Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem J ; 480(24): 2045-2058, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38078799

RESUMEN

The SLC7A11/xCT cystine and glutamate antiporter has emerged as an attractive target for cancer therapy due to its selective overexpression in multiple cancers and its role in preventing ferroptosis. Utilizing pharmacological and genetic approaches in hepatocellular carcinoma cell lines, we demonstrate that overexpression of SLC7A11 engenders hypersensitivity towards l-selenocystine, a naturally occurring diselenide that bears close structural similarity to l-cystine. We find that the abundance of SLC7A11 positively correlates with sensitivity to l-selenocystine, but surprisingly, not to Erastin, an inhibitor of SLC7A11 activity. Our data indicate that SLC7A11 acts as a transport channel for l-selenocystine, which preferentially incites acute oxidative stress and damage eventuating to cell death in cells that highly express SLC7A11. Hence, our findings raise the prospect of l-selenocystine administration as a novel strategy for targeting cancers that up-regulate SLC7A11 expression.


Asunto(s)
Cistina , Línea Celular Tumoral , Cistina/metabolismo , Regulación hacia Arriba , Sistema de Transporte de Aminoácidos y+/metabolismo
2.
Semin Cancer Biol ; 86(Pt 3): 445-456, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35131480

RESUMEN

Alterations in metabolic pathways are a hallmark of cancer. A deeper understanding of the contribution of different metabolites to carcinogenesis is thus vitally important to elucidate mechanisms of tumor initiation and progression to inform therapeutic strategies. Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide and its altered metabolic landscape is beginning to unfold with the advancement of technologies. In particular, characterization of the lipidome of human HCCs has accelerated, and together with biochemical analyses, are revealing recurrent patterns of alterations in glycerophospholipid, sphingolipid, cholesterol and bile acid metabolism. These widespread alterations encompass a myriad of lipid species with numerous roles affecting multiple hallmarks of cancer, including aberrant growth signaling, metastasis, evasion of cell death and immunosuppression. In this review, we summarize the current trends and findings of the altered lipidomic landscape of HCC and discuss their potential biological significance for hepatocarcinogenesis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/metabolismo , Lipidómica , Carcinogénesis/genética , Transformación Celular Neoplásica
3.
Neuroimage ; 278: 120273, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37473977

RESUMEN

BACKGROUND: Metabolic syndrome score in children assesses the risk of developing cardiovascular disease in future. We aim to probe the role of the caudate in relation to the metabolic syndrome score. Furthermore, using both functional and structural neuroimaging, we aim to examine the interplay between functional and structural measures. METHODS: A longitudinal birth cohort study with functional and structural neuroimaging data obtained at 4.5, 6.0 and 7.5 years and metabolic syndrome scores at 8.0 years was used. Pearson correlation and linear regression was used to test for correlation fractional anisotropy (FA) and fractional amplitude of low frequency fluctuations (fALFF) of the caudate with metabolic syndrome scores. Mediation analysis was used to test if later brain measures mediated the relation between earlier brain measures and metabolic syndrome scores. Inhibitory control was also tested as a mediator of the relation between caudate brain measures and metabolic syndrome scores. RESULTS: FA at 4.5 years and fALFF at 7.5 years of the left caudate was significantly correlated with metabolic syndrome scores. Post-hoc mediation analysis showed that fALFF at 7.5 years fully mediated the relation between FA at 4.5 years and metabolic syndrome scores. Inhibitory control was significantly correlated with fALFF at 7.5 years, but did not mediate the relation between fALFF at 7.5 years and metabolic syndrome scores. CONCLUSIONS: We found that variations in caudate microstructure at 4.5 years predict later variation in functional activity at 7.5 years. This later variation in functional activity fully mediates the relation between microstructural changes in early childhood and metabolic syndrome scores at 8.0 years.


Asunto(s)
Imagen por Resonancia Magnética , Síndrome Metabólico , Preescolar , Niño , Humanos , Imagen por Resonancia Magnética/métodos , Estudios de Cohortes , Síndrome Metabólico/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos
4.
Int J Mol Sci ; 24(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298123

RESUMEN

Through a comprehensive analysis of the gene expression and dependency in HCC patients and cell lines, LAT1 was identified as the top amino acid transporter candidate supporting HCC tumorigenesis. To assess the suitability of LAT1 as a HCC therapeutic target, we used CRISPR/Cas9 to knockout (KO) LAT1 in the epithelial HCC cell line, Huh7. Knockout of LAT1 diminished its branched chain amino acid (BCAA) transport activity and significantly reduced cell proliferation in Huh7. Consistent with in vitro studies, LAT1 ablation led to suppression of tumor growth in a xenograft model. To elucidate the mechanism underlying the observed inhibition of cell proliferation upon LAT1 KO, we performed RNA-sequencing analysis and investigated the changes in the mTORC1 signaling pathway. LAT1 ablation resulted in a notable reduction in phosphorylation of p70S6K, a downstream target of mTORC1, as well as its substrate S6RP. This reduced cell proliferation and mTORC1 activity were rescued when LAT1 was overexpressed. These findings imply an essential role of LAT1 for maintenance of tumor cell growth and additional therapeutic angles against liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Transducción de Señal , Línea Celular , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
5.
Int J Mol Sci ; 23(16)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36012379

RESUMEN

Ultraviolet (UV) germicidal tools have recently gained attention as a disinfection strategy against the COVID-19 pandemic, but the safety profile arising from their exposure has been controversial and impeded larger-scale implementation. We compare the emerging 222-nanometer far UVC and 277-nanometer UVC LED disinfection modules with the traditional UVC mercury lamp emitting at 254 nm to understand their effects on human retinal cell line ARPE-19 and HEK-A keratinocytes. Cells illuminated with 222-nanometer far UVC survived, while those treated with 254-nanometer and 277-nanometer wavelengths underwent apoptosis via the JNK/ATF2 pathway. However, cells exposed to 222-nanometer far UVC presented the highest degree of DNA damage as evidenced by yH2AX staining. Globally, these cells displayed transcriptional changes in cell-cycle and senescence pathways. Thus, the introduction of 222-nanometer far UVC lamps for disinfection purposes should be carefully considered and designed with the inherent dangers involved.


Asunto(s)
COVID-19 , Rayos Ultravioleta , Animales , Daño del ADN , Desinfección/métodos , Humanos , Mamíferos , Pandemias , Rayos Ultravioleta/efectos adversos
6.
Amino Acids ; 53(12): 1807-1815, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33646427

RESUMEN

Dysregulated cellular energetics has recently been recognized as a hallmark of cancer and garnered attention as a potential targeting strategy for cancer therapeutics. Cancer cells reprogram metabolic activities to meet bio-energetic, biosynthetic and redox requirements needed to sustain indefinite proliferation. In many cases, metabolic reprogramming is the result of complex interactions between genetic alterations in well-known oncogenes and tumor suppressors and epigenetic changes. While the metabolism of the two most abundant nutrients, glucose and glutamine, is reprogrammed in a wide range of cancers, accumulating evidence demonstrates that additional metabolic pathways are also critical for cell survival and growth. Proline metabolism is one such metabolic pathway that promotes tumorigenesis in multiple cancer types, including liver cancer, which is the fourth main cause of cancer mortality in the world. Despite the recent spate of approved treatments, including targeted therapy and combined immunotherapies, there has been no significant gain in clinical benefits in the majority of liver cancer patients. Thus, exploring novel therapeutic strategies and identifying new molecular targets remains a top priority for liver cancer. Two of the enzymes in the proline biosynthetic pathway, pyrroline-5-carboxylate reductase (PYCR1) and Aldehyde Dehydrogenase 18 Family Member A1 (ALDH18A1), are upregulated in liver cancer of both human and animal models, while proline catabolic enzymes, such as proline dehydrogenase (PRODH) are downregulated. Here we review the latest evidence linking proline metabolism to liver and other cancers and potential mechanisms of action for the proline pathway in cancer development.


Asunto(s)
Carcinogénesis/metabolismo , Reprogramación Celular/fisiología , Neoplasias Hepáticas/metabolismo , Hígado/metabolismo , Hígado/patología , Mitocondrias/metabolismo , Prolina/metabolismo , Animales , Humanos , Neoplasias Hepáticas/patología , Mitocondrias/patología
7.
J Hepatol ; 72(4): 725-735, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31726117

RESUMEN

BACKGROUND & AIM: Under the regulation of various oncogenic pathways, cancer cells undergo adaptive metabolic programming to maintain specific metabolic states that support their uncontrolled proliferation. As it has been difficult to directly and effectively inhibit oncogenic signaling cascades with pharmaceutical compounds, focusing on the downstream metabolic pathways that enable indefinite growth may provide therapeutic opportunities. Thus, we sought to characterize metabolic changes in hepatocellular carcinoma (HCC) development and identify metabolic targets required for tumorigenesis. METHODS: We compared gene expression profiles of Morris Hepatoma (MH3924a) and DEN (diethylnitrosamine)-induced HCC models to those of liver tissues from normal and rapidly regenerating liver models, and performed gain- and loss-of-function studies of the identified gene targets for their roles in cancer cell proliferation in vitro and in vivo. RESULTS: The proline biosynthetic enzyme PYCR1 (pyrroline-5-carboxylate reductase 1) was identified as one of the most upregulated genes in the HCC models. Knockdown of PYCR1 potently reduced cell proliferation of multiple HCC cell lines in vitro and tumor growth in vivo. Conversely, overexpression of PYCR1 enhanced the proliferation of the HCC cell lines. Importantly, PYCR1 expression was not elevated in the regenerating liver, and KD or overexpression of PYCR1 had no effect on proliferation of non-cancerous cells. Besides PYCR1, we found that additional proline biosynthetic enzymes, such as ALDH18A1, were upregulated in HCC models and also regulated HCC cell proliferation. Clinical data demonstrated that PYCR1 expression was increased in HCC, correlated with tumor grade, and was an independent predictor of clinical outcome. CONCLUSION: Enhanced expression of proline biosynthetic enzymes promotes HCC cell proliferation. Inhibition of PYCR1 or ALDH18A1 may be a novel therapeutic strategy to target HCC. LAY SUMMARY: Even with the recently approved immunotherapies against liver cancer, currently available medications show limited clinical benefits or efficacy in the majority of patients. As such, it remains a top priority to discover new targets for effective liver cancer treatment. Here, we identify a critical role for the proline biosynthetic pathway in liver cancer development, and demonstrate that targeting key proteins in the pathway, namely PYCR1 and ALDH18A1, may be a novel therapeutic strategy for liver cancer.


Asunto(s)
Carcinogénesis/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas/metabolismo , Prolina/biosíntesis , Transducción de Señal/genética , Aldehído Deshidrogenasa/deficiencia , Aldehído Deshidrogenasa/genética , Animales , Carcinogénesis/genética , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/patología , Proliferación Celular/genética , Dietilnitrosamina/efectos adversos , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HaCaT , Células Hep G2 , Humanos , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/patología , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Ratones SCID , Pirrolina Carboxilato Reductasas/deficiencia , Pirrolina Carboxilato Reductasas/genética , Ratas , Transcriptoma , Transfección , Carga Tumoral/genética , Ensayos Antitumor por Modelo de Xenoinjerto , delta-1-Pirrolina-5-Carboxilato Reductasa
8.
PLoS Biol ; 15(2): e1002597, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28207742

RESUMEN

Obesity develops when caloric intake exceeds metabolic needs. Promoting energy expenditure represents an attractive approach in the prevention of this fast-spreading epidemic. Here, we report a novel pharmacological strategy in which a natural compound, narciclasine (ncls), attenuates diet-induced obesity (DIO) in mice by promoting energy expenditure. Moreover, ncls promotes fat clearance from peripheral metabolic tissues, improves blood metabolic parameters in DIO mice, and protects these mice from the loss of voluntary physical activity. Further investigation suggested that ncls achieves these beneficial effects by promoting a shift from glycolytic to oxidative muscle fibers in the DIO mice thereby enhancing mitochondrial respiration and fatty acid oxidation (FAO) in the skeletal muscle. Moreover, ncls strongly activates AMPK signaling specifically in the skeletal muscle. The beneficial effects of ncls treatment in fat clearance and AMPK activation were faithfully reproduced in vitro in cultured murine and human primary myotubes. Mechanistically, ncls increases cellular cAMP concentration and ADP/ATP ratio, which further lead to the activation of AMPK signaling. Blocking AMPK signaling through a specific inhibitor significantly reduces FAO in myotubes. Finally, ncls also enhances mitochondrial membrane potential and reduces the formation of reactive oxygen species in cultured myotubes.


Asunto(s)
Alcaloides de Amaryllidaceae/farmacología , Alcaloides de Amaryllidaceae/uso terapéutico , Dieta/efectos adversos , Músculo Esquelético/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Fenantridinas/farmacología , Fenantridinas/uso terapéutico , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Biomarcadores/metabolismo , Respiración de la Célula/efectos de los fármacos , Células Cultivadas , AMP Cíclico/metabolismo , Dieta Alta en Grasa , Metabolismo Energético/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Ácidos Grasos/metabolismo , Humanos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contracción Lenta/efectos de los fármacos , Fibras Musculares de Contracción Lenta/metabolismo , Músculo Esquelético/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Condicionamiento Físico Animal , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
9.
J Lipid Res ; 59(6): 1071-1078, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29654114

RESUMEN

The discovery that white adipocytes can undergo a browning process to become metabolically active beige cells has attracted significant interest in the fight against obesity. However, the study of adipose browning has been impeded by a lack of imaging tools that allow longitudinal and noninvasive monitoring of this process in vivo. Here, we report a preclinical imaging approach to detect development of beige adipocytes during adrenergic stimulation. In this approach, we expressed near-infrared fluorescent protein, iRFP720, driven under an uncoupling protein-1 (Ucp1) promoter in mice by viral transduction, and used multispectral optoacoustic imaging technology with ultrasound tomography (MSOT-US) to assess adipose beiging during adrenergic stimulation. We observed increased photoacoustic signal at 720 nm, coupled with attenuated lipid signals in stimulated animals. As a proof of concept, we validated our approach against hybrid positron emission tomography combined with magnetic resonance (PET/MR) imaging modality, and quantified the extent of adipose browning by MRI-guided segmentation of 2-deoxy-2-18F-fluoro-d-glucose uptake signals. The browning extent detected by MSOT-US and PET/MR are well correlated with Ucp1 induction. Taken together, these systems offer great opportunities for preclinical screening aimed at identifying compounds that promote adipose browning and translation of these discoveries into clinical studies of humans.


Asunto(s)
Tejido Adiposo Pardo/diagnóstico por imagen , Imagen Multimodal , Células 3T3-L1 , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Animales , Transporte Biológico , Diferenciación Celular , Fluorodesoxiglucosa F18/metabolismo , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos BALB C , Técnicas Fotoacústicas , Tomografía de Emisión de Positrones
10.
EMBO Rep ; 17(1): 47-63, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26589353

RESUMEN

Precise and efficient endocytosis is essential for vesicle recycling during a sustained neurotransmission. The regulation of endocytosis has been extensively studied, but inhibitors have rarely been found. Here, we show that synaptotagmin-11 (Syt11), a non-Ca(2+)-binding Syt implicated in schizophrenia and Parkinson's disease, inhibits clathrin-mediated endocytosis (CME) and bulk endocytosis in dorsal root ganglion neurons. The frequency of both types of endocytic event increases in Syt11 knockdown neurons, while the sizes of endocytosed vesicles and the kinetics of individual bulk endocytotic events remain unaffected. Specifically, clathrin-coated pits and bulk endocytosis-like structures increase on the plasma membrane in Syt11-knockdown neurons. Structural-functional analysis reveals distinct domain requirements for Syt11 function in CME and bulk endocytosis. Importantly, Syt11 also inhibits endocytosis in hippocampal neurons, implying a general role of Syt11 in neurons. Taken together, we propose that Syt11 functions to ensure precision in vesicle retrieval, mainly by limiting the sites of membrane invagination at the early stage of endocytosis.


Asunto(s)
Vesículas Cubiertas por Clatrina/fisiología , Clatrina/metabolismo , Endocitosis , Neuronas/metabolismo , Sinaptotagminas/genética , Sinaptotagminas/metabolismo , Animales , Exocitosis , Ganglios Espinales/citología , Técnicas de Silenciamiento del Gen , Neuronas/ultraestructura , Ratas , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología
11.
Proc Natl Acad Sci U S A ; 112(32): 9996-10001, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26216970

RESUMEN

Glucose stimulates insulin secretion from ß-cells by increasing intracellular Ca(2+). Ca(2+) then binds to synaptotagmin-7 as a major Ca(2+) sensor for exocytosis, triggering secretory granule fusion and insulin secretion. In type-2 diabetes, insulin secretion is impaired; this impairment is ameliorated by glucagon-like peptide-1 (GLP-1) or by GLP-1 receptor agonists, which improve glucose homeostasis. However, the mechanism by which GLP-1 receptor agonists boost insulin secretion remains unclear. Here, we report that GLP-1 stimulates protein kinase A (PKA)-dependent phosphorylation of synaptotagmin-7 at serine-103, which enhances glucose- and Ca(2+)-stimulated insulin secretion and accounts for the improvement of glucose homeostasis by GLP-1. A phospho-mimetic synaptotagmin-7 mutant enhances Ca(2+)-triggered exocytosis, whereas a phospho-inactive synaptotagmin-7 mutant disrupts GLP-1 potentiation of insulin secretion. Our findings thus suggest that synaptotagmin-7 is directly activated by GLP-1 signaling and may serve as a drug target for boosting insulin secretion. Moreover, our data reveal, to our knowledge, the first physiological modulation of Ca(2+)-triggered exocytosis by direct phosphorylation of a synaptotagmin.


Asunto(s)
Péptido 1 Similar al Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Sinaptotagminas/metabolismo , Secuencia de Aminoácidos , Animales , Colforsina/farmacología , Secuencia Conservada , AMP Cíclico/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Evolución Molecular , Exenatida , Exocitosis/efectos de los fármacos , Receptor del Péptido 1 Similar al Glucagón , Glucosa/farmacología , Células HEK293 , Humanos , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Ratones Noqueados , Datos de Secuencia Molecular , Mutación/genética , Péptidos/farmacología , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Ratas , Receptores de Glucagón/metabolismo , Sinaptotagminas/química , Ponzoñas/farmacología
12.
Int J Mol Sci ; 19(6)2018 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-29914202

RESUMEN

Obesity and its associated metabolic disorders are spreading at a fast pace throughout the world; thus, effective therapeutic approaches are necessary to combat this epidemic. Obesity develops when there is a greater caloric intake than energy expenditure. Promoting energy expenditure has recently attracted much attention as a promising approach for the management of body weight. Thermogenic adipocytes are capable of burning fat to dissipate chemical energy into heat, thereby enhancing energy expenditure. After the recent re-discovery of thermogenic adipocytes in adult humans, much effort has focused on understanding the molecular mechanisms, especially the epigenetic mechanisms, which regulate thermogenic adipocyte development and function. A number of chromatin signatures, such as histone modifications, DNA methylation, chromatin accessibilities, and interactions, have been profiled at the genome level and analyzed in various murine and human thermogenic fat cell systems. Moreover, writers and erasers, as well as readers of the epigenome are also investigated using genomic tools in thermogenic adipocytes. In this review, we summarize and discuss the recent advance in these studies and highlight the insights gained into the epigenomic regulation of thermogenic program as well as the pathogenesis of human metabolic diseases.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis , Epigénesis Genética , Termogénesis , Adipocitos/citología , Adipocitos/fisiología , Animales , Metilación de ADN , Código de Histonas , Humanos
13.
Traffic ; 16(7): 691-711, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25783006

RESUMEN

Actin has an ill-defined role in the trafficking of GLUT4 glucose transporter vesicles to the plasma membrane (PM). We have identified novel actin filaments defined by the tropomyosin Tpm3.1 at glucose uptake sites in white adipose tissue (WAT) and skeletal muscle. In Tpm 3.1-overexpressing mice, insulin-stimulated glucose uptake was increased; while Tpm3.1-null mice they were more sensitive to the impact of high-fat diet on glucose uptake. Inhibition of Tpm3.1 function in 3T3-L1 adipocytes abrogates insulin-stimulated GLUT4 translocation and glucose uptake. In WAT, the amount of filamentous actin is determined by Tpm3.1 levels and is paralleled by changes in exocyst component (sec8) and Myo1c levels. In adipocytes, Tpm3.1 localizes with MyoIIA, but not Myo1c, and it inhibits Myo1c binding to actin. We propose that Tpm3.1 determines the amount of cortical actin that can engage MyoIIA and generate contractile force, and in parallel limits the interaction of Myo1c with actin filaments. The balance between these actin filament populations may determine the efficiency of movement and/or fusion of GLUT4 vesicles with the PM.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Glucosa/metabolismo , Tropomiosina/metabolismo , Células 3T3 , Adipocitos/metabolismo , Animales , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Miosina Tipo I/metabolismo , Unión Proteica , Transporte de Proteínas , Tropomiosina/genética
15.
J Biol Chem ; 291(50): 25888-25900, 2016 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-27777306

RESUMEN

The processes regulating glucose-stimulated insulin secretion (GSIS) and its modulation by incretins in pancreatic ß-cells are only partly understood. Here we investigate the involvement of ß-catenin in these processes. Reducing ß-catenin levels using siRNA knockdown attenuated GSIS in a range of ß-cell models and blocked the ability of GLP-1 agonists and the depolarizing agent KCl to potentiate this. This could be mimicked in both ß-cell models and isolated islets by short-term exposure to the ß-catenin inhibitory drug pyrvinium. In addition, short-term treatment with a drug that increases ß-catenin levels results in an increase in insulin secretion. The timing of these effects suggests that ß-catenin is required for the processes regulating trafficking and/or release of pre-existing insulin granules rather than for those regulated by gene expression. This was supported by the finding that the overexpression of the transcriptional co-activator of ß-catenin, transcription factor 7-like 2 (TCF7L2), attenuated insulin secretion, consistent with the extra TCF7L2 translocating ß-catenin from the plasma membrane pool to the nucleus. We show that ß-catenin depletion disrupts the intracellular actin cytoskeleton, and by using total internal reflectance fluorescence (TIRF) microscopy, we found that ß-catenin is required for the glucose- and incretin-induced depletion of insulin vesicles from near the plasma membrane. In conclusion, we find that ß-catenin levels modulate Ca2+-dependent insulin exocytosis under conditions of glucose, GLP-1, or KCl stimulation through a role in modulating insulin secretory vesicle localization and/or fusion via actin remodeling. These findings also provide insights as to how the overexpression of TCF7L2 may attenuate insulin secretion.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Vesículas Secretoras/metabolismo , beta Catenina/metabolismo , Citoesqueleto de Actina/genética , Animales , Línea Celular , Péptido 1 Similar al Glucagón/genética , Péptido 1 Similar al Glucagón/metabolismo , Insulina/genética , Secreción de Insulina , Células Secretoras de Insulina/citología , Ratones , Vesículas Secretoras/genética , Proteína 2 Similar al Factor de Transcripción 7/genética , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , beta Catenina/genética
16.
Neuroimage ; 147: 904-915, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27729278

RESUMEN

Hypothalamus plays the central role in regulating energy homeostasis. To understand the hypothalamic neurocircuit in responding to leptin, Manganese-Enhanced MRI (MEMRI) was applied. Highly elevated signal could be mapped in major nuclei of the leptin signaling pathway, including the arcuate nucleus (ARC), paraventricular nucleus (PVN), ventromedial hypothalamus (VMH) and dorsomedial hypothalamus (DMH) in fasted mice and the enhancement was reduced by leptin administration. However, whether changes in MEMRI signal reflect Ca2+ channel activity, neuronal activation or connectivity in the leptin signaling pathway are not clear. By blocking L-type Ca2+ channels, the signal enhancement in the ARC, PVN and DMH, but not VMH, was reduced. By disrupting microtubule with colchicine, signal enhancement of the secondary neural areas like DMH and PVN was delayed which is consistent with the known projection density from ARC into these regions. Finally, strong correlation between c-fos expression and MEMRI signal increase rate was observed in the ARC, VMH and DMH. Together, we provide experimental evidence that MEMRI signal could represent activity and connectivity in certain hypothalamic nuclei and hence may be used for mapping activated neuronal pathway in vivo. This understanding would facilitate the application of MEMRI for evaluation of hypothalamic dysfunction in metabolic diseases.


Asunto(s)
Núcleo Arqueado del Hipotálamo/diagnóstico por imagen , Núcleo Hipotalámico Dorsomedial/diagnóstico por imagen , Leptina/metabolismo , Imagen por Resonancia Magnética/métodos , Manganeso , Imagen Molecular/métodos , Núcleo Hipotalámico Paraventricular/diagnóstico por imagen , Núcleo Hipotalámico Ventromedial/diagnóstico por imagen , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Hipotalámico Dorsomedial/metabolismo , Aumento de la Imagen , Leptina/farmacología , Ratones , Vías Nerviosas/diagnóstico por imagen , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo
17.
Biochem J ; 473(18): 2737-56, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27621482

RESUMEN

Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by hyperglycemia, insulin resistance and hyperinsulinemia in early disease stages but a relative insulin insufficiency in later stages. Insulin, a peptide hormone, is produced in and secreted from pancreatic ß-cells following elevated blood glucose levels. Upon its release, insulin induces the removal of excessive exogenous glucose from the bloodstream primarily by stimulating glucose uptake into insulin-dependent tissues as well as promoting hepatic glycogenesis. Given the increasing prevalence of T2DM worldwide, elucidating the underlying mechanisms and identifying the various players involved in the synthesis and exocytosis of insulin from ß-cells is of utmost importance. This review summarizes our current understanding of the route insulin takes through the cell after its synthesis in the endoplasmic reticulum as well as our knowledge of the highly elaborate network that controls insulin release from the ß-cell. This network harbors potential targets for anti-diabetic drugs and is regulated by signaling cascades from several endocrine systems.


Asunto(s)
Exocitosis , Insulina/biosíntesis , Animales , Glucemia/metabolismo , Humanos
18.
Nucleic Acids Res ; 43(6): e35, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25223787

RESUMEN

Next-generation sequencing has been widely used for the genome-wide profiling of histone modifications, transcription factor binding and gene expression through chromatin immunoprecipitated DNA sequencing (ChIP-seq) and cDNA sequencing (RNA-seq). Here, we describe a versatile library construction method that can be applied to both ChIP-seq and RNA-seq on the widely used Illumina platforms. Standard methods for ChIP-seq library construction require nanograms of starting DNA, substantially limiting its application to rare cell types or limited clinical samples. By minimizing the DNA purification steps that cause major sample loss, our method achieved a high sensitivity in ChIP-seq library preparation. Using this method, we achieved the following: (i) generated high-quality epigenomic and transcription factor-binding maps using ChIP-seq for murine adipocytes; (ii) successfully prepared a ChIP-seq library from as little as 25 pg of starting DNA; (iii) achieved paired-end sequencing of the ChIP-seq libraries; (iv) systematically profiled gene expression dynamics during murine adipogenesis using RNA-seq and (v) preserved the strand specificity of the transcripts in RNA-seq. Given its sensitivity and versatility in both double-stranded and single-stranded DNA library construction, this method has wide applications in genomic, epigenomic, transcriptomic and interactomic studies.


Asunto(s)
Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Adipocitos/citología , Adipocitos/metabolismo , Adipogénesis/genética , Animales , Inmunoprecipitación de Cromatina/métodos , ADN/genética , ADN/aislamiento & purificación , Ratones , ARN/genética , ARN/aislamiento & purificación , Transcriptoma
19.
J Neurosci ; 35(33): 11514-31, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26290230

RESUMEN

Protein aggregates containing ubiquitin (Ub) are commonly observed in neurodegenerative disorders, implicating the involvement of the ubiquitin proteasome system (UPS) in their pathogenesis. Here, we aimed to generate a mouse model for monitoring UPS function using a green fluorescent protein (GFP)-based substrate that carries a "noncleavable" N-terminal ubiquitin moiety (Ub(G76V)). We engineered transgenic mice expressing a fusion protein, consisting of the following: (1) Ub(G76V), GFP, and a synaptic vesicle protein synaptobrevin-2 (Ub(G76V)-GFP-Syb2); (2) GFP-Syb2; or (3) Ub(G76V)-GFP-Syntaxin1, all under the control of a neuron-specific Thy-1 promoter. As expected, Ub(G76V)-GFP-Syb2, GFP-Syb2, and Ub(G76V)-GFP-Sytaxin1 were highly expressed in neurons, such as motoneurons and motor nerve terminals of the neuromuscular junction (NMJ). Surprisingly, Ub(G76V)-GFP-Syb2 mice developed progressive adult-onset degeneration of motor nerve terminals, whereas GFP-Syb2 and Ub(G76V)-GFP-Syntaxin1 mice were normal. The degeneration of nerve terminals in Ub(G76V)-GFP-Syb2 mice was preceded by a progressive impairment of synaptic transmission at the NMJs. Biochemical analyses demonstrated that Ub(G76V)-GFP-Syb2 interacted with SNAP-25 and Syntaxin1, the SNARE partners of synaptobrevin. Ultrastructural analyses revealed a marked reduction in synaptic vesicle density, accompanying an accumulation of tubulovesicular structures at presynaptic nerve terminals. These morphological defects were largely restricted to motor nerve terminals, as the ultrastructure of motoneuron somata appeared to be normal at the stages when synaptic nerve terminals degenerated. Furthermore, synaptic vesicle endocytosis and membrane trafficking were impaired in Ub(G76V)-GFP-Syb2 mice. These findings indicate that Ub(G76V)-GFP-Syb2 may compete with endogenous synaptobrevin, acting as a gain-of-function mutation that impedes SNARE function, resulting in the depletion of synaptic vesicles and degeneration of the nerve terminals. SIGNIFICANCE STATEMENT: Degeneration of motor nerve terminals occurs in amyotrophic lateral sclerosis (ALS) patients as well as in mouse models of ALS, leading to progressive paralysis. What causes a motor nerve terminal to degenerate remains unknown. Here we report on transgenic mice expressing a ubiquitinated synaptic vesicle protein (Ub(G76V)-GFP-Syb2) that develop progressive degeneration of motor nerve terminals. These mice may serve as a model for further elucidating the underlying cellular and molecular mechanisms of presynaptic nerve terminal degeneration.


Asunto(s)
Enfermedad de la Neurona Motora/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Terminales Presinápticos/metabolismo , Terminales Presinápticos/patología , Ubiquitina/metabolismo , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Transgénicos , Enfermedad de la Neurona Motora/patología , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Ubiquitina/genética
20.
J Neurochem ; 139(5): 748-756, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27696409

RESUMEN

ADP-ribosylation factor (ARF) family of guanine-nucleotide-binding (G) proteins regulates organelle biogenesis, structure and trafficking. The functions of ARF proteins are tightly controlled by guanine nucleotide exchange factors (GEFs) containing a conserved SEC7 domain. Based on sequence similarity to brefeldin A-inhibited guanine nucleotide exchange protein (BIG)/GBF of the Arf-GEF family, we recently identified BIG3 as a novel ARF GEF protein with a non-functional catalytic motif in the SEC7 domain. BIG3 is mainly expressed in pancreatic islets and brain. In the islets, depletion of BIG3 increases insulin and glucagon secretion because of enhanced biogenesis of insulin and glucagon granules in the absence of BIG3. Here, we investigate BIG3 functions in the brain, in particular its regulation of neurotransmitter release in hippocampal neurons from wild-type and BIG3 knockout mice. In hippocampal neurons, BIG3 is mainly localized in lysosomes, and its depletion selectively impairs inhibitory synaptic transmission. Our finding provides novel insights for a cell-specific function of BIG3 in regulating neurotransmission.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/análisis , Factores de Intercambio de Guanina Nucleótido/fisiología , Hipocampo/fisiología , Lisosomas/química , Neuronas/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA