RESUMEN
Micro ribonucleic acids (miRNAs) play a pivotal role in governing the human transcriptome in various biological phenomena. Hence, the accumulation of miRNA expression dysregulation frequently assumes a noteworthy role in the initiation and progression of complex diseases. However, accurate identification of dysregulated miRNAs still faces challenges at the current stage. Several bioinformatics tools have recently emerged for forecasting the associations between miRNAs and diseases. Nonetheless, the existing reference tools mainly identify the miRNA-disease associations in a general state and fall short of pinpointing dysregulated miRNAs within a specific disease state. Additionally, no studies adequately consider miRNA-miRNA interactions (MMIs) when analyzing the miRNA-disease associations. Here, we introduced a systematic approach, called IDMIR, which enabled the identification of expression dysregulated miRNAs through an MMI network under the gene expression context, where the network's architecture was designed to implicitly connect miRNAs based on their shared biological functions within a particular disease context. The advantage of IDMIR is that it uses gene expression data for the identification of dysregulated miRNAs by analyzing variations in MMIs. We illustrated the excellent predictive power for dysregulated miRNAs of the IDMIR approach through data analysis on breast cancer and bladder urothelial cancer. IDMIR could surpass several existing miRNA-disease association prediction approaches through comparison. We believe the approach complements the deficiencies in predicting miRNA-disease association and may provide new insights and possibilities for diagnosing and treating diseases. The IDMIR approach is now available as a free R package on CRAN (https://CRAN.R-project.org/package=IDMIR).
Asunto(s)
Biología Computacional , Redes Reguladoras de Genes , MicroARNs , Neoplasias de la Vejiga Urinaria , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Biología Computacional/métodos , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Perfilación de la Expresión Génica , Femenino , Regulación Neoplásica de la Expresión GénicaRESUMEN
Interactions between Tumor microenvironment (TME) cells shape the unique growth environment, sustaining tumor growth and causing the immune escape of tumor cells. Nonetheless, no studies have reported a systematic analysis of cellular interactions in the identification of cancer-related TME cells. Here, we proposed a novel network-based computational method, named as iATMEcell, to identify the abnormal TME cells associated with the biological outcome of interest based on a cell-cell crosstalk network. In the method, iATMEcell first manually collected TME cell types from multiple published studies and obtained their corresponding gene signatures. Then, a weighted cell-cell crosstalk network was constructed in the context of a specific cancer bulk tissue transcriptome data, where the weight between cells reflects both their biological function similarity and the transcriptional dysregulated activities of gene signatures shared by them. Finally, it used a network propagation algorithm to identify significantly dysregulated TME cells. Using the cancer genome atlas (TCGA) Bladder Urothelial Carcinoma training set and two independent validation sets, we illustrated that iATMEcell could identify significant abnormal cells associated with patient survival and immunotherapy response. iATMEcell was further applied to a pan-cancer analysis, which revealed that four common abnormal immune cells play important roles in the patient prognosis across multiple cancer types. Collectively, we demonstrated that iATMEcell could identify potentially abnormal TME cells based on a cell-cell crosstalk network, which provided a new insight into understanding the effect of TME cells in cancer. iATMEcell is developed as an R package, which is freely available on GitHub (https://github.com/hanjunwei-lab/iATMEcell).
Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/genética , Microambiente Tumoral , Fenómenos Fisiológicos Celulares , Comunicación CelularRESUMEN
Myasthenia gravis is an autoimmune disease characterized by pathogenic antibodies that target structures of the neuromuscular junction. However, some patients also experience autonomic dysfunction, anxiety, depression, and other neurological symptoms, suggesting the complex nature of the neurological manifestations. With the aim of explaining the symptoms related to the central nervous system, we utilized a rat model to investigate the impact of dopamine signaling in the central nervous and peripheral circulation. We adopted several screening methods, including western blot, quantitative PCR, mass spectrum technique, immunohistochemistry, immunofluorescence staining, and flow cytometry. In this study, we observed increased and activated dopamine signaling in both the central nervous system and peripheral circulation of myasthenia gravis rats. Furthermore, changes in the expression of two key molecules, Claudin5 and CD31, in endothelial cells of the blood-brain barrier were also examined in these rats. We also confirmed that dopamine incubation reduced the expression of ZO1, Claudin5, and CD31 in endothelial cells by inhibiting the Wnt/ß-catenin signaling pathway. Overall, this study provides novel evidence suggesting that pathologically elevated dopamine in both the central nervous and peripheral circulation of myasthenia gravis rats impair brain-blood barrier integrity by inhibiting junction protein expression in brain microvascular endothelial cells through the Wnt/ß-catenin pathway.
Asunto(s)
Dopamina , Miastenia Gravis , Humanos , Ratas , Animales , Dopamina/metabolismo , Células Endoteliales/metabolismo , Encéfalo , Barrera Hematoencefálica/metabolismo , Vía de Señalización Wnt/fisiología , Miastenia Gravis/metabolismoRESUMEN
Rechargeable sodium chloride (Na-Cl2) batteries have emerged as promising alternatives for next-generation energy storage due to their superior energy density and sodium abundance. However, their practical applications are hindered by the sluggish chlorine cathode kinetics related to the aggregation of NaCl and its difficult transformation into Cl2. Herein, the study, for the first time from the perspective of electrode level in Na-Cl2 batteries, proposes a free-standing carbon cathode host with customized vertical channels to facilitate the SOCl2 transport and regulate the NaCl deposition. Accordingly, electrode kinetics are significantly enhanced, and the deposited NaCl is distributed evenly across the whole electrode, avoiding the blockage of pores in the carbon host, and facilitating its oxidation to Cl2. With this low-polarization cathode, the Na-Cl2 batteries can deliver a practically high areal capacity approaching 4 mAh cm-2 and a long cycle life of over 170 cycles. This work demonstrates the significance of pore engineering in electrodes for mediating chlorine conversion kinetics in rechargeable alkali-metal-Cl2 batteries.
RESUMEN
The link between tumor genetic variations and immunotherapy benefits has been widely recognized. Recent studies suggested that the key biological pathways activated by accumulated genetic mutations may act as an effective biomarker for predicting the efficacy of immune checkpoint inhibitor (ICI) therapy. Here, we developed a novel individual Pathway Mutation Perturbation (iPMP) method that measures the pathway mutation perturbation level by combining evidence of the cumulative effect of mutated genes with the position of mutated genes in the pathways. In iPMP, somatic mutations on a single sample were first mapped to genes in a single pathway to infer the pathway mutation perturbation score (PMPscore), and then, an integrated PMPscore profile was produced, which can be used in place of the original mutation dataset to identify associations with clinical outcomes. To illustrate the effect of iPMP, we applied it to a melanoma cohort treated with ICIs and identified seven significant perturbation pathways, which jointly constructed a pathway-based signature. With the signature, patients were classified into two subgroups with significant distinctive overall survival and objective response rate to immunotherapy. Moreover, the pathway-based signature was consistently validated in two independent melanoma cohorts. We further applied iPMP to two non-small cell lung cancer cohorts and also obtained good performance. Altogether, the iPMP method could be used to identify the significant mutation perturbation pathways for constructing the pathway-based biomarker to predict the clinical outcomes of immunotherapy. The iPMP method has been implemented as a freely available R-based package (https://CRAN.R-project.org/package=PMAPscore).
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Melanoma , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/terapia , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/terapia , Melanoma/genética , Melanoma/terapia , MutaciónRESUMEN
Recent neuroimaging studies in humans have reported distinct temporal dynamics of gyri and sulci, which may be associated with putative functions of cortical gyrification. However, the complex folding patterns of the human cortex make it difficult to explain temporal patterns of gyrification. In this study, we used the common marmoset as a simplified model to examine the temporal characteristics and compare them with the complex gyrification of humans. Using a brain-inspired deep neural network, we obtained reliable temporal-frequency fingerprints of gyri and sulci from the awake rs-fMRI data of marmosets and humans. Notably, the temporal fingerprints of one region successfully classified the gyrus/sulcus of another region in both marmosets and humans. Additionally, the temporal-frequency fingerprints were remarkably similar in both species. We then analyzed the resulting fingerprints in several domains and adopted the Wavelet Transform Coherence approach to characterize the gyro-sulcal coupling patterns. In both humans and marmosets, sulci exhibited higher frequency bands than gyri, and the two were temporally coupled within the same range of phase angles. This study supports the notion that gyri and sulci possess unique and evolutionarily conserved features that are consistent across functional areas, and advances our understanding of the functional role of cortical gyrification.
Asunto(s)
Callithrix , Corteza Cerebral , Animales , Humanos , Corteza Cerebral/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Neuroimagen , Redes Neurales de la ComputaciónRESUMEN
Recently, the functional roles of the human cortical folding patterns have attracted increasing interest in the neuroimaging community. However, most existing studies have focused on the gyro-sulcal functional relationship on a whole-brain scale but possibly overlooked the localized and subtle functional differences of brain networks. Actually, accumulating evidences suggest that functional brain networks are the basic unit to realize the brain function; thus, the functional relationships between gyri and sulci still need to be further explored within different functional brain networks. Inspired by these evidences, we proposed a novel intrinsic connectivity network (ICN)-guided pooling-trimmed convolutional neural network (I-ptFCN) to revisit the functional difference between gyri and sulci. By testing the proposed model on the task functional magnetic resonance imaging (fMRI) datasets of the Human Connectome Project, we found that the classification accuracy of gyral and sulcal fMRI signals varied significantly for different ICNs, indicating functional heterogeneity of cortical folding patterns in different brain networks. The heterogeneity may be contributed by sulci, as only sulcal signals show heterogeneous frequency features across different ICNs, whereas the frequency features of gyri are homogeneous. These results offer novel insights into the functional difference between gyri and sulci and enlighten the functional roles of cortical folding patterns.
Asunto(s)
Corteza Cerebral , Conectoma , Humanos , Corteza Cerebral/diagnóstico por imagen , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Redes Neurales de la ComputaciónRESUMEN
Cortical folding patterns are related to brain function, cognition, and behavior. Since the relationship has not been fully explained on a coarse scale, many efforts have been devoted to the identification of finer grained cortical landmarks, such as sulcal pits and gyral peaks, which were found to remain invariant across subjects and ages and the invariance may be related to gene mediated proto-map. However, gyral peaks were only investigated on macaque monkey brains, but not on human brains where the investigation is challenged due to high inter-individual variabilities. To this end, in this work, we successfully identified 96 gyral peaks both on the left and right hemispheres of human brains, respectively. These peaks are spatially consistent across individuals. Higher or sharper peaks are more consistent across subjects. Both structural and functional graph metrics of peaks are significantly different from other cortical regions, and more importantly, these nodal graph metrics are anti-correlated with the spatial consistency metrics within peaks. In addition, the distribution of peaks and various cortical anatomical, structural/functional connective features show hemispheric symmetry. These findings provide new clues to understanding the cortical landmarks, as well as their relationship with brain functions, cognition, behavior in both healthy and aberrant brains.
Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Animales , Humanos , Membrana Celular , Corteza Cerebral , MacacaRESUMEN
Arsenic-bearing neutralization (ABN) sludge is a classical hazardous waste commonly found in nonferrous metallurgy. However, the current storage of these hazardous wastes not only has to pay costly hazardous waste taxes but also poses significant risks to both the environment and human health. To address these issues and achieve the comprehensive utilization and minimization of ABN sludge, this study proposes a new combined process. The process involves selective reduction roasting, leaching, and carbonation, through which, the arsenate and gypsum in the ABN sludge were recovered in the form of As(s), high-purity CaCO3, and H2S. The selective reduction behaviors of arsenate and gypsum were investigated through thermodynamic analysis and roasting experiments. The results indicated that the 95.35 % arsenate and 96.55 % gypsum in the sludge were selectively reduced to As4(g) and CaS at 950 °C by carbothermic reduction. The As4(g) was condensed to As(s) and enriched in the dust (As, 96.78 wt %). In the leaching process, H2S gas was adopted to promote the leaching of CaS, and resulted in 97.41 % of CaS in the roasted product was selectively leached in the form of Ca(HS)2, leading to a 74.11 % reduction in the weight of the ABN sludge. Then, the Ca(HS)2 was subjected to capture CO2 for the separation of Ca2+ and S2-. The result depicted that 99.69 % of Ca2+ and 99.12 % of S2- were separated as high-purity (99.12 wt %) CaCO3 and H2S (24.89 vol %) by controlling the terminal carbonation pH to below 6.55. The generated H2S can be economically converted to sulfur by the Clause process. The whole process realized the comprehensive resource recovery and the minimization of the sludge, which provides an alternative solution for the clean treatment of hazardous ABN waste.
Asunto(s)
Arsénico , Humanos , Arsénico/análisis , Aguas del Alcantarillado , Arseniatos , Sulfato de Calcio , Residuos PeligrososRESUMEN
Emotional arousal is a complex state recruiting distributed cortical and subcortical structures, in which the amygdala and insula play an important role. Although previous neuroimaging studies have showed that the amygdala and insula manifest reciprocal connectivity, the effective connectivities and modulatory patterns on the amygdala-insula interactions underpinning arousal are still largely unknown. One of the reasons may be attributed to static and discrete laboratory brain imaging paradigms used in most existing studies. In this study, by integrating naturalistic-paradigm (i.e., movie watching) functional magnetic resonance imaging (fMRI) with a computational affective model that predicts dynamic arousal for the movie stimuli, we investigated the effective amygdala-insula interactions and the modulatory effect of the input arousal on the effective connections. Specifically, the predicted dynamic arousal of the movie served as regressors in general linear model (GLM) analysis and brain activations were identified accordingly. The regions of interest (i.e., the bilateral amygdala and insula) were localized according to the GLM activation map. The effective connectivity and modulatory effect were then inferred by using dynamic causal modeling (DCM). Our experimental results demonstrated that amygdala was the site of driving arousal input and arousal had a modulatory effect on the reciprocal connections between amygdala and insula. Our study provides novel evidence to the underlying neural mechanisms of arousal in a dynamical naturalistic setting.
Asunto(s)
Mapeo Encefálico , Películas Cinematográficas , Humanos , Mapeo Encefálico/métodos , Vías Nerviosas/fisiología , Emociones/fisiología , Amígdala del Cerebelo/fisiología , Imagen por Resonancia Magnética/métodos , Nivel de AlertaRESUMEN
Genetic mechanisms have been hypothesized to be a major determinant in the formation of cortical folding. Although there is an increasing number of studies examining the heritability of cortical folding, most of them focus on sulcal pits rather than gyral peaks. Gyral peaks, which reflect the highest local foci on gyri and are consistent across individuals, remain unstudied in terms of heritability. To address this knowledge gap, we used high-resolution data from the Human Connectome Project (HCP) to perform classical twin analysis and estimate the heritability of gyral peaks across various brain regions. Our results showed that the heritability of gyral peaks was heterogeneous across different cortical regions, but relatively symmetric between hemispheres. We also found that pits and peaks are different in a variety of anatomic and functional measures. Further, we explored the relationship between the levels of heritability and the formation of cortical folding by utilizing the evolutionary timeline of gyrification. Our findings indicate that the heritability estimates of both gyral peaks and sulcal pits decrease linearly with the evolution timeline of gyrification. This suggests that the cortical folds which formed earlier during gyrification are subject to stronger genetic influences than the later ones. Moreover, the pits and peaks coupled by their time of appearance are also positively correlated in respect of their heritability estimates. These results fill the knowledge gap regarding genetic influences on gyral peaks and significantly advance our understanding of how genetic factors shape the formation of cortical folding. The comparison between peaks and pits suggests that peaks are not a simple morphological mirror of pits but could help complete the understanding of folding patterns.
Asunto(s)
Conocimiento , Gemelos , Humanos , Gemelos/genéticaRESUMEN
Biological pathways reflect the key cellular mechanisms that dictate disease states, drug response and altered cellular function. The local areas of pathways are defined as subpathways (SPs), whose dysfunction has been reported to be associated with the occurrence and development of cancer. With the development of high-throughput sequencing technology, identifying dysfunctional SPs by using multi-omics data has become possible. Moreover, the SPs are not isolated in the biological system but interact with each other. Here, we propose a network-based calculated method, CNA2Subpathway, to identify dysfunctional SPs is driven by somatic copy number alterations (CNAs) in cancer through integrating pathway topology information, multi-omics data and SP crosstalk. This provides a novel way of SP analysis by using the SP interactions in the system biological level. Using data sets from breast cancer and head and neck cancer, we validate the effectiveness of CNA2Subpathway in identifying cancer-relevant SPs driven by the somatic CNAs, which are also shown to be associated with cancer immune and prognosis of patients. We further compare our results with five pathway or SP analysis methods based on CNA and gene expression data without considering SP crosstalk. With these analyses, we show that CNA2Subpathway could help to uncover dysfunctional SPs underlying cancer via the use of SP crosstalk. CNA2Subpathway is developed as an R-based tool, which is freely available on GitHub (https://github.com/hanjunwei-lab/CNA2Subpathway).
Asunto(s)
Neoplasias de la Mama , Variaciones en el Número de Copia de ADN , Bases de Datos de Ácidos Nucleicos , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello , Modelos Genéticos , Programas Informáticos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , MasculinoRESUMEN
SUMMARY: Drug repurposing is an approach used to discover new indications for existing drugs. Recently, several computational approaches have been developed for drug repurposing in cancer. Nevertheless, no approaches have reported a systematic analysis of pathway crosstalk. Pathway crosstalk, which refers to the phenomenon of interaction or cooperation between pathways, is a critical aspect of tumor pathways that allows cancer cells to survive and acquire resistance to drug therapy. Here, we innovatively developed a system biology R-based software package, DRviaSPCN, to repurpose drugs for cancer via a subpathway (SP) crosstalk network. This package provides a novel approach to prioritize cancer candidate drugs by considering drug-induced SPs and their crosstalk effects. The operation modes mainly include construction of the SP network and calculation of the centrality scores of SPs to reflect the influence of SP crosstalk, calculation of enrichment scores of drug- and disease-induced dysfunctional SPs and weighted them by the centrality scores of SPs, evaluation of the drug-disease reverse association at the weighted SP level, identification of cancer candidate drugs and visualization of the results. Its capabilities enable DRviaSPCN to find cancer candidate drugs, which will complement the recent tools which did not consider crosstalk among pathways/SPs. DRviaSPCN may help to facilitate the development of drug discovery. AVAILABILITY AND IMPLEMENTATION: The package is implemented in R and available under GPL-2 license from the CRAN website (https://CRAN.R-project.org/package=DRviaSPCN). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Reposicionamiento de Medicamentos/métodos , Programas Informáticos , Neoplasias/tratamiento farmacológico , Descubrimiento de Drogas/métodos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéuticoRESUMEN
Long non-coding RNAs (lncRNAs) have been proven to play important roles in transcriptional processes and various biological functions. Establishing a comprehensive collection of human lncRNA sets is urgent work at present. Using reference lncRNA sets, enrichment analyses will be useful for analyzing lncRNA lists of interest submitted by users. Therefore, we developed a human lncRNA sets database, called LncSEA, which aimed to document a large number of available resources for human lncRNA sets and provide annotation and enrichment analyses for lncRNAs. LncSEA supports >40 000 lncRNA reference sets across 18 categories and 66 sub-categories, and covers over 50 000 lncRNAs. We not only collected lncRNA sets based on downstream regulatory data sources, but also identified a large number of lncRNA sets regulated by upstream transcription factors (TFs) and DNA regulatory elements by integrating TF ChIP-seq, DNase-seq, ATAC-seq and H3K27ac ChIP-seq data. Importantly, LncSEA provides annotation and enrichment analyses of lncRNA sets associated with upstream regulators and downstream targets. In summary, LncSEA is a powerful platform that provides a variety of types of lncRNA sets for users, and supports lncRNA annotations and enrichment analyses. The LncSEA database is freely accessible at http://bio.liclab.net/LncSEA/index.php.
Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Regulación de la Expresión Génica , ARN Largo no Codificante/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/genética , Minería de Datos/métodos , Humanos , Internet , Anotación de Secuencia Molecular/métodos , Análisis de Secuencia de ARN/métodos , Interfaz Usuario-ComputadorRESUMEN
A novel process that includes selective reduction roasting followed by hydrolysis was proposed in this work to recover zinc, and efficiently extract calcium and sulfur from hazardous zinc-rich gypsum residue (ZGR) waste for high-purity of CaCO3 and sulfur production. The selective reduction behaviors of ZGR during the reduction roasting were investigated in detail based on thermodynamic analysis and roasting experiments. The effect of roasting temperature, carbon dosage and time on the selective reduction of ZGR was comprehensively investigated, and the results indicated that ZnO and CaSO4 in the ZGR can be selectively reduced to Zn(g) and CaS, respectively. The volatile Zn(g) was oxidized to ZnO and enriched in the dust, which can be used as a secondary zinc resource. Moreover, the hydrolysis behaviors and leaching kinetic of CaS during hydrolysis were studied intensively. Results depicted that in the H2S-H2O system, the CaS in the roasted product can be selectively and efficiently dissolved into the leachate. Furthermore, the kinetic analysis revealed that the hydrolysis of CaS conformed to the internal diffusion reaction control model in the shrinking core model and the apparent activation energy Ea = -12.02 kJ/mol. The obtained hydrolysate with low impurities could be used to capture CO2 for the production of high-purity sulfur and CaCO3. Iron and other impurities in the roasted product were concentrated into the leaching slag in the form of metallic iron and akermanite. The whole process realized the recovery of zinc, and the selective and effective extraction of calcium and sulfur, which could provide an alternative process for the large-scale treatment of these hazardous wastes.
Asunto(s)
Óxido de Zinc , Zinc , Zinc/química , Sulfato de Calcio/química , Calcio , Óxido de Zinc/química , Residuos Industriales/análisis , Cinética , Hidrólisis , Hierro/análisis , Azufre/químicaRESUMEN
The rampant dendrites and hydrogen evolution reaction (HER) resulting from the turbulent interfacial evolution at the anode/electrolyte are the main culprits of short lifespan and low Coulombic efficiency of Zn metal batteries. In this work, a versatile protective coating with excellent zincophilic and amphoteric features is constructed on the surface of Zn metal (ZP@Zn) as dendrite-free anodes. This kind of protective coating possesses the advantages of reversible proton storage and rapid desolvation kinetics, thereby mitigating the HER and facilitating homogeneous nucleation concomitantly. Furthermore, the space charge polarization effect promotes charge redistribution to achieve uniform Zn deposition. Accordingly, the ZP@Zn symmetric cell manifests excellent reversibility at an ultrahigh cumulative plating capacity of 4700â mAh cm-2 and stable cycling at 80 % depth of discharge (DOD). The ZP@Zn//V6 O13 pouch cell also reveals superior cycling stability with a high capacity of 326.6â mAh g-1 .
RESUMEN
Dynamic functional connectivity (dFC) has been increasingly used to characterize the brain transient temporal functional patterns and their alterations in diseased brains. Meanwhile, naturalistic neuroimaging paradigms have been an emerging approach for cognitive neuroscience with high ecological validity. However, the test-retest reliability of dFC in naturalistic paradigm neuroimaging is largely unknown. To address this issue, we examined the test-retest reliability of dFC in functional magnetic resonance imaging (fMRI) under natural viewing condition. The intraclass correlation coefficients (ICC) of four dFC statistics including standard deviation (Std), coefficient of variation (COV), amplitude of low frequency fluctuation (ALFF), and excursion (Excursion) were used to measure the test-retest reliability. The test-retest reliability of dFC in naturalistic viewing condition was then compared with that under resting state. Our experimental results showed that: (a) Global test-retest reliability of dFC was much lower than that of static functional connectivity (sFC) in both resting-state and naturalistic viewing conditions; (b) Both global and local (including visual, limbic and default mode networks) test-retest reliability of dFC could be significantly improved in naturalistic viewing condition compared to that in resting state; (c) There existed strong negative correlation between sFC and dFC, weak negative correlation between dFC and dFC-ICC (i.e., ICC of dFC), as well as weak positive correlation between dFC-ICC and sFC-ICC (i.e., ICC of sFC). The present study provides novel evidence for the promotion of naturalistic paradigm fMRI in functional brain network studies.
Asunto(s)
Imagen por Resonancia Magnética/métodos , Vías Nerviosas/diagnóstico por imagen , Adulto , Algoritmos , Mapeo Encefálico/métodos , Conectoma , Red en Modo Predeterminado/diagnóstico por imagen , Femenino , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Sistema Límbico/diagnóstico por imagen , Masculino , Neuroimagen , Reproducibilidad de los Resultados , Vías Visuales/diagnóstico por imagen , Adulto JovenRESUMEN
Cerebral cortex development undergoes a variety of processes, which provide valuable information for the study of the developmental mechanism of cortical folding as well as its relationship to brain structural architectures and brain functions. Despite the variability in the anatomy-function relationship on the higher-order cortex, recent studies have succeeded in identifying typical cortical landmarks, such as sulcal pits, that bestow specific functional and cognitive patterns and remain invariant across subjects and ages with their invariance being related to a gene-mediated proto-map. Inspired by the success of these studies, we aim in this study at defining and identifying novel cortical landmarks, termed gyral peaks, which are the local highest foci on gyri. By analyzing data from 156 MRI scans of 32 macaque monkeys with the age spanned from 0 to 36 months, we identified 39 and 37 gyral peaks on the left and right hemispheres, respectively. Our investigation suggests that these gyral peaks are spatially consistent across individuals and relatively stable within the age range of this dataset. Moreover, compared with other gyri, gyral peaks have a thicker cortex, higher mean curvature, more pronounced hub-like features in structural connective networks, and are closer to the borders of structural connectivity-based cortical parcellations. The spatial distribution of gyral peaks was shown to correlate with that of other cortical landmarks, including sulcal pits. These results provide insights into the spatial arrangement and temporal development of gyral peaks as well as their relation to brain structure and function.
Asunto(s)
Encéfalo , Macaca , Animales , Encéfalo/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodosRESUMEN
SUMMARY: Cancer can be classified into various subtypes by its molecular, histological or clinical characteristics. Discovering cancer-subtype-specific drugs is a crucial step in personalized medicine. SubtypeDrug is a system biology R-based software package that enables the prioritization of subtype-specific drugs based on cancer expression data from samples of many subtypes. This provides a novel approach to identify the subtype-specific drug by considering biological functions regulated by drugs at the subpathway level. The operation modes include extraction of subpathways from biological pathways, identification of dysregulated subpathways induced by each drug, inference of sample-specific subpathway activity profiles, evaluation of drug-disease reverse association at the subpathways level, identification of cancer-subtype-specific drugs through subtype sample set enrichment analysis, and visualization of the results. Its capabilities enable SubtypeDrug to find subtype-specific drugs, which will fill the gaps in the recent tools which only identify the drugs for a particular cancer type. SubtypeDrug may help to facilitate the development of tailored treatment for patients with cancer. AVAILABILITY AND IMPLEMENTATION: The package is implemented in R and available under GPL-2 license from the CRAN website (https://CRAN.R-project.org/package=SubtypeDrug). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
RESUMEN
BACKGROUND: Immune checkpoint blockades (ICBs) have emerged as a promising treatment for cancer. Recently, tumour mutational burden (TMB) and neoantigen load (NAL) have been proposed to be potential biomarkers to predict the efficacy of ICB; however, they were limited by difficulties in defining the cut-off values and inconsistent detection platforms. Therefore, it is critical to identify more effective predictive biomarkers for screening patients who will potentially benefit from immunotherapy. In this study, we aimed to identify comutated signaling pathways to predict the clinical outcomes of immunotherapy. METHODS: Here, we comprehensively analysed the signaling pathway mutation status of 9763 samples across 33 different cancer types from The Cancer Genome Atlas (TCGA) by mapping the somatic mutations to the pathways. We then explored the comutated pathways that were associated with increased TMB and NAL by using receiver operating characteristic (ROC) curve analysis and multiple linear regressions. RESULTS: Our results revealed that comutation of the Spliceosome (Sp) pathway and Hedgehog (He) signaling pathway (defined as SpHe-comut+) could be used as a predictor of increased TMB and NAL and was associated with increased levels of immune-related signatures. In seven independent immunotherapy cohorts, we validated that SpHe-comut+ patients exhibited a longer overall survival (OS) or progression-free survival (PFS) and a higher objective response rate (ORR) than SpHe-comut- patients. Moreover, a combination of SpHe-comut status with PD-L1 expression further improved the predictive value for ICB therapy. CONCLUSION: Overall, SpHe-comut+ was demonstrated to be an effective predictor of immunotherapeutic benefit in seven independent immunotherapy cohorts and may serve as a potential and convenient biomarker for the clinical application of ICB therapy.