Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 191(2): 1383-1403, 2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36454669

RESUMEN

Plant breeders have indirectly selected for variation at circadian-associated loci in many of the world's major crops, when breeding to increase yield and improve crop performance. Using an eight-parent Multiparent Advanced Generation Inter-Cross (MAGIC) population, we investigated how variation in circadian clock-associated genes contributes to the regulation of heading date in UK and European winter wheat (Triticum aestivum) varieties. We identified homoeologues of EARLY FLOWERING 3 (ELF3) as candidates for the Earliness per se (Eps) D1 and B1 loci under field conditions. We then confirmed a single-nucleotide polymorphism within the coding region of TaELF3-B1 as a candidate polymorphism underlying the Eps-B1 locus. We found that a reported deletion at the Eps-D1 locus encompassing TaELF3-D1 is, instead, an allele that lies within an introgression region containing an inversion relative to the Chinese Spring D genome. Using Triticum turgidum cv. Kronos carrying loss-of-function alleles of TtELF3, we showed that ELF3 regulates heading, with loss of a single ELF3 homoeologue sufficient to alter heading date. These studies demonstrated that ELF3 forms part of the circadian oscillator; however, the loss of all homoeologues was required to affect circadian rhythms. Similarly, loss of functional LUX ARRHYTHMO (LUX) in T. aestivum, an orthologue of a protein partner of Arabidopsis (Arabidopsis thaliana) ELF3, severely disrupted circadian rhythms. ELF3 and LUX transcripts are not co-expressed at dusk, suggesting that the structure of the wheat circadian oscillator might differ from that of Arabidopsis. Our demonstration that alterations to ELF3 homoeologues can affect heading date separately from effects on the circadian oscillator suggests a role for ELF3 in cereal photoperiodic responses that could be selected for without pleiotropic deleterious alterations to circadian rhythms.


Asunto(s)
Arabidopsis , Relojes Circadianos , Triticum/genética , Arabidopsis/genética , Fitomejoramiento , Ritmo Circadiano/genética , Relojes Circadianos/genética , Regulación de la Expresión Génica de las Plantas
2.
Plant Cell ; 33(6): 2032-2057, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-33713138

RESUMEN

Signaling events triggered by hydrogen peroxide (H2O2) regulate plant growth and defense by orchestrating a genome-wide transcriptional reprogramming. However, the specific mechanisms that govern H2O2-dependent gene expression are still poorly understood. Here, we identify the Arabidopsis Mediator complex subunit MED8 as a regulator of H2O2 responses. The introduction of the med8 mutation in a constitutive oxidative stress genetic background (catalase-deficient, cat2) was associated with enhanced activation of the salicylic acid pathway and accelerated cell death. Interestingly, med8 seedlings were more tolerant to oxidative stress generated by the herbicide methyl viologen (MV) and exhibited transcriptional hyperactivation of defense signaling, in particular salicylic acid- and jasmonic acid-related pathways. The med8-triggered tolerance to MV was manipulated by the introduction of secondary mutations in salicylic acid and jasmonic acid pathways. In addition, analysis of the Mediator interactome revealed interactions with components involved in mRNA processing and microRNA biogenesis, hence expanding the role of Mediator beyond transcription. Notably, MED8 interacted with the transcriptional regulator NEGATIVE ON TATA-LESS, NOT2, to control the expression of H2O2-inducible genes and stress responses. Our work establishes MED8 as a component regulating oxidative stress responses and demonstrates that it acts as a negative regulator of H2O2-driven activation of defense gene expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Herbicidas/farmacología , Complejo Mediador/metabolismo , Estrés Oxidativo/fisiología , Amitrol (Herbicida)/farmacología , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Complejo Mediador/genética , MicroARNs , Estrés Oxidativo/efectos de los fármacos , Paraquat/farmacología , Plantas Modificadas Genéticamente , Dominios Proteicos , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo , Factores Generales de Transcripción/genética , Factores Generales de Transcripción/metabolismo
3.
Plant Cell Environ ; 44(5): 1451-1467, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33464569

RESUMEN

Nicotinamide-adenine dinucleotide (NAD) is involved in redox homeostasis and acts as a substrate for NADases, including poly(ADP-ribose) polymerases (PARPs) that add poly(ADP-ribose) polymers to proteins and DNA, and sirtuins that deacetylate proteins. Nicotinamide, a by-product of NADases increases circadian period in both plants and animals. In mammals, the effect of nicotinamide on circadian period might be mediated by the PARPs and sirtuins because they directly bind to core circadian oscillator genes. We have investigated whether PARPs and sirtuins contribute to the regulation of the circadian oscillator in Arabidopsis. We found no evidence that PARPs and sirtuins regulate the circadian oscillator of Arabidopsis or are involved in the response to nicotinamide. RNA-seq analysis indicated that PARPs regulate the expression of only a few genes, including FLOWERING LOCUS C. However, we found profound effects of reduced sirtuin 1 expression on gene expression during the day but not at night, and an embryo lethal phenotype in knockouts. Our results demonstrate that PARPs and sirtuins are not associated with NAD regulation of the circadian oscillator and that sirtuin 1 is associated with daytime regulation of gene expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas , Poli(ADP-Ribosa) Polimerasas/metabolismo , Sirtuinas/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Ritmo Circadiano/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mutación/genética , NAD+ Nucleosidasa/antagonistas & inhibidores , NAD+ Nucleosidasa/metabolismo , Niacinamida/farmacología , Fenotipo , Poli(ADP-Ribosa) Polimerasas/genética , Semillas/efectos de los fármacos , Semillas/metabolismo
4.
J Biol Chem ; 294(47): 17931-17940, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31530638

RESUMEN

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase (Rca) is a AAA+ enzyme that uses ATP to remove inhibitors from the active site of Rubisco, the central carboxylation enzyme of photosynthesis. Rca α and ß isoforms exist in most higher plant species, with the α isoform being identical to the ß form but having an additional 25-45 amino acids at the Rca C terminus, known as the C-terminal extension (CTE). Rca is inhibited by ADP, and the extent of ADP sensitivity of the Rca complex can be modulated by the CTE of the α isoform, particularly in relation to a disulfide bond structure that is specifically reduced by the redox-regulatory enzyme thioredoxin-f. Here, we introduced single point mutations of Lys-428 in the CTE of Rca-α from wheat (Triticum aestivum) (TaRca2-α). Substitution of Lys-428 with Arg dramatically altered ADP inhibition, independently of thioredoxin-f regulation. We determined that the reduction in ADP inhibition in the K428R variant is not due to a change in ADP affinity, as the apparent constant for ADP binding was not altered by the K428R substitution. Rather, we observed that the K428R substitution strongly increased ATP substrate affinity and ATP-dependent catalytic velocity. These results suggest that the Lys-428 residue is involved in interacting with the γ-phosphate of ATP. Considering that nucleotide-dependent Rca activity regulates Rubisco and thus photosynthesis during fluctuating irradiance, the K428R substitution could potentially provide a mechanism for boosting the performance of wheat grown in the dynamic light environments of the field.


Asunto(s)
Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Mutación Puntual/genética , Triticum/enzimología , Secuencia de Aminoácidos , Estabilidad de Enzimas , Cinética , Especificidad por Sustrato
5.
PLoS Comput Biol ; 15(1): e1006674, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30703082

RESUMEN

The circadian oscillator, an internal time-keeping device found in most organisms, enables timely regulation of daily biological activities by maintaining synchrony with the external environment. The mechanistic basis underlying the adjustment of circadian rhythms to changing external conditions, however, has yet to be clearly elucidated. We explored the mechanism of action of nicotinamide in Arabidopsis thaliana, a metabolite that lengthens the period of circadian rhythms, to understand the regulation of circadian period. To identify the key mechanisms involved in the circadian response to nicotinamide, we developed a systematic and practical modeling framework based on the identification and comparison of gene regulatory dynamics. Our mathematical predictions, confirmed by experimentation, identified key transcriptional regulatory mechanisms of circadian period and uncovered the role of blue light in the response of the circadian oscillator to nicotinamide. We suggest that our methodology could be adapted to predict mechanisms of drug action in complex biological systems.


Asunto(s)
Arabidopsis , Ritmo Circadiano , Regulación de la Expresión Génica de las Plantas , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Modelos Biológicos , Niacinamida/farmacología , Biología de Sistemas , Transcriptoma
6.
Plant Physiol ; 178(1): 358-371, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29997180

RESUMEN

Circadian clocks drive rhythms with a period near 24 h, but the molecular basis of the regulation of the period of the circadian clockis poorly understood. We previously demonstrated that metabolites affect the free-running period of the circadian oscillator of Arabidopsis (Arabidopsis thaliana), with endogenous sugars acting as an accelerator and exogenous nicotinamide acting as a brake. Changes in circadian oscillator period are thought to adjust the timing of biological activities through the process of entrainment, in which the circadian oscillator becomes synchronized to rhythmic signals such as light and dark cycles as well as changes in internal metabolism. To identify the molecular components associated with the dynamic adjustment of circadian period, we performed a forward genetic screen. We identified Arabidopsis mutants that were either period insensitive to nicotinamide (sin) or period oversensitive to nicotinamide (son). We mapped son1 to BIG, a gene of unknown molecular function that was shown previously to play a role in light signaling. We found that son1 has an early entrained phase, suggesting that the dynamic alteration of circadian period contributes to the correct timing of biological events. Our data provide insight into how the dynamic period adjustment of circadian oscillators contributes to establishing a correct phase relationship with the environment and show that BIG is involved in this process.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión a Calmodulina/genética , Relojes Circadianos/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Proteínas de Unión a Calmodulina/metabolismo , Relojes Circadianos/efectos de la radiación , Ritmo Circadiano/genética , Ritmo Circadiano/efectos de la radiación , Luz , Plantas Modificadas Genéticamente
7.
New Phytol ; 220(3): 893-907, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30191576

RESUMEN

The LATE ELONGATED HYPOCOTYL (LHY) transcription factor functions as part of the oscillatory mechanism of the Arabidopsis circadian clock. This paper reports the genome-wide analysis of its binding targets and reveals a role in the control of abscisic acid (ABA) biosynthesis and downstream responses. LHY directly repressed expression of 9-cis-epoxycarotenoid dioxygenase enzymes, which catalyse the rate-limiting step of ABA biosynthesis. This suggested a mechanism for the circadian control of ABA accumulation in wild-type plants. Consistent with this hypothesis, ABA accumulated rhythmically in wild-type plants, peaking in the evening. LHY-overexpressing plants had reduced levels of ABA under drought stress, whereas loss-of-function mutants exhibited an altered rhythm of ABA accumulation. LHY also bound the promoter of multiple components of ABA signalling pathways, suggesting that it may also act to regulate responses downstream of the hormone. LHY promoted expression of ABA-responsive genes responsible for increased tolerance to drought and osmotic stress but alleviated the inhibitory effect of ABA on seed germination and plant growth. This study reveals a complex interaction between the circadian clock and ABA pathways, which is likely to make an important contribution to plant performance under drought and osmotic stress conditions.


Asunto(s)
Ácido Abscísico/biosíntesis , Arabidopsis/genética , Arabidopsis/metabolismo , Vías Biosintéticas , Ritmo Circadiano , Proteínas de Unión al ADN/metabolismo , Genoma de Planta , Transducción de Señal , Factores de Transcripción/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Secuencia de Bases , Sitios de Unión , Vías Biosintéticas/efectos de los fármacos , Relojes Circadianos/efectos de los fármacos , Relojes Circadianos/genética , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Regiones Promotoras Genéticas , Unión Proteica/efectos de los fármacos
8.
Plant Physiol ; 171(1): 62-70, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26951436

RESUMEN

Intrinsically disordered proteins can adopt multiple conformations, thereby enabling interaction with a wide variety of partners. They often serve as hubs in protein interaction networks. We have previously shown that the Histone Deacetylase Complex 1 (HDC1) protein from Arabidopsis (Arabidopsis thaliana) interacts with histone deacetylases and quantitatively determines histone acetylation levels, transcriptional activity, and several phenotypes, including abscisic acid sensitivity during germination, vegetative growth rate, and flowering time. HDC1-type proteins are ubiquitous in plants, but they contain no known structural or functional domains. Here, we explored the protein interaction spectrum of HDC1 using a quantitative bimolecular fluorescence complementation assay in tobacco (Nicotiana benthamiana) epidermal cells. In addition to binding histone deacetylases, HDC1 directly interacted with histone H3-binding proteins and corepressor-associated proteins but not with H3 or the corepressors themselves. Surprisingly, HDC1 also was able to interact with variants of the linker histone H1. Truncation of HDC1 to the ancestral core sequence narrowed the spectrum of interactions and of phenotypic outputs but maintained binding to a H3-binding protein and to H1. Thus, HDC1 provides a potential link between H1 and histone-modifying complexes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas Portadoras/metabolismo , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Mapas de Interacción de Proteínas , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Escherichia coli/genética , Flores/genética , Perfilación de la Expresión Génica , Vectores Genéticos , Germinación , Histona Desacetilasas/genética , Microscopía Confocal , Proteínas Nucleares/genética , Plantas Modificadas Genéticamente , Nicotiana/crecimiento & desarrollo , Nicotiana/metabolismo
9.
Plant Cell Environ ; 39(9): 2074-84, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27343166

RESUMEN

Extremophile plants are valuable sources of genes conferring tolerance traits, which can be explored to improve stress tolerance of crops. Lepidium crassifolium is a halophytic relative of the model plant Arabidopsis thaliana, and displays tolerance to salt, osmotic and oxidative stresses. We have employed the modified Conditional cDNA Overexpression System to transfer a cDNA library from L. crassifolium to the glycophyte A. thaliana. By screening for salt, osmotic and oxidative stress tolerance through in vitro growth assays and non-destructive chlorophyll fluorescence imaging, 20 Arabidopsis lines were identified with superior performance under restrictive conditions. Several cDNA inserts were cloned and confirmed to be responsible for the enhanced tolerance by analysing independent transgenic lines. Examples include full-length cDNAs encoding proteins with high homologies to GDSL-lipase/esterase or acyl CoA-binding protein or proteins without known function, which could confer tolerance to one or several stress conditions. Our results confirm that random gene transfer from stress tolerant to sensitive plant species is a valuable tool to discover novel genes with potential for biotechnological applications.


Asunto(s)
Deshidratación , Técnicas Genéticas , Lepidium/genética , Estrés Oxidativo , Plantas Tolerantes a la Sal/genética , Arabidopsis , Biblioteca de Genes , Genes de Plantas , Paraquat
10.
Plant Cell ; 25(9): 3491-505, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24058159

RESUMEN

Histone deacetylation regulates gene expression during plant stress responses and is therefore an interesting target for epigenetic manipulation of stress sensitivity in plants. Unfortunately, overexpression of the core enzymes (histone deacetylases [HDACs]) has either been ineffective or has caused pleiotropic morphological abnormalities. In yeast and mammals, HDACs operate within multiprotein complexes. Searching for putative components of plant HDAC complexes, we identified a gene with partial homology to a functionally uncharacterized member of the yeast complex, which we called Histone Deacetylation Complex1 (HDC1). HDC1 is encoded by a single-copy gene in the genomes of model plants and crops and therefore presents an attractive target for biotechnology. Here, we present a functional characterization of HDC1 in Arabidopsis thaliana. We show that HDC1 is a ubiquitously expressed nuclear protein that interacts with at least two deacetylases (HDA6 and HDA19), promotes histone deacetylation, and attenuates derepression of genes under water stress. The fast-growing HDC1-overexpressing plants outperformed wild-type plants not only on well-watered soil but also when water supply was reduced. Our findings identify HDC1 as a rate-limiting component of the histone deacetylation machinery and as an attractive tool for increasing germination rate and biomass production of plants.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Biomasa , Sequías , Flores/efectos de los fármacos , Flores/enzimología , Flores/genética , Flores/fisiología , Expresión Génica , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Modelos Biológicos , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Semillas/efectos de los fármacos , Semillas/enzimología , Semillas/genética , Semillas/fisiología , Estrés Fisiológico
11.
Semin Cell Dev Biol ; 24(5): 414-21, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23538134

RESUMEN

Circadian clocks are 24-h timekeeping mechanisms, which have evolved in plants, animals, fungi and bacteria to anticipate changes in light and temperature associated with the rotation of the Earth. The current paradigm to explain how biological clocks provide timing information is based on multiple interlocking transcription-translation negative feedback loops (TTFL), which drive rhythmic gene expression and circadian behaviour of growth and physiology. Metabolism is an important circadian output, which in plants includes photosynthesis, starch metabolism, nutrient assimilation and redox homeostasis. There is increasing evidence in a range of organisms that these metabolic outputs can also contribute to circadian timing and might also comprise independent circadian oscillators. In this review, we summarise the mechanisms of circadian regulation of metabolism by TTFL and consider increasing evidence that rhythmic metabolism contributes to the circadian network. We highlight how this might be relevant to plant circadian clock function.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Metabolismo Energético , Retroalimentación Fisiológica , Regulación de la Expresión Génica de las Plantas , ADP-Ribosil Ciclasa/genética , ADP-Ribosil Ciclasa/metabolismo , Proteínas de Arabidopsis/genética , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Biosíntesis de Proteínas , Transducción de Señal , Sirtuinas/genética , Sirtuinas/metabolismo , Sacarosa/metabolismo , Transcripción Genética
12.
Plant Biotechnol J ; 13(4): 501-13, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25370817

RESUMEN

As challenges to food security increase, the demand for lead genes for improving crop production is growing. However, genetic screens of plant mutants typically yield very low frequencies of desired phenotypes. Here, we present a powerful computational approach for selecting candidate genes for screening insertion mutants. We combined ranking of Arabidopsis thaliana regulatory genes according to their expression in response to multiple abiotic stresses (Multiple Stress [MST] score), with stress-responsive RNA co-expression network analysis to select candidate multiple stress regulatory (MSTR) genes. Screening of 62 T-DNA insertion mutants defective in candidate MSTR genes, for abiotic stress germination phenotypes yielded a remarkable hit rate of up to 62%; this gene discovery rate is 48-fold greater than that of other large-scale insertional mutant screens. Moreover, the MST score of these genes could be used to prioritize them for screening. To evaluate the contribution of the co-expression analysis, we screened 64 additional mutant lines of MST-scored genes that did not appear in the RNA co-expression network. The screening of these MST-scored genes yielded a gene discovery rate of 36%, which is much higher than that of classic mutant screens but not as high as when picking candidate genes from the co-expression network. The MSTR co-expression network that we created, AraSTressRegNet is publicly available at http://netbio.bgu.ac.il/arnet. This systems biology-based screening approach combining gene ranking and network analysis could be generally applicable to enhancing identification of genes regulating additional processes in plants and other organisms provided that suitable transcriptome data are available.


Asunto(s)
Arabidopsis/genética , Expresión Génica , Redes Reguladoras de Genes , Genes de Plantas , Estrés Fisiológico/genética , Mutagénesis Insercional , Análisis de Secuencia por Matrices de Oligonucleótidos
13.
Plant Cell Environ ; 38(2): 266-79, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24329757

RESUMEN

Reduced glutathione (GSH) is considered to exert a strong influence on cellular redox homeostasis and to regulate gene expression, but these processes remain poorly characterized. Severe GSH depletion specifically inhibited root meristem development, while low root GSH levels decreased lateral root densities. The redox potential of the nucleus and cytosol of Arabidopsis thaliana roots determined using roGFP probes was between -300 and -320 mV. Growth in the presence of the GSH-synthesis inhibitor buthionine sulfoximine (BSO) increased the nuclear and cytosolic redox potentials to approximately -260 mV. GSH-responsive genes including transcription factors (SPATULA, MYB15, MYB75), proteins involved in cell division, redox regulation (glutaredoxinS17, thioredoxins, ACHT5 and TH8) and auxin signalling (HECATE), were identified in the GSH-deficient root meristemless 1-1 (rml1-1) mutant, and in other GSH-synthesis mutants (rax1-1, cad2-1, pad2-1) as well as in the wild type following the addition of BSO. Inhibition of auxin transport had no effect on organ GSH levels, but exogenous auxin decreased the root GSH pool. We conclude that GSH depletion significantly increases the redox potentials of the nucleus and cytosol, and causes arrest of the cell cycle in roots but not shoots, with accompanying transcript changes linked to altered hormone responses, but not oxidative stress.


Asunto(s)
Arabidopsis/citología , Arabidopsis/genética , Núcleo Celular/metabolismo , Citosol/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glutatión/farmacología , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Arabidopsis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Núcleo Celular/efectos de los fármacos , Citosol/efectos de los fármacos , Etilenos/metabolismo , Genes de Plantas , Disulfuro de Glutatión/metabolismo , Ácidos Indolacéticos/farmacología , Meristema/citología , Meristema/efectos de los fármacos , Meristema/genética , Oxidación-Reducción/efectos de los fármacos , Fenotipo , Ftalimidas/farmacología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Tiorredoxinas/metabolismo
14.
Plant Cell ; 24(9): 3590-602, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22960911

RESUMEN

The functions of microRNAs and their target mRNAs in Arabidopsis thaliana development have been widely documented; however, roles of stress-responsive microRNAs and their targets are not as well understood. Using small RNA deep sequencing and ATH1 microarrays to profile mRNAs, we identified IAA-Ala Resistant3 (IAR3) as a new target of miR167a. As expected, IAR3 mRNA was cleaved at the miR167a complementary site and under high osmotic stress miR167a levels decreased, whereas IAR3 mRNA levels increased. IAR3 hydrolyzes an inactive form of auxin (indole-3-acetic acid [IAA]-alanine) and releases bioactive auxin (IAA), a central phytohormone for root development. In contrast with the wild type, iar3 mutants accumulated reduced IAA levels and did not display high osmotic stress-induced root architecture changes. Transgenic plants expressing a cleavage-resistant form of IAR3 mRNA accumulated high levels of IAR3 mRNAs and showed increased lateral root development compared with transgenic plants expressing wild-type IAR3. Expression of an inducible noncoding RNA to sequester miR167a by target mimicry led to an increase in IAR3 mRNA levels, further confirming the inverse relationship between the two partners. Sequence comparison revealed the miR167 target site on IAR3 mRNA is conserved in evolutionarily distant plant species. Finally, we showed that IAR3 is required for drought tolerance.


Asunto(s)
Amidohidrolasas/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , MicroARNs/genética , Raíces de Plantas/genética , Estrés Fisiológico/genética , Amidohidrolasas/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Evolución Biológica , Sequías , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Hidroponía , Ácidos Indolacéticos/metabolismo , MicroARNs/metabolismo , Modelos Biológicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Ósmosis , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Análisis de Secuencia de ADN
15.
Plant Physiol ; 162(2): 589-603, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23596191

RESUMEN

A number of Arabidopsis (Arabidopsis thaliana) mutants exhibit leaf reticulation, having green veins that stand out against paler interveinal tissues, fewer cells in the interveinal mesophyll, and normal perivascular bundle sheath cells. Here, to examine the basis of leaf reticulation, we analyzed the Arabidopsis RETICULATA-RELATED (RER) gene family, several members of which cause leaf reticulation when mutated. Although transcripts of RE, RER1, and RER3 were mainly detected in the bundle sheath cells of expanded leaves, functional RER3:GREEN FLUORESCENT PROTEIN was visualized in the chloroplast membranes of all photosynthetic cells. Leaf reticulation in the re and rer3 loss-of-function mutants occurred, along with accumulation of reactive oxygen species, in a photoperiod-dependent manner. A comparison of re and rer3 leaf messenger RNA expression profiles showed more than 200 genes were similarly misexpressed in both mutants. In addition, metabolic profiles of mature leaves revealed that several biosynthetic pathways downstream of pyruvate are altered in re and rer3. Double mutant analysis showed that only re rer1 and rer5 rer6 exhibited synergistic phenotypes, indicating functional redundancy. The redundancy between RE and its closest paralog, RER1, was confirmed by overexpressing RER1 in re mutants, which partially suppressed leaf reticulation. Our results show that RER family members can be divided into four functional modules with divergent functions. Moreover, these results provide insights into the origin of the reticulated phenotype, suggesting that the RER proteins functionally interconnect photoperiodic growth, amino acid homeostasis, and reactive oxygen species metabolism during Arabidopsis leaf growth.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Muerte Celular/genética , Regulación de la Expresión Génica de las Plantas , Luz , Metaboloma , Familia de Multigenes , Mutación , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Fotoperiodo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Free Radic Biol Med ; 200: 117-129, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36870374

RESUMEN

Alternative splicing is a key posttranscriptional gene regulatory process, acting in diverse adaptive and basal plant processes. Splicing of precursor-messenger RNA (pre-mRNA) is catalyzed by a dynamic ribonucleoprotein complex, designated the spliceosome. In a suppressor screen, we identified a nonsense mutation in the Smith (Sm) antigen protein SME1 to alleviate photorespiratory H2O2-dependent cell death in catalase deficient plants. Similar attenuation of cell death was observed upon chemical inhibition of the spliceosome, suggesting pre-mRNA splicing inhibition to be responsible for the observed cell death alleviation. Furthermore, the sme1-2 mutants showed increased tolerance to the reactive oxygen species inducing herbicide methyl viologen. Both an mRNA-seq and shotgun proteomic analysis in sme1-2 mutants displayed a constitutive molecular stress response, together with extensive alterations in pre-mRNA splicing of transcripts encoding metabolic enzymes and RNA binding proteins, even under unstressed conditions. Using SME1 as a bait to identify protein interactors, we provide experimental evidence for almost 50 homologs of the mammalian spliceosome-associated protein to reside in the Arabidopsis thaliana spliceosome complexes and propose roles in pre-mRNA splicing for four uncharacterized plant proteins. Furthermore, as for sme1-2, a mutant in the Sm core assembly protein ICLN resulted in a decreased sensitivity to methyl viologen. Taken together, these data show that both a perturbed Sm core composition and assembly results in the activation of a defense response and in enhanced resilience to oxidative stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Paraquat , Proteómica , Empalme Alternativo , Mutación , ARN Mensajero/metabolismo , Estrés Oxidativo , Regulación de la Expresión Génica de las Plantas , Mamíferos/metabolismo
17.
Plant Sci ; 335: 111819, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37562732

RESUMEN

Human Sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1) functions as a dNTPase to maintain dNTP pool balance. In eukaryotes, the limiting step in de novo dNTP biosynthesis is catalyzed by RIBONUCLEOTIDE REDUCTASE (RNR). In Arabidopsis, the RNR1 subunit of RNR is encoded by CRINKLED LEAVES 8 (CLS8), and RNR2 by three paralogous genes, including TSO MEANING 'UGLY' IN CHINESE 2 (TSO2). In plants, DIFFERENTIAL DEVELOPMENT OF VASCULAR ASSOCIATED CELLS 1 (DOV1) catalyzes the first step of the de novo biosynthesis of purines. Here, to explore the role of VENOSA4 (VEN4), the most likely Arabidopsis ortholog of human SAMHD1, we studied the ven4-0 point mutation, whose leaf phenotype was stronger than those of its insertional alleles. Structural predictions suggested that the E249L substitution in the mutated VEN4-0 protein rigidifies its 3D structure. The morphological phenotypes of the ven4, cls8, and dov1 single mutants were similar, and those of the ven4 tso2 and ven4 dov1 double mutants were synergistic. The ven4-0 mutant had reduced levels of four amino acids related to dNTP biosynthesis, including glutamine and glycine, which are precursors in the de novo purine biosynthesis. Our results reveal high functional conservation between VEN4 and SAMHD1 in dNTP metabolism.


Asunto(s)
Arabidopsis , Ribonucleótido Reductasas , Humanos , Proteína 1 que Contiene Dominios SAM y HD/genética , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Fenotipo
18.
Plant J ; 66(4): 656-68, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21309866

RESUMEN

Although the influence of temperature, particularly cold, on lipid metabolism is well established, previous studies have focused on long-term responses and have largely ignored the influence of other interacting environmental factors. Here, we present a time-resolved analysis of the early responses of the glycerolipidome of Arabidopsis thaliana plants exposed to various temperatures (4, 21 and 32°C) and light intensities (darkness, 75, 150 and 400 µmol m(-2) s(-1)), including selected combinations. Using a UPLC/MS-based lipidomic platform, we reproducibly measured most glycerolipid species reported for Arabidopsis leaves, including the classes phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI) phosphatidylglycerol (PG), monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol (SQDG). In addition to known lipids, we have identified previously unobserved compounds, such as 36-C PGs and eukaryotic phospholipids containing 16:3 acyl chains. Occurrence of these lipid species implies the action of new biochemical mechanisms. Exposition of Arabidopsis plants to various light and temperature regimes results in two major effects. The first is the dependence of the saturation level of PC and MGDG pools on light intensity, likely arising from light regulation of de novo fatty acid synthesis. The second concerns an immediate decrease in unsaturated species of PG at high-temperature conditions (32°C), which could mark the first stages of adaptation to heat-stress conditions. Observed changes are discussed in the context of current knowledge, and new hypotheses have been formulated concerning the early stages of the plant response to changing light and temperature conditions.


Asunto(s)
Arabidopsis/metabolismo , Luz , Metabolismo de los Lípidos , Hojas de la Planta/metabolismo , Temperatura , Vías Biosintéticas , Ácidos Grasos/metabolismo , Galactolípidos/análisis , Galactolípidos/metabolismo , Fosfatidilcolinas/análisis , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/análisis , Fosfatidiletanolaminas/metabolismo , Fosfatidilinositoles/análisis , Fosfatidilinositoles/metabolismo
19.
Plant J ; 67(5): 869-84, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21575090

RESUMEN

The time-resolved response of Arabidopsis thaliana towards changing light and/or temperature at the transcriptome and metabolome level is presented. Plants grown at 21°C with a light intensity of 150 µE m⁻² sec⁻¹ were either kept at this condition or transferred into seven different environments (4°C, darkness; 21°C, darkness; 32°C, darkness; 4°C, 85 µE m⁻² sec⁻¹; 21 °C, 75 µE m⁻² sec⁻¹; 21°C, 300 µE m⁻² sec⁻¹ ; 32°C, 150 µE m⁻² sec⁻¹). Samples were taken before (0 min) and at 22 time points after transfer resulting in (8×) 22 time points covering both a linear and a logarithmic time series totaling 177 states. Hierarchical cluster analysis shows that individual conditions (defined by temperature and light) diverge into distinct trajectories at condition-dependent times and that the metabolome follows different kinetics from the transcriptome. The metabolic responses are initially relatively faster when compared with the transcriptional responses. Gene Ontology over-representation analysis identifies a common response for all changed conditions at the transcriptome level during the early response phase (5-60 min). Metabolic networks reconstructed via metabolite-metabolite correlations reveal extensive environment-specific rewiring. Detailed analysis identifies conditional connections between amino acids and intermediates of the tricarboxylic acid cycle. Parallel analysis of transcriptional changes strongly support a model where in the absence of photosynthesis at normal/high temperatures protein degradation occurs rapidly and subsequent amino acid catabolism serves as the main cellular energy supply. These results thus demonstrate the engagement of the electron transfer flavoprotein system under short-term environmental perturbations.


Asunto(s)
Arabidopsis/fisiología , Flavoproteínas/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Metaboloma/fisiología , Transcriptoma/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Análisis por Conglomerados , Oscuridad , Flavoproteínas/efectos de la radiación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Cinética , Luz , Redes y Vías Metabólicas/fisiología , Redes y Vías Metabólicas/efectos de la radiación , Metaboloma/efectos de la radiación , Metabolómica , Análisis de Secuencia por Matrices de Oligonucleótidos , Fotosíntesis/fisiología , Fotosíntesis/efectos de la radiación , Proteolisis/efectos de la radiación , Temperatura , Factores de Tiempo , Transcriptoma/efectos de la radiación
20.
Plant J ; 65(3): 335-45, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21265888

RESUMEN

Arabidopsis thaliana reticulate mutants exhibit differential pigmentation of the veinal and interveinal leaf regions, a visible phenotype that often indicates impaired mesophyll development. We performed a metabolomic analysis of one ven6 (venosa6) and three ven3 reticulate mutants that revealed altered levels of arginine precursors, namely increased ornithine and reduced citrulline levels. In addition, the mutants were more sensitive than the wild-type to exogenous ornithine, and leaf reticulation and mesophyll defects of these mutants were completely rescued by exogenous citrulline. Taken together, these results indicate that ven3 and ven6 mutants experience a blockage of the conversion of ornithine into citrulline in the arginine pathway. Consistent with the participation of VEN3 and VEN6 in the same pathway, the morphological phenotype of ven3 ven6 double mutants was synergistic. Map-based cloning showed that the VEN3 and VEN6 genes encode subunits of Arabidopsis carbamoyl phosphate synthetase (CPS), which is assumed to be required for the conversion of ornithine into citrulline in arginine biosynthesis. Heterologous expression of the Arabidopsis VEN3 and VEN6 genes in a CPS-deficient Escherichia coli strain fully restored bacterial growth in minimal medium, demonstrating the enzymatic activity of the VEN3 and VEN6 proteins, and indicating a conserved role for CPS in these distinct and distant species. Detailed study of the reticulate leaf phenotype in the ven3 and ven6 mutants revealed that mesophyll development is highly sensitive to impaired arginine biosynthesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arginina/biosíntesis , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/metabolismo , Mutación , Alelos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Arabidopsis/anatomía & histología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arginina/farmacología , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/genética , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/metabolismo , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/genética , Citrulina/genética , Citrulina/metabolismo , Citrulina/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Metanosulfonato de Etilo/farmacología , Células del Mesófilo/metabolismo , Metabolómica , Datos de Secuencia Molecular , Morfogénesis/genética , Ornitina/genética , Ornitina/metabolismo , Ornitina/farmacología , Fenotipo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA