos/aislamiento & purificación , Endófitos/metabolismo , Hojas de la Planta/microbiología , Reacción en Cadena de la Polimerasa/métodos , República de Corea , Suelo , Microbiología del Suelo
6.
mBio ; : e0135124, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860787

RESUMEN

Plant pathogenic fungi cause serious diseases, which result in the loss of crop yields and reduce the quality of crops worldwide. To counteract the escalating risks of chemical fungicides, interest in biological control agents to manage plant diseases has significantly increased. In this study, we comprehensively screened microbial culture filtrates using a yeast screening system to find microbes exhibiting respiratory inhibition activity. Consequently, we found a soil-borne microbe Brevibacillus brevis HK544 strain exhibiting a respiration inhibitory activity and identified edeine B1 (EB1) from the culture filtrate of HK544 as the active compound of the respiration inhibition activity. Furthermore, against a plant pathogenic fungus Fusarium graminearum, our results showed that EB1 has effects on multiple aspects of respiration with the downregulation of most of the mitochondrial-related genes based on transcriptome analysis, differential EB1-sensitivity from targeted mutagenesis, and the synergistic effects of EB1 with electron transport chain complex inhibitors. With the promising plant disease control efficacy of B. brevis HK544 producing EB1, our results suggest that B. brevis HK544 has potential as a biocontrol agent for Fusarium head blight.IMPORTANCEAs a necrotrophic fungus, Fusarium graminearum is a highly destructive pathogen causing severe diseases in cereal crops and mycotoxin contamination in grains. Although chemical control is considered the primary approach to control plant disease caused by F. graminearum, fungicide-resistant strains have been detected in the field after long-term continuous application of fungicides. Moreover, applying chemical fungicides that trigger mycotoxin biosynthesis is a great concern for many researchers. Biocontrol of Fusarium head blight (FHB) by biological control agents (BCAs) represents an alternative approach and could be used as part of the integrated management of FHB and mycotoxin production. The most extensive studies on bacterial BCAs-fungal communications in agroecosystems have focused on antibiosis. Although many BCAs in agricultural ecology have already been used for fungal disease control, the molecular mechanisms of antibiotics produced by BCAs remain to be elucidated. Here, we found a potential BCA (Brevibacillus brevis HK544) with a strong antifungal activity based on the respiration inhibition activity with its active compound edeine B1 (EB1). Furthermore, our results showed that EB1 secreted by HK544 suppresses the expression of the mitochondria-related genes of F. graminearum, subsequently suppressing fungal development and the virulence of F. graminearum. In addition, EB1 exhibited a synergism with complex I inhibitors such as rotenone and fenazaquin. Our work extends our understanding of how B. brevis HK544 exhibits antifungal activity and suggests that the B. brevis HK544 strain could be a valuable source for developing new crop protectants to control F. graminearum.

7.
mBio ; 15(1): e0240123, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38112432

RESUMEN

IMPORTANCE: Fusarium graminearum is a destructive fungal pathogen that causes Fusarium head blight (FHB) on a wide range of cereal crops. To control fungal diseases, it is essential to comprehend the pathogenic mechanisms that enable fungi to overcome host defenses during infection. Pathogens require an oxidative stress response to overcome host-derived oxidative stress. Here, we identify the underlying mechanisms of the Fgbzip007-mediated oxidative stress response in F. graminearum. ChIP-seq and subsequent genetic analyses revealed that the role of glutathione in pathogenesis is not dependent on antioxidant functions in F. graminearum. Altogether, this study establishes a comprehensive framework for the Fgbzip007 regulon on pathogenicity and oxidative stress responses, offering a new perspective on the role of glutathione in pathogenicity.


Asunto(s)
Fusarium , Virulencia/genética , Estrés Oxidativo , Azufre , Enfermedades de las Plantas/microbiología
8.
Front Microbiol ; 14: 1170673, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37283917

RESUMEN

Botrytis cinerea is a necrotrophic fungal pathogen with an extremely broad host range, causing significant economic losses in agricultural production. In this study, we discovered a culture filtrate of bacterial strain HK235, which was identified as Chitinophaga flava, exhibiting high levels of antifungal activity against B. cinerea. From the HK235 culture filtrate, we isolated a new antimicrobial peptide molecule designated as chitinocin based on activity-guided fractionation followed by characterization of the amino acid composition and spectroscopic analyses. The HK235 culture filtrate and chitinocin completely inhibited both conidial germination and mycelial growth of B. cinerea at a concentration of 20% and 200 µg/mL, respectively. In addition to antibiosis against B. cinerea, the active compound chitinocin had a broad antifungal and antibacterial activity in vitro. When tomato plants were treated with the culture filtrate and chitinocin, the treatment strongly reduced the development of gray mold disease in a concentration-dependent manner compared to the untreated control. Here, considering the potent antifungal property in vitro and in vivo, we present the biocontrol potential of C. flava HK235 for the first time.

9.
Biotechnol Lett ; 34(7): 1327-34, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22450515

RESUMEN

Fusaricidins produced by Paenibacillus polymyxa DBB1709 are lipopeptide antibiotics active against fungi and Gram-positive bacteria. The cyclic hexapeptide structures of fusaricidins are synthesized by fusaricidin synthetase, a non-ribosomal peptide synthetase. The adenylation domain of the third module (FusA-A3) can recruit L: -Tyr, L: -Val, L: -Ile, L: -allo-Ile, or L: -Phe, which diversifies the fusaricidin structures. Since the L: -Phe-incorporated fusaricidin analog (LI-F07) exhibits more potent antimicrobial activity than other analogs, we modified a specificity-conferring sequence in the substrate binding pocket of FusA-A3 to direct the enhanced production of LI-F07. Base on comparison to the adenylation domain of gramicidin S synthetase 1 and tyrocidine synthetase 1, both of which mainly activate L: -Phe, six mutant strains with altered FusA-A3 were generated using site-directed mutagenesis. M3 (I239W, I299V), M5 (I299V, G322A, V330I), and M6 (S239W, I299V, G322A, V330I) mutants produced significantly more LI-F07 than the wild-type strain.


Asunto(s)
Depsipéptidos/metabolismo , Paenibacillus/enzimología , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Sustitución de Aminoácidos , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Estructura Terciaria de Proteína
10.
J Basic Microbiol ; 52(2): 150-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22460913

RESUMEN

A number of bacterial strains were isolated from the internal tissue of Trapa japonica. Of these, strain KPE62302H, which had a 16S rDNA sequence identical to that of Streptomyces miharaensis showed antifungal activity against several plant pathogens. Treatment of seeds with strain KPE62302H induced a significant reduction in the incidence of Fusarium wilt in tomato plants compared with untreated controls. An antifungal substance (FP-1) was purified from the culture extract of strain KPE62302H using C18 flash and Sephadex LH-20 column chromatography and reverse phase HPLC. Extensive spectrometric analysis using MS and NMR identified this as filipin III. FP-1 inhibited the mycelial growth of plant pathogenic fungi such as Alternaria mali, Aspergillus niger, Colletotrichum gloeosporioides, C. orbiculare, Cylindrocarpon destructans, Diaporthe citiri, Fusarium oxysporum at 1-10 µg ml(-1) and also markedly inhibited the development of Fusarium wilt caused by F. oxysporum f.sp. lycopersici in tomato plants by treatment with 10 µg ml(-1) under greenhouse conditions. The efficacy of FP-1 against Fusarium wilt was comparable to that of the synthetic fungicide benomyl. An egfp -tagged strain of KPE62302H confirmed its ability to colonize tomato plants.


Asunto(s)
Agentes de Control Biológico , Filipina/farmacología , Fusarium/patogenicidad , Enfermedades de las Plantas/prevención & control , Streptomyces/fisiología , Fungicidas Industriales/farmacología , Fusarium/efectos de los fármacos , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/microbiología , Pirazoles/farmacología , ARN Ribosómico 16S/genética , Semillas/microbiología , Streptomyces/genética
11.
J Antibiot (Tokyo) ; 75(9): 514-518, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35869365

RESUMEN

In our screening program for new antifungal active compounds, a new modified γ-lactone curvicollide D (1) together with five known trichothecenes (2-6) were isolated from the culture filtrate of fungus Albifimbria verrucaria based on the in vitro antifungal assay. The chemical structure of new compound 1 was elucidated by NMR and HR-MS spectroscopic analyses, and the relative configurations of 1 were deduced from NOE experiments and coupling constant analysis. Compound 1 exhibited moderate antifungal activities against plant pathogenic fungi Botrytis cinerea, Colletotrichum coccodes, and Magnaporthe oryzae with MIC value in a range of 100-200 µg ml-1. Moreover, trichothecene compounds (2-6) displayed a broad spectrum of antifungal activities with MIC values in a range of 6.3-100 µg ml-1.


Asunto(s)
Antifúngicos , Hypocreales , Antifúngicos/química , Hongos , Lactonas/farmacología , Plantas/microbiología
12.
ACS Omega ; 7(37): 33273-33279, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36157764

RESUMEN

Marine fungi produce various secondary metabolites with unique chemical structures and diverse biological activities. In the continuing search for new antifungal agents from fungi isolated from marine environments, the culture filtrate of a fungus Aspergillus tabacinus SFC20160407-M11 exhibited the potential to control plant diseases caused by fungi. From the culture filtrate of A. tabacinus SFC20160407-M11, a total of seven compounds were isolated and identified by activity-guided column chromatography and spectroscopic analysis: violaceol I (1), violaceol II (2), diorcinol (3), versinol (4), orcinol (5), orsellinic acid (6), and sydowiol C (7). Based on in vitro bioassays against 17 plant pathogenic fungi and bacteria, violaceols and diorcinol (1-3) showed a broad spectrum of antimicrobial activity with minimum inhibitory concentration values in the range of 6.3-200 µg mL-1. These compounds also effectively reduced the development of rice blast, tomato late blight, and pepper anthracnose caused by plant pathogenic fungi in a dose-dependent manner. Our results suggest that A. tabacinus SFC20160407-M11 and its phenyl ether compounds could be used for developing new antimicrobial agents to protect crops from plant pathogens.

13.
PLoS One ; 17(1): e0262836, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35051224

RESUMEN

Alternaria porri (Ellis) Clf. causes purple blotch disease on Allium plants which results in the reduction of crop yields and quality. In this study, to efficiently find natural antifungal compounds against A. porri, we optimized the culture condition for the spore production of A. porri and the disease development condition for an in vivo antifungal assay. From tested plant materials, the methanol extracts derived from ten plant species belonging to the families Cupressaceae, Fabaceae, Dipterocarpaceae, Apocynaceae, Lauraceae, and Melastomataceae were selected as potent antifungal agents against A. porri. In particular, the methanol extract of Caryodaphnopsis baviensis (Lec.) A.-Shaw completely inhibited the growth of A. porri at a concentration of 111 µg/ml. Based on chromatographic and spectroscopic analyses, a neolignan compound magnolol was identified as the antifungal compound of the C. baviensis methanol extract. Magnolol showed a significant inhibitory activity against the spore germination and mycelial growth of A. porri with IC50 values of 4.5 and 5.4 µg/ml, respectively. Furthermore, when magnolol was sprayed onto onion plants at a concentration of 500 µg/ml, it showed more than an 80% disease control efficacy for the purple blotch diseases. In terms of the antifungal mechanism of magnolol, we explored the in vitro inhibitory activity on individual oxidative phosphorylation complexes I-V, and the results showed that magnolol acts as multiple inhibitors of complexes I-V. Taken together, our results provide new insight into the potential of magnolol as an active ingredient with antifungal inhibitory action to control purple blotch on onions.


Asunto(s)
Alternaria/efectos de los fármacos , Antifúngicos/farmacología , Compuestos de Bifenilo/farmacología , Lauraceae/química , Lignanos/farmacología , Cebollas/microbiología , Enfermedades de las Plantas/microbiología , Extractos Vegetales/farmacología , Metanol/química , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo
14.
Plant Pathol J ; 38(5): 461-471, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36221918

RESUMEN

Erwinia amylovora is a causative pathogen of fire blight disease, affecting apple, pear, and other rosaceous plants. Currently, management of fire blight relies on cultural and chemical practices, whereas it has been known that few biological resources exhibit disease control efficacy against the fire blight. In the current study, we found that an SFC20201208-M01 fungal isolate exhibits antibacterial activity against E. amylovora TS3128, and the isolate was identified as a Penicillium brasilianum based on the ß-tubulin (BenA) gene sequence. To identify active compounds from the P. brasilianum culture, the culture filtrate was partitioned with ethyl acetate and n-butanol sequentially. From the ethyl acetate layer, we identified two new compounds (compounds 3-4) and two known compounds (compounds 1-2) based on spectroscopic analyses and comparison with literature data. Of these active compounds, penicillic acid (1) exhibited promising antibacterial activity against E. amylovora TS3128 with a minimal inhibitory concentration value of 25 µg/ml. When culture filtrate and penicillic acid (125 µg/ml) were applied onto Chinese pearleaf crab apple seedlings prior to inoculation of E. amylovora TS3128, the development of fire blight disease was effectively suppressed in the treated plants. Our results provide new insight into the biocontrol potential of P. brasilianum SFC20201208-M01 with an active ingredient to control fire blight.

15.
Plants (Basel) ; 10(8)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34451541

RESUMEN

Plants contain a number of bioactive compounds that exhibit antimicrobial activity, which can be recognized as an important source of agrochemicals for plant disease control. In searching for natural alternatives to synthetic fungicides, we found that a methanol extract of the plant species Platycladus orientalis suppressed the disease development of rice blast caused by Magnaporthe oryzae. Through a series of chromatography procedures in combination with activity-guided fractionation, we isolated and identified a total of eleven compounds including four labdane-type diterpenes (1-4), six isopimarane-type diterpenes (5-10), and one sesquiterpene (11). Of the identified compounds, the MIC values of compounds 1, 2, 5 & 6 mixture, 9, and 11 ranged from 100 to 200 µg/mL against M. oryzae, whereas the other compounds were over 200 µg/mL. When rice plants were treated with the antifungal compounds, compounds 1, 2, and 9 effectively suppressed the development of rice blast at all concentrations tested by over 75% compared to the non-treatment control. In addition, a mixture of compounds 5 & 6 that constituted 66% of the P. orientalis ethyl acetate fraction also exhibited a moderate disease control efficacy. Together, our data suggest that the methanol extract of P. orientalis including terpenoid compounds has potential as a crop protection agent.

16.
Microbiol Resour Announc ; 10(31): e0041721, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34351232

RESUMEN

The Brevibacillus brevis HK544 strain, which was isolated from soil, exhibited antimicrobial activity against plant pathogens such as Botrytis cinerea, Phytophthora infestans, and Erwinia amylovora. Here, we report the draft genome sequence of the B. brevis HK544 strain, which consists of one circular chromosome of 6,486,246 bp with a GC content of 47.3%.

17.
J Fungi (Basel) ; 7(6)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071658

RESUMEN

In the search for antifungal agents from marine resources, we recently found that the culture filtrate of Trichoderma longibrachiatum SFC100166 effectively suppressed the development of tomato gray mold, rice blast, and tomato late blight. The culture filtrate was then successively extracted with ethyl acetate and n-butanol to identify the fungicidal metabolites. Consequently, a new compound, spirosorbicillinol D (1), and a new natural compound, 2',3'-dihydro-epoxysorbicillinol (2), together with 11 known compounds (3-13), were obtained from the solvent extracts. The chemical structures were determined by spectroscopic analyses and comparison with literature values. The results of the in vitro antifungal assay showed that of the tested fungal pathogens, Phytophthora infestans was the fungus most sensitive to the isolated compounds, with MIC values ranging from 6.3 to 400 µg/mL, except for trichotetronine (9) and trichodimerol (10). When tomato plants were treated with the representative compounds (4, 6, 7, and 11), bisvertinolone (6) strongly reduced the development of tomato late blight disease compared to the untreated control. Taken together, our results revealed that the culture filtrate of T. longibrachiatum SFC100166 and its metabolites could be useful sources for the development of new natural agents to control late blight caused by P. infestans.

18.
Front Microbiol ; 12: 804333, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003037

RESUMEN

Microbial metabolites have been recognized as an important source for the discovery of new antifungal agents because of their diverse chemical structures with novel modes of action. In the course of our screening for new antifungal agents from microbes, we found that culture filtrates of two fungal species Aspergillus candidus SFC20200425-M11 and Aspergillus montenegroi SFC20200425-M27 have the potentials to reduce the development of fungal plant diseases such as tomato late blight and wheat leaf rust. From these two Aspergillus spp., we isolated a total of seven active compounds, including two new compounds (4 and 6), and identified their chemical structures based on the NMR spectral analyses: sphaeropsidin A (1), (R)-formosusin A (2), (R)-variotin (3), candidusin (4), asperlin (5), montenegrol (6), and protulactone A (7). Based on the results of the in vitro bioassays of 11 plant pathogenic fungi and bacteria, sphaeropsidin A (1), (R)-formosusin A (2), (R)-variotin (3), and asperlin (5) exhibited a wide range of antimicrobial activity. Furthermore, when plants were treated with sphaeropsidin A (1) and (R)-formosusin A (2) at a concentration of 500 µg/ml, sphaeropsidin A (1) exhibited an efficacy disease control value of 96 and 90% compared to non-treated control against tomato late blight and wheat leaf rust, and (R)-formosusin A (2) strongly reduced the development of tomato gray mold by 82%. Asperlin (5) at a concentration of 500 µg/ml effectively controlled the development of tomato late blight and wheat leaf rust with a disease control value of 95%. Given that culture filtrates and active compounds derived from two Aspergillus spp. exhibited disease control efficacies, our results suggest that the Aspergillus-produced antifungal compounds could be useful for the development of new natural fungicides.

19.
J Agric Food Chem ; 69(36): 10527-10535, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34469148

RESUMEN

In the search for new natural resources showing plant disease control effects, we found that the methanol extract of Polyalthia longifolia suppressed fungal disease development in plants. To identify the bioactive substances, the methanol extract of P. longifolia was extracted by organic solvents, and consequently, four new 2-oxo-clerodane diterpenes (1-4), a new 4(3 → 2)-abeo-clerodane diterpene (5), together with ten known compounds (6-16) were isolated and identified from the extracts. Of the new compounds, compound 2 showed a broad spectrum of antifungal activity with moderated minimum inhibitory concentration (MIC) values in a range of 50-100 µg/mL against tested fungal pathogens. Considering with the known compounds, compound 6 showed the most potent antifungal activity with an MIC value in the range of 6.3-12.5 µg/mL. When compound 6 was evaluated for an in vivo antifungal activity against rice blast, tomato late blight, and pepper anthracnose, compound 6 reduced the plant disease by at least 60% compared to the untreated control at concentrations of 250 and 500 µg/mL. Together, our results suggested that the methanol extract of twigs and leaves of P. longifolia and its major compound 6 could be used as a source for the development of eco-friendly plant protection agents.


Asunto(s)
Diterpenos de Tipo Clerodano , Polyalthia , Antifúngicos/farmacología , Diterpenos de Tipo Clerodano/farmacología , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacología , Hojas de la Planta
20.
Mycobiology ; 48(4): 326-329, 2020 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-32952416

RESUMEN

Valuable natural compounds produced by a variety of microorganisms can be used as lead molecules for development of new agrochemicals. Furthermore, high-throughput in vitro screening systems with specific modes of action can increase the probability of discovery of new fungicides. In the current study, a rapid assay tested with various microbes was developed to determine the degree of respiratory inhibition of Saccharomyces cerevisiae in two different liquid media, YG (containing a fermentable carbon source) and NFYG (containing a non-fermentable carbon source). Based on this system, we screened 100 fungal isolates that were classified into basidiomycetes, to find microbial secondary metabolites that act as respiratory inhibitors. Consequently, of the 100 fungal species tested, the culture broth of an IUM04881 isolate inhibited growth of S. cerevisiae in NFYG medium, but not in YG medium. The result is comparable to that from treatment with kresoxim-methyl used as a control, suggesting that the culture broth of IUM04881 isolate might contain active compounds showing the inhibition activity for respiratory chain. Based on the assay developed in this study and spectroscopic analysis, we isolated and identified an antifungal compound (-)-oudemansin A from culture broth of IUM04881 that is identified as Oudemansiella venosolamellata. This is the first report that (-)-oudemansin A is identified from O. venosolamellata in Korea. Taken together, the development of this assay will accelerate efforts to find and identify natural respiratory inhibitors from various microbes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA