Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Am Chem Soc ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528765

RESUMEN

Despite the extensive industrial and research interests in zeolites, their intrinsic catalytic nature is not fully understood due to the complexity of the hydroxyl-aluminum moieties. 17O NMR would provide irreplaceable opportunities for much-needed fine structural determination given the ubiquitous presence of oxygen atoms in nearly all species; however, the low sensitivity and quadrupolar nature of oxygen-17 make its NMR spectroscopic elucidation challenging. Here, we show that state-of-the-art double resonance solid-state NMR techniques have been combined with spectral editing methods based on scalar (through-bond) and dipolar (through-space) couplings, which allowed us to address the subtle protonic structures in zeolites. Notably, the often-neglected and undesired second-order quadrupolar-dipolar cross-term interaction ("2nd-QD interaction") can actually be exploited and can help gain invaluable information. Eventually, a comprehensive set of 1H-17O/1H-27Al double resonance NMR with J-/D-coupling spectral editing techniques have been designed in this work and enabled us to reveal atomic-scale precise structural and dynamical details in zeolites including: 1) The jump rate of the bridging acid site (BAS) proton is relatively low, i.e., far less than 100 s-1 at room temperature. 2) The Al-OH groups with 1H chemical shift at 2.6-2.8 ppm, at least for nonseverely dealuminated H-ZSM-5 catalysts, exhibit a rigid bridging environment similar to that of BAS. 3) The Si-OH groups at 2.0 ppm are not hydrogen bonded and undergo fast cone-rotational motion. The results in this study predict the 2nd-QD interaction to be universal for any rigid -17O-H environment, such as those in metal oxide surfaces or biomaterials.

2.
J Am Chem Soc ; 144(38): 17365-17375, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36103675

RESUMEN

Surface metal hydrides (M-H) are ubiquitous in heterogeneous catalytic reactions, while the detailed characterizations are frequently hindered by their high reactivity/low concentration, and the complicated surface structures of the host solids, especially in terms of practical solid catalysts. Herein, combining instant quenching capture and advanced solid-state NMR methodology, we report the first direct and unambiguous NMR evidence on the highly reactive surface gallium hydrides (Ga-H) over a practical Ga2O3 catalyst during direct H2 activation. The spectroscopic effects of 69Ga and 71Ga isotopes on the 1H NMR signal are clearly differentiated and clarified, allowing a concrete discrimination of the Ga-H signal from the hydroxyl crowd. Accompanied with quantitative and two-dimensional NMR spectroscopical methods, as well as density functional theory calculations, information on the site specification, structural configuration, and formation mechanism of the Ga-H species has been revealed, along with the H2 dissociation mechanism. More importantly, the successful spectroscopic identification and isolation of the surface Ga-H allow us to clearly reveal the critical but ubiquitous intermediate role of this species in catalytic reactions, such as propane dehydrogenation and CO2 hydrogenation reactions. The analytic approach presented in this work can be extended to other M-H analysis, and the insights will benefit the design of more efficient Ga-based catalysts.

3.
Anal Chem ; 93(50): 16769-16778, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34878248

RESUMEN

Hydroxyl groups are among the major active surface sites over metal oxides. However, their spectroscopic characterizations have been challenging due to limited resolutions, especially on hydroxyl-rich surfaces where strong hydroxyl networks are present. Here, using nanostructured In2O3 as an example, we show significantly enhanced discrimination of the surface hydroxyl groups, owing to the high-resolution 1H NMR spectra performed at a high magnetic field (18.8 T) and a fast magic angle spinning (MAS) of up to 60 kHz. A total of nine kinds of hydroxyl groups were distinguished and their assignments (µ1, µ2, and µ3) were further identified with the assistance of 17O NMR. The spatial distribution of these hydroxyl groups was further explored via two-dimensional (2D) 1H-1H homonuclear correlation experiments with which the complex surface hydroxyl network was unraveled at the atomic level. Moreover, the quantitative analysis of these hydroxyl groups with such high resolution enables further investigations into the physicochemical property and catalytic performance characterizations (in CO2 reduction) of these hydroxyl groups. This work provides insightful understanding on the surface structure/property of the In2O3 nanoparticles and, importantly, may prompt general applications of high-field ultrafast MAS NMR techniques in the study of hydroxyl-rich surfaces on other metal oxide materials.

4.
Phys Chem Chem Phys ; 21(6): 3287-3293, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30681681

RESUMEN

A comparative study of the adsorption and desorption processes of methanol in two kinds of nanochannels (i.e. MCM-41 and SWNTs) is performed by in situ continuous-flow laser-hyperpolarized 129Xe NMR. The high sensitivity and short acquisition time of hyperpolarized 129Xe allow for probing the molecular dynamics in a confined geometry under real working conditions. Hyperpolarized 129Xe NMR spectra indicate that the methanol adsorption behavior in nanochannels is determined by the characters of adsorption sites and that the methanol adsorption rate in the nanochannels of SWNTs is faster than in MCM-41. The experimental data shown in this work also indicate that there is a change in gas phase 129Xe NMR signal intensity during the adsorption and desorption of methanol in SWNTs. This may be because there is a strong depolarization of hyperpolarized 129Xe in SWNTs.

5.
Langmuir ; 30(27): 8036-45, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24951088

RESUMEN

Diffusion dynamics of guest molecules in nanopores has been studied intensively because diffusion is center on a number of research fields such as separation, drug delivery, chemical reactions, and sensing. In the present work, we report an experimental investigation of the self-diffusion of water inside carbon nanotube (CNT) channels using a pulsed field gradient (PFG) NMR method. The dispersion of CNTs homogeneously in water and cooling to temperatures below the melting point of bulk water allow us to probe the translational motion of confined water molecules. The results demonstrate that the self-diffusion coefficient of water in CNTs is highly dependent on the diffusion time and CNT diameter. In particular, the diffusivity of water in double-walled carbon nanotubes (DWNTs) with an average inner diameter of 2.3 ± 0.3 nm is twice that in multiwalled carbon nanotubes (MWNTs) with an average inner diameter of 6.7 ± 0.8 nm in the temperature range of 263-223 K. In addition, the effective self-diffusion coefficient in DWNTs is 1 order of magnitude higher than that reported for mesoporous silica materials with a similar pore size. The faster diffusivity of water in CNTs could be attributed to the ordered hydrogen bonds formed between water molecules within the confined channels of CNTs and the weak interaction between water and the CNT walls.

6.
Chem Soc Rev ; 41(1): 192-210, 2012 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21743940

RESUMEN

In situ solid-state NMR is a well-established tool for investigations of the structures of the adsorbed reactants, intermediates and products on the surface of solid catalysts. The techniques allow identifications of both the active sites such as acidic sites and reaction processes after introduction of adsorbates and reactants inside an NMR rotor under magic angle spinning (MAS). The in situ solid-state NMR studies of the reactions can be achieved in two ways, i.e. under batch-like or continuous-flow conditions. The former technique is low cost and accessible to the commercial instrument while the latter one is close to the real catalytic reactions on the solids. This critical review describes the research progress on the in situ solid-state NMR techniques and the applications in heterogeneous catalysis under batch-like and continuous-flow conditions in recent years. Some typical probe molecules are summarized here to detect the Brønsted and Lewis acidic sites by MAS NMR. The catalytic reactions discussed in this review include methane aromatization, olefin selective oxidation and olefin metathesis on the metal oxide-containing zeolites. With combining the in situ MAS NMR spectroscopy and the density functional theoretical (DFT) calculations, the intermediates on the catalyst can be identified, and the reaction mechanism is revealed. Reaction kinetic analysis in the nanospace instead of in the bulk state can also be performed by employing laser-enhanced MAS NMR techniques in the in situ flow mode (163 references).

7.
Tetrahedron Lett ; 53(35): 4636-4638, 2012 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-24052669

RESUMEN

Resorcinol derivatives are important building blocks in the synthesis of natural products and pharmaceutical compounds including cannabinoids. Here we describe the synthesis and the structural characterization of a key resorcinol which carries a fully restricted bridged bicyclic group. We also report a potential mechanism for the acid catalyzed condensation of (+)- or (-)-3-pinanol with 2,6-dimethoxyphenol. The synthesized resorcinol facilitates the development of novel conformationally restricted cannabinoid analogs.

8.
Trends Plant Sci ; 27(9): 908-921, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35414480

RESUMEN

Remarkable progress has been made in dissecting the molecular mechanisms involved in iron (Fe) homeostasis in plants, especially the identification of key transporter and transcriptional regulatory networks. But how the protein activity of these master players is regulated by Fe status remains underexplored. Recent studies show that major players toggle switch their properties by protein phosphorylation under different Fe conditions and consequently control the signaling cascade and metabolic adjustment. Moreover, Fe deficiency causes changes of multiple kinases and phosphatases. Here, we discuss how these findings highlight the emergence of the protein phosphorylation-dependent regulation for rapid and precise responses to Fe status to attain Fe homeostasis. Further studies will be needed to fully understand the regulation of these intricate networks.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hierro , Regulación de la Expresión Génica de las Plantas/genética , Redes Reguladoras de Genes , Homeostasis , Hierro/metabolismo , Fosforilación , Raíces de Plantas/metabolismo
9.
Chemistry ; 17(5): 1614-21, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21268164

RESUMEN

Isolated Ti species in zeolites show unique catalytic activities for a variety of chemical reactions. In this work, density functional calculations were used to explore three current concerns: 1) the distributions of Ti(IV) and Ti(III) ions in the MCM-22 zeolite; 2) the Lewis acidity of the Ti(IV) and Ti(III) sites; and 3) activation of alkane C-H bonds by photocatalysis with Ti-doped zeolites. Neither the Ti(IV) nor Ti(III) ions are randomly distributed in the MCM-22 zeolite. The orders of relative stability are very close for the eight Ti(IV) and Ti(III) sites, and the T3 site is the most probable in both cases. The wavelengths for Ti(IV)-Ti(III) excitations were calculated to lie in the range λ=246.9-290.2 nm. The Ti3(IV) site shows Lewis acidity toward NH(3) in two different modes, and these two modes can coexist with each other. The calculated Ti(IV) coordination numbers, Ti(IV)-O bond elongations, and charge transfers caused by NH(3) adsorption are in good agreement with previous results. Similarly, two different NH(3) adsorption modes exist for the Ti3(III) site; the site that exhibits radical transfer from the lattice O to N atoms is preferred due to the higher adsorption energy. This indicates that the Ti3(III) site does not show Lewis acidity, in contrast to the Ti3(IV) site. At the Ti3(III) site, the energy barrier for activating the methane C-H bond was calculated to be 33.3 kJ mol(-1) and is greatly reduced by replacing the hydrogen atoms with methyl groups. In addition, the reactivity is improved when switching from MCM-22 to TS-1 zeolite. The studies on the various Ti species reveal that lattice O atoms rather than Ti(III) radicals are crucial to the activation of alkane C-H bonds. This work provides new insights into and aids understanding of the catalysis by isolated Ti species in zeolites.


Asunto(s)
Titanio/química , Zeolitas/química , Adsorción , Alcanos/química , Catálisis , Cristalografía por Rayos X , Conformación Molecular , Termodinámica
10.
Chem Sci ; 12(34): 11554-11564, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34567504

RESUMEN

Heteronuclear dipolar coupling is indispensable in revealing vital information related to the molecular structure and dynamics, as well as intermolecular interactions in various solid materials. Although numerous approaches have been developed to selectively reintroduce heteronuclear dipolar coupling under MAS, most of them lack universality and can only be applied to limited spin systems. Herein, we introduce a new and robust technique dubbed phase modulated rotary resonance (PMRR) for reintroducing heteronuclear dipolar couplings while suppressing all other interactions under a broad range of MAS conditions. The standard PMRR requires the radiofrequency (RF) field strength of only twice the MAS frequency, can efficiently recouple the dipolar couplings with a large scaling factor of 0.50, and is robust to experimental imperfections. Moreover, the adjustable window modification of PMRR, dubbed wPMRR, can improve its performance remarkably, making it well suited for the accurate determination of dipolar couplings in various spin systems. The robust performance of such pulse sequences has been verified theoretically and experimentally via model compounds, at different MAS frequencies. The application of the PMRR technique was demonstrated on the H-ZSM-5 zeolite, where the interaction between the Brønsted acidic hydroxyl groups of H-ZSM-5 and the absorbed trimethylphosphine oxide (TMPO) were probed, revealing the detailed configuration of super acid sites.

11.
J Phys Chem Lett ; 12(9): 2413-2422, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33661009

RESUMEN

Herein, utilizing acetonitrile as the probe molecule, the acidity and host-guest interactions of H-mordenite (H-MOR) zeolites are investigated comprehensively by solid-state NMR spectroscopy and theoretical calculation. The locations and local configurations of Brønsted acid sites (BASs) in H-MOR are revealed by multinuclear and multidimensional NMR experiments with adsorption/coadsorption of acetonitrile (CD3CN) and trimethylphosphine (TMP). Moreover, the confinement effect of dual pores in MOR has been characterized via the quantitative determination of host-guest interactions between CH3CN and BASs. The 1H-15N dipolar measurement results and DFT calculations demonstrate that there are two kinds of acetonitrile molecules adsorbed in 12-membered ring (12MR) main channels with distinct mobility, where acetonitrile undergoes either partially restricted or highly flexible motion in the time scale of nanoseconds to microseconds. These two types of acetonitrile can exchange with temperature rising. In contrast, the mobility of acetonitrile in 8-membered ring (8MR) channels is very restricted due to the confinement of the framework.

12.
Phys Chem Chem Phys ; 12(10): 2443-9, 2010 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-20449358

RESUMEN

In situ two-dimensional NMR and fluorescence emission spectroscopy were employed to investigate the cooperative structure-direction effect of organic amine such as morpholine in the synthesis of aluminophosphate molecular sieves in ionic liquids. In situ rotating frame nuclear Overhauser effect spectra (ROESY) together with fluorescence measurements demonstrate that the aggregates between imidazolium cations and morpholines through intermolecular hydrogen bonds can be formed in the gel during the crystallization of molecular sieves. Combining with the characterizations of the solid products by solid-state NMR, it is verified that different aggregates of organic amines with imidazolium cations, which is similar to self-assembled supramolecular analogues, could act as the structure-directing agents for selective tuning of the framework topologies such as AEL, AFI and LTA in the final solid products.


Asunto(s)
Compuestos de Aluminio/síntesis química , Líquidos Iónicos/química , Fosfatos/síntesis química , Compuestos de Aluminio/química , Cristalización , Espectroscopía de Resonancia Magnética , Estructura Molecular , Fosfatos/química , Espectrometría de Fluorescencia
13.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 27(1): 126-31, 2010 Feb.
Artículo en Zh | MEDLINE | ID: mdl-20337039

RESUMEN

Acid fibroblast growth factor (aFGF) has great potential in clinical application, but it is very expensive. In order to reduce the cost of production and to make full use of the merits integrated with plant bioreator, we have explored the aFGF in transgenic Tobacco expression. AFGF gene was inserted into plant expression vector pBI121; the acquired plants contained aFGF gene expression vector pBI121-TOAB-aF. Using Agrobacterium-mediated gene transformation of Tobacco and using transgenic Tobacco containing kanamycin and cephalosporin culture medium, we obtained kanamycin resistant transgenic Tobacco plants. PCR detection, RT-PCR detection and Western blot detection confirmed that foreign genes were successfully expressed in Tobacco. These data could serve as a theoretical foundation on which to use the plant bioreactor for production of aFGF.


Asunto(s)
Factor 1 de Crecimiento de Fibroblastos/biosíntesis , Vectores Genéticos/genética , Nicotiana/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Agrobacterium/genética , Factor 1 de Crecimiento de Fibroblastos/genética , Plantas Modificadas Genéticamente/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Nicotiana/genética
14.
J Am Chem Soc ; 131(38): 13722-7, 2009 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-19736983

RESUMEN

A new approach of in situ continuous-flow laser-hyperpolarized (129)Xe MAS NMR together with (13)C MAS NMR is designed and applied successfully to study the adsorption and reaction kinetics in the nanospace. Methanol conversion in CHA nanocages has been investigated in detail for proof of principle demonstrating the prospect of in situ NMR of reaction kinetics. Our findings well elucidates that the reaction intermediate can be identified by (13)C MAS NMR spectroscopy, meanwhile the kinetic and dynamic processes of methanol adsorption and reaction in CHA nanocages can be monitored by one- and two-dimensional hyperpolarized (129)Xe MAS NMR spectroscopy under the continuous-flow condition close to the real heterogeneous catalysis. The kinetic curves and apparent activation energy of the nanocages involving the active site are obtained quantitatively. The advantages of hyperpolarized (129)Xe with much higher sensitivity and shorter acquisition time allow the kinetics to be probed in a confined geometry under real working conditions.

15.
Chemistry ; 15(48): 13449-55, 2009 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-19885894

RESUMEN

A facile method has been developed for the fabrication of porous silicon carbide (SiC) by means of sintering a mixture of SiC powder and carbon pellets at a relatively lower temperature, that is, 1450 degrees C, in air. The pore density and the total pore volume of the resulting porous SiC could be tuned by changing the initial SiC/C weight ratio. The structure evolution and the associated property changes during the preparation were examined through X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, (29)Si magic-angle spinning (MAS) NMR spectroscopy, and mercury-intrusion porosimetry analyses. Silica and SiO(x)C(y) ceramics formed in situ during the calcination process acted as binders of the porous SiC grains. The porous SiC can be used as a host for the growth of ZSM-5 zeolite crystals to form the ZSM-5/porous-SiC composite material. After loading another catalytic active component of molybdenum, a novel catalytic material, Mo-ZSM-5/porous-SiC, was obtained, which exhibited improved catalytic activity in the methane dehydroaromatization reaction.

16.
Chemistry ; 15(21): 5348-54, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19326376

RESUMEN

A combination of state-of-the art in situ one- and two-dimensional NMR spectroscopy and density functional theory (DFT) calculations have been employed for the first time to investigate the role of amines in the synthesis of aluminophosphate molecular sieves in ionic liquids (ILs). In situ rotating-frame nuclear Overhauser effect spectroscopy (ROESY) was used to demonstrate that the hybrid of imidazolium ionic liquids with organic amines, such as morpholine, connected through a hydrogen bond can be formed in the gel during the crystallization of molecular sieves. By combining the characterizations of the final solid products obtained by using XRD analyses, solid-state NMR spectroscopy, thermogravimetric analysis, and DFT calculation results, it was verified that the hybrid between morpholine and the imidazolium cation in the initial preparation stage can act as the structure-directing agent (SDA) for the synthesis of AFI-structured aluminophosphate molecular sieves. Our findings may suggest a synthesis mechanism of molecular sieves in ionic liquids in which the IL-organic amine hybrid is required in the nucleation step, whereas the crystal growth occurs through the occlusion of ionic liquids in the zeolite channels.

17.
Zhongguo Zhong Yao Za Zhi ; 34(19): 2454-7, 2009 Oct.
Artículo en Zh | MEDLINE | ID: mdl-20067011

RESUMEN

OBJECTIVE: To establish a high-frequency regeneration system of Astragalus and an aFGF transformation system. METHOD: Cotyledon node of the Astragalus explants was used for organogenesis to establish a high-frequency regeneration system. GV3101 was used to transform cotyledon node, and aFGF gene was introduced into Astragalus, renewable strain was detected by PCR. RESULT: All cotyledon node was explants, adventitious buds were induced in the medium of MS +2.0 mg x L(-1) BA +0.5 mg x L(-1) IBA, the root was taken in the medium of 1/2MS +5.0 mg x L(-1) NAA to give a high frequency regeneration system. All cotyledon node was precultured in medium for 3 days and infected with Agrobacterium (A600 0.3) for 10 min and then cocultured for 2 days. The aFGF gene was confirmed to transform into genome of Astragalus. CONCLUSION: A high-frequency regeneration system of Astragalus and an aFGF transformation system were established.


Asunto(s)
Planta del Astrágalo/genética , Factor 1 de Crecimiento de Fibroblastos/genética , Ingeniería Genética/métodos , Plantas Modificadas Genéticamente/genética , Transformación Genética , Planta del Astrágalo/metabolismo , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica , Humanos , Plantas Modificadas Genéticamente/metabolismo
18.
RSC Adv ; 9(22): 12415-12418, 2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-35515828

RESUMEN

13C-13C through-bond NMR correlation experiments reveal the stabilization of different carbenium ion intermediates in two zeolites possessing identical CHA topology (H-SAPO-34 and H-SSZ-13) during the methanol to olefins reaction.

19.
J Phys Chem B ; 112(4): 1226-31, 2008 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-18181607

RESUMEN

One- and two-dimensional 129Xe NMR spectroscopy has been employed to study the porosity of cocrystallized MCM-49/ZSM-35 zeolites under the continuous flow of hyperpolarized xenon gas. It is found by variable-temperature experiments that Xe atoms can be adsorbed in different domains of MCM-49/ZSM-35 cocrystallized zeolites and the mechanically mixed counterparts. The exchange of Xe atoms in different types of pores is very fast at ambient temperatures. Even at very low temperature two-dimensional exchange spectra (EXSY) show that Xe atoms still undergo much faster exchange between MCM-49 and ZSM-35 analogues in the cocrystallized zeolites than in the mechanical mixture. This demonstrates that the MCM-49 and ZSM-35 analogues in cocrystallized zeolites may be stacked much closer than in the physical mixture, and some parts of intergrowth may be formed due to the partially similar basic structure of MCM-49 and ZSM-35.

20.
Chem Sci ; 9(43): 8184-8193, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30568769

RESUMEN

Acidic zeolites are porous aluminosilicates used in a wide range of industrial processes such as adsorption and catalysis. The formation of carbocation intermediates plays a key role in reactivity, selectivity and deactivation in heterogeneous catalytic processes. However, the observation and determination of carbocations remain a significant challenge in heterogeneous catalysis due to the lack of selective techniques of sufficient sensitivity to detect their low concentrations. Here, we combine 13C isotopic enrichment and efficient dynamic nuclear polarization magic angle spinning nuclear magnetic resonance spectroscopy to detect carbocations in zeolites. We use two dimensional 13C-13C through-bond correlations to establish their structures and 29Si-13C through-space experiments to quantitatively probe the interaction between multiple surface sites of the zeolites and the confined hydrocarbon pool species. We show that a range of various membered ring carbocations are intermediates in the methanol to hydrocarbons reaction catalysed by different microstructural ß-zeolites and highlight that different reaction routes for the formation of both targeted hydrocarbon products and coke exist. These species have strong van der Waals interaction with the zeolite framework demonstrating that their accumulation in the channels of the zeolites leads to deactivation. These results enable understanding of deactivation pathways and open up opportunities for the design of catalysts with improved performances.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA