Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
RSC Adv ; 8(10): 5145-5150, 2018 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35542425

RESUMEN

A series of Sc:Ru:Fe:LiNbO3 crystals with various levels of Sc2O3(0, 1, 2, and 3 mol%) doping were grown from congruent melts in air by using the Czochralski technique. The defect structures and photorefractive properties of the Sc:Ru:Fe:LiNbO3 crystals were investigated by acquiring infrared spectra of the crystals and performing two-wavelength nonvolatile experiments, respectively. Our results showed the holographic storage properties of Ru:Fe:LiNbO3 crystals to be enhanced by doping them with a high concentration of Sc2O3, and indicated Sc:Ru:Fe:LiNbO3 crystals to constitute a promising medium for holographic storage.

2.
Ying Yong Sheng Tai Xue Bao ; 20(9): 2241-8, 2009 Sep.
Artículo en Zh | MEDLINE | ID: mdl-20030149

RESUMEN

With the climate data inside and outside a plastic greenhouse as driving variables, and the greenhouse structure, insect-proof net material, and characteristic breadth and leaf area index of Brassica chinensis L. as parameters; a canopy transpiration model for greenhouse B. chinensis was established, based on Penmam-Monteith transpiration model. This established model was validated by the experimental data of independent samples in a single greenhouse. The results showed that in lower reaches of Yangtze River, the vent discharge coefficient (Cd) of greenhouse covered with 20-, 25-, and 28- mesh insect-proof nets was 0.771, 0.758 and 0.736, and the wind pressure coefficient (Cw) was 0.33, 0.37, and 0.39, respectively. The determination coefficient (R2) between the predicted and measured canopy transpiration rate for the sunny, cloudy, and overcast days in summer was 0.95, 0.91, and 0.94, root mean squared error (RMSE) was 0.018, 0.014, and 0.015 g x m(-2) x s(-1), and relative prediction error (RE) was 14.27%, 18.05%, and 15.80%, respectively, suggesting that this model could better predict the transpiration rate of B. chinensis in the plastic greenhouse covered with insect-proof nets in lower reaches of Yangtze River.


Asunto(s)
Agricultura/métodos , Brassica/fisiología , Ambiente Controlado , Modelos Biológicos , Transpiración de Plantas/fisiología , China , Simulación por Computador , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA