Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 149(3): 642-55, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22541434

RESUMEN

Non-small cell lung cancer (NSCLC) is the most frequent cause of cancer deaths worldwide; nearly half contain mutations in the receptor tyrosine kinase/RAS pathway. Here we show that RAS-pathway mutant NSCLC cells depend on the transcription factor GATA2. Loss of GATA2 reduced the viability of NSCLC cells with RAS-pathway mutations, whereas wild-type cells were unaffected. Integrated gene expression and genome occupancy analyses revealed GATA2 regulation of the proteasome, and IL-1-signaling, and Rho-signaling pathways. These pathways were functionally significant, as reactivation rescued viability after GATA2 depletion. In a Kras-driven NSCLC mouse model, Gata2 loss dramatically reduced tumor development. Furthermore, Gata2 deletion in established Kras mutant tumors induced striking regression. Although GATA2 itself is likely undruggable, combined suppression of GATA2-regulated pathways with clinically approved inhibitors caused marked tumor clearance. Discovery of the nononcogene addiction of KRAS mutant lung cancers to GATA2 presents a network of druggable pathways for therapeutic exploitation.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Factor de Transcripción GATA2/metabolismo , Redes Reguladoras de Genes , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas ras/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Factor de Transcripción GATA2/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Pulmonares/patología , Ratones , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal , Proteínas ras/genética
2.
Sci Rep ; 13(1): 1889, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732563

RESUMEN

P110α is a member of the phosphoinositide 3-kinase (PI3K) enzyme family that functions downstream of RAS. RAS proteins contribute to the activation of p110α by interacting directly with its RAS binding domain (RBD), resulting in the promotion of many cellular functions such as cell growth, proliferation and survival. Previous work from our lab has highlighted the importance of the p110α/RAS interaction in tumour initiation and growth. Here we report the discovery and characterisation of a cyclic peptide inhibitor (cyclo-CRVLIR) that interacts with the p110α-RBD and blocks its interaction with KRAS. cyclo-CRVLIR was discovered by screening a "split-intein cyclisation of peptides and proteins" (SICLOPPS) cyclic peptide library. The primary cyclic peptide hit from the screen initially showed a weak affinity for the p110α-RBD (Kd about 360 µM). However, two rounds of amino acid substitution led to cyclo-CRVLIR, with an improved affinity for p110α-RBD in the low µM (Kd 3 µM). We show that cyclo-CRVLIR binds selectively to the p110α-RBD but not to KRAS or the structurally-related RAF-RBD. Further, using biophysical, biochemical and cellular assays, we show that cyclo-CRVLIR effectively blocks the p110α/KRAS interaction in a dose dependent manner and reduces phospho-AKT levels in several oncogenic KRAS cell lines.


Asunto(s)
Fosfatidilinositol 3-Quinasa , Transducción de Señal , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
3.
Nat Commun ; 13(1): 5632, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163168

RESUMEN

Activating mutations in KRAS occur in 32% of lung adenocarcinomas (LUAD). Despite leading to aggressive disease and resistance to therapy in preclinical studies, the KRAS mutation does not predict patient outcome or response to treatment, presumably due to additional events modulating RAS pathways. To obtain a broader measure of RAS pathway activation, we developed RAS84, a transcriptional signature optimised to capture RAS oncogenic activity in LUAD. We report evidence of RAS pathway oncogenic activation in 84% of LUAD, including 65% KRAS wild-type tumours, falling into four groups characterised by coincident alteration of STK11/LKB1, TP53 or CDKN2A, suggesting that the classifications developed when considering only KRAS mutant tumours have significance in a broader cohort of patients. Critically, high RAS activity patient groups show adverse clinical outcome and reduced response to chemotherapy. Patient stratification using oncogenic RAS transcriptional activity instead of genetic alterations could ultimately assist in clinical decision-making.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Genes ras/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas ras
4.
Cancer Res ; 82(19): 3435-3448, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35930804

RESUMEN

Mutations in oncogenes such as KRAS and EGFR cause a high proportion of lung cancers. Drugs targeting these proteins cause tumor regression but ultimately fail to elicit cures. As a result, there is an intense interest in how to best combine targeted therapies with other treatments, such as immunotherapies. However, preclinical systems for studying the interaction of lung tumors with the host immune system are inadequate, in part due to the low tumor mutational burden in genetically engineered mouse models. Here we set out to develop mouse models of mutant KRAS-driven lung cancer with an elevated tumor mutational burden by expressing the human DNA cytosine deaminase, APOBEC3B, to mimic the mutational signature seen in human lung cancer. This failed to substantially increase clonal tumor mutational burden and autochthonous tumors remained refractory to immunotherapy. However, establishing clonal cell lines from these tumors enabled the generation of an immunogenic syngeneic transplantation model of KRAS-mutant lung adenocarcinoma that was sensitive to immunotherapy. Unexpectedly, antitumor immune responses were not directed against neoantigens but instead targeted derepressed endogenous retroviral antigens. The ability of KRASG12C inhibitors to cause regression of KRASG12C -expressing tumors was markedly potentiated by the adaptive immune system, highlighting the importance of using immunocompetent models for evaluating targeted therapies. Overall, this model provides a unique opportunity for the study of combinations of targeted and immunotherapies in immune-hot lung cancer. SIGNIFICANCE: This study develops a mouse model of immunogenic KRAS-mutant lung cancer to facilitate the investigation of optimal combinations of targeted therapies with immunotherapies.


Asunto(s)
Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Animales , Citidina Desaminasa/genética , Citosina Desaminasa/genética , Citosina Desaminasa/uso terapéutico , Modelos Animales de Enfermedad , Receptores ErbB/genética , Humanos , Inmunoterapia , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/terapia , Ratones , Antígenos de Histocompatibilidad Menor , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética
5.
Wellcome Open Res ; 5: 20, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32587898

RESUMEN

Targeting the interaction of proteins with weak binding affinities or low solubility represents a particular challenge for drug screening. The NanoLuc â ® Binary Technology (NanoBiT â ®) was originally developed to detect protein-protein interactions in live mammalian cells. Here we report the successful translation of the NanoBit cellular assay into a biochemical, cell-free format using mammalian cell lysates. We show that the assay is suitable for the detection of both strong and weak protein interactions such as those involving the binding of RAS oncoproteins to either RAF or phosphoinositide 3-kinase (PI3K) effectors respectively, and that it is also effective for the study of poorly soluble protein domains such as the RAS binding domain of PI3K. Furthermore, the RAS interaction assay is sensitive and responds to both strong and weak RAS inhibitors. Our data show that the assay is robust, reproducible, cost-effective, and can be adapted for small and large-scale screening approaches. The NanoBit Biochemical Assay offers an attractive tool for drug screening against challenging protein-protein interaction targets, including the interaction of RAS with PI3K.

6.
Sci Transl Med ; 11(510)2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31534020

RESUMEN

KRAS represents an excellent therapeutic target in lung cancer, the most commonly mutated form of which can now be blocked using KRAS-G12C mutant-specific inhibitory trial drugs. Lung adenocarcinoma cells harboring KRAS mutations have been shown previously to be selectively sensitive to inhibition of mitogen-activated protein kinase kinase (MEK) and insulin-like growth factor 1 receptor (IGF1R) signaling. Here, we show that this effect is markedly enhanced by simultaneous inhibition of mammalian target of rapamycin (mTOR) while maintaining selectivity for the KRAS-mutant genotype. Combined mTOR, IGF1R, and MEK inhibition inhibits the principal signaling pathways required for the survival of KRAS-mutant cells and produces marked tumor regression in three different KRAS-driven lung cancer mouse models. Replacing the MEK inhibitor with the mutant-specific KRAS-G12C inhibitor ARS-1620 in these combinations is associated with greater efficacy, specificity, and tolerability. Adding mTOR and IGF1R inhibitors to ARS-1620 greatly improves its effectiveness on KRAS-G12C mutant lung cancer cells in vitro and in mouse models. This provides a rationale for the design of combination treatments to enhance the impact of the KRAS-G12C inhibitors, which are now entering clinical trials.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación/genética , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Supervivencia Celular/efectos de los fármacos , Imidazoles/farmacología , Imidazoles/uso terapéutico , Ratones Desnudos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirazinas/farmacología , Pirazinas/uso terapéutico , Piridonas/farmacología , Piridonas/uso terapéutico , Pirimidinonas/farmacología , Pirimidinonas/uso terapéutico , ARN Interferente Pequeño/metabolismo , Receptor IGF Tipo 1/antagonistas & inhibidores , Receptor IGF Tipo 1/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
7.
Cancer Cell ; 36(1): 68-83.e9, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31257073

RESUMEN

RAC1 P29 is the third most commonly mutated codon in human cutaneous melanoma, after BRAF V600 and NRAS Q61. Here, we study the role of RAC1P29S in melanoma development and reveal that RAC1P29S activates PAK, AKT, and a gene expression program initiated by the SRF/MRTF transcriptional pathway, which results in a melanocytic to mesenchymal phenotypic switch. Mice with ubiquitous expression of RAC1P29S from the endogenous locus develop lymphoma. When expressed only in melanocytes, RAC1P29S cooperates with oncogenic BRAF or with NF1-loss to promote tumorigenesis. RAC1P29S also drives resistance to BRAF inhibitors, which is reversed by SRF/MRTF inhibitors. These findings establish RAC1P29S as a promoter of melanoma initiation and mediator of therapy resistance, while identifying SRF/MRTF as a potential therapeutic target.


Asunto(s)
Transformación Celular Neoplásica/genética , Resistencia a Antineoplásicos/genética , Transición Epitelial-Mesenquimal/genética , Melanoma/etiología , Melanoma/patología , Mutación , Proteína de Unión al GTP rac1/genética , Alelos , Sustitución de Aminoácidos , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Humanos , Masculino , Melanocitos/metabolismo , Melanoma/mortalidad , Melanoma/terapia , Ratones , Ratones Transgénicos , Modelos Biológicos , Pronóstico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/genética , Factor de Respuesta Sérica , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Sci Rep ; 8(1): 8855, 2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29891871

RESUMEN

The discovery of mutations within genes associated with autosomal recessive Parkinson's disease allowed for the identification of PINK1/Parkin regulated mitophagy as an important pathway for the removal of damaged mitochondria. While recent studies suggest that AKT-dependent signalling regulates Parkin recruitment to depolarised mitochondria, little is known as to whether this can also regulate PINK1 mitochondrial accumulation and downstream mitophagy. Here, we demonstrate that inhibition of AKT signalling decreases endogenous PINK1 accumulation in response to mitochondria depolarisation, subsequent Parkin recruitment, phosphorylation of ubiquitin, and ultimately mitophagy. Conversely, we show that upon stimulation of AKT signalling via insulin, the mitophagy pathway is increased in SHSY5Y cells. These data suggest that AKT signalling is an upstream regulator of PINK1 accumulation on damaged mitochondria. Importantly, we show that the AKT pathway also regulates endogenous PINK1-dependent mitophagy in human iPSC-derived neurons.


Asunto(s)
Mitocondrias/metabolismo , Mitofagia , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/fisiología , Línea Celular Tumoral , Humanos , Células Madre Pluripotentes Inducidas , Neuronas/citología , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
9.
Methods Mol Biol ; 295: 13-26, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15596885

RESUMEN

The use of synthetic peptide immunogens as a means to generate specific immunological reagents for a variety of purposes has increased markedly in recent years. In this chapter, we outline some of the salient factors to be considered when designing peptide immunogens and describe basic methodologies for the conjugation of short synthetic peptides to immunogenic carrier proteins.


Asunto(s)
Anticuerpos/inmunología , Antígenos/química , Reactivos de Enlaces Cruzados/química , Hemocianinas/química , Péptidos/química , Antígenos/inmunología , Hemocianinas/inmunología , Péptidos/inmunología
10.
Methods Mol Biol ; 295: 27-40, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15596886

RESUMEN

The generation of polyclonal antibodies to an antigen of interest is an important technique applicable to many areas of biological research. In this chapter, we describe a basic immunization procedure designed to generate polyclonal antisera in rabbits and two methods that are commonly employed in the subsequent preliminary characterization of antipeptide antibodies raised in this way.


Asunto(s)
Anticuerpos , Inmunización/métodos , Péptidos , Animales , Conejos
11.
Nat Cell Biol ; 16(11): 1092-104, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25344754

RESUMEN

Epithelial to mesenchymal transition (EMT), and the reverse mesenchymal to epithelial transition (MET), are known examples of epithelial plasticity that are important in kidney development and cancer metastasis. Here we identify ASPP2, a haploinsufficient tumour suppressor, p53 activator and PAR3 binding partner, as a molecular switch of MET and EMT. ASPP2 contributes to MET in mouse kidney in vivo. Mechanistically, ASPP2 induces MET through its PAR3-binding amino-terminus, independently of p53 binding. ASPP2 prevents ß-catenin from transactivating ZEB1, directly by forming an ASPP2-ß-catenin-E-cadherin ternary complex and indirectly by inhibiting ß-catenin's N-terminal phosphorylation to stabilize the ß-catenin-E-cadherin complex. ASPP2 limits the pro-invasive property of oncogenic RAS and inhibits tumour metastasis in vivo. Reduced ASPP2 expression results in EMT, and is associated with poor survival in hepatocellular carcinoma and breast cancer patients. Hence, ASPP2 is a key regulator of epithelial plasticity that connects cell polarity to the suppression of WNT signalling, EMT and tumour metastasis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Homeodominio/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Animales , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Ratones , Metástasis de la Neoplasia , Fosforilación , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
12.
Cancer Discov ; 3(5): 548-63, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23454899

RESUMEN

UNLABELLED: Using a panel of non-small cell lung cancer (NSCLC) lines, we show here that MAP-ERK kinase (MEK) and RAF inhibitors are selectively toxic for the KRAS-mutant genotype, whereas phosphoinositide 3-kinase (PI3K), AKT, and mTOR inhibitors are not. IGF1 receptor (IGF1R) tyrosine kinase inhibitors also show selectivity for KRAS-mutant lung cancer lines. Combinations of IGF1R and MEK inhibitors resulted in strengthened inhibition of KRAS-mutant lines and also showed improved effectiveness in autochthonous mouse models of Kras-induced NSCLC. PI3K pathway activity is dependent on basal IGF1R activity in KRAS-mutant, but not wild-type, lung cancer cell lines. KRAS is needed for both MEK and PI3K pathway activity in KRAS-mutant, but not wild-type, lung cancer cells, whereas acute activation of KRAS causes stimulation of PI3K dependent upon IGF1R kinase activity. Coordinate direct input of both KRAS and IGF1R is thus required to activate PI3K in KRAS-mutant lung cancer cells. SIGNIFICANCE: It has not yet been possible to target RAS proteins directly, so combined targeting of effect or pathways acting downstream of RAS, including RAF/MEK and PI3K/AKT, has been the most favored approach to the treatment of RAS -mutant cancers. This work sheds light on the ability of RASto activate PI3K through direct interaction, indicating that input is also required from a receptor tyrosinekinase, IGF1R in the case of KRAS -mutant lung cancer. This suggests potential novel combination therapeutic strategies for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Receptor IGF Tipo 1/metabolismo , Proteínas ras/genética , Animales , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Transgénicos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)
13.
Cell Res ; 22(8): 1227-45, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22613949

RESUMEN

Oncogenic mutations in RAS genes are very common in human cancer, resulting in cells with well-characterized selective advantages, but also less well-understood vulnerabilities. We have carried out a large-scale loss-of-function screen to identify genes that are required by KRAS-transformed colon cancer cells, but not by derivatives lacking this oncogene. Top-scoring genes were then tested in a larger panel of KRAS mutant and wild-type cancer cells. Cancer cells expressing oncogenic KRAS were found to be highly dependent on the transcription factor GATA2 and the DNA replication initiation regulator CDC6. Extending this analysis using a collection of drugs with known targets, we found that cancer cells with mutant KRAS showed selective addiction to proteasome function, as well as synthetic lethality with topoisomerase inhibition. Combination targeting of these functions caused improved killing of KRAS mutant cells relative to wild-type cells. These observations suggest novel targets and new ways of combining existing therapies for optimal effect in RAS mutant cancers, which are traditionally seen as being highly refractory to therapy.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias del Colon/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas ras/metabolismo , Alelos , Apoptosis , Ácidos Borónicos/farmacología , Bortezomib , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , ADN-Topoisomerasas de Tipo I/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras) , Pirazinas/farmacología , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Inhibidores de Topoisomerasa I/farmacología , Topotecan/farmacología , Activación Transcripcional , Proteínas ras/genética , Gemcitabina
14.
Mol Cell ; 20(5): 673-85, 2005 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-16337592

RESUMEN

The ability of activated Ras to induce growth arrest of human ovarian surface epithelial (HOSE) cells via induction of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1) has been used to screen for Ras pathway signaling components using a library of RNA interference (RNAi) vectors targeting the kinome. Two known Ras-regulated kinases were identified, phosphoinositide 3-kinase p110alpha and ribosomal protein S6 kinase p70(S6K1), plus the MAP kinase kinase kinase kinase MINK, which had not previously been implicated in Ras signaling. MINK is activated after Ras induction via a mechanism involving reactive oxygen species and mediates stimulation of the stress-activated protein kinase p38 MAPK downstream of the Raf/ERK pathway. p38 MAPK activation is essential for Ras-induced p21(WAF1/CIP1) upregulation and cell cycle arrest. MINK is thus a distal target of Ras signaling in the induction of a growth-arrested, senescent-like phenotype that may act to oppose oncogenic transformation in HOSE cells.


Asunto(s)
Células Epiteliales/enzimología , Neoplasias Ováricas/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal/fisiología , Ciclo Celular/fisiología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular , Quinasas Quinasa Quinasa PAM , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/farmacología , Interferencia de ARN/fisiología , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA