Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 156(1-2): 343-58, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24439387

RESUMEN

Genome-wide association studies have revealed numerous risk loci associated with diverse diseases. However, identification of disease-causing variants within association loci remains a major challenge. Divergence in gene expression due to cis-regulatory variants in noncoding regions is central to disease susceptibility. We show that integrative computational analysis of phylogenetic conservation with a complexity assessment of co-occurring transcription factor binding sites (TFBS) can identify cis-regulatory variants and elucidate their mechanistic role in disease. Analysis of established type 2 diabetes risk loci revealed a striking clustering of distinct homeobox TFBS. We identified the PRRX1 homeobox factor as a repressor of PPARG2 expression in adipose cells and demonstrate its adverse effect on lipid metabolism and systemic insulin sensitivity, dependent on the rs4684847 risk allele that triggers PRRX1 binding. Thus, cross-species conservation analysis at the level of co-occurring TFBS provides a valuable contribution to the translation of genetic association signals to disease-related molecular mechanisms.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Polimorfismo de Nucleótido Simple , Animales , Línea Celular , Células Cultivadas , Secuencia Conservada , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Proteínas de Homeodominio/metabolismo , Humanos , Resistencia a la Insulina , PPAR gamma/genética , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo
2.
Hum Mol Genet ; 31(4): 491-498, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-34505146

RESUMEN

Several pharmacogenetics studies have identified an association between a greater metformin-dependent reduction in HbA1c levels and the minor A allele at rs2289669 in intron 10 of SLC47A1, encoding multidrug and toxin extrusion 1 (MATE1), a presumed metformin transporter. It is currently unknown if the rs2289669 locus is a cis-eQTL, which would validate its role as predictor of metformin efficacy. We looked at association between common genetic variants in the SLC47A1 gene region and HbA1c reduction after metformin treatment using locus-wise meta-analysis from the MetGen consortium. CRISPR-Cas9 was applied to perform allele editing of, or genomic deletion around, rs2289669 and of the closely linked rs8065082 in HepG2 cells. The genome-edited cells were evaluated for SLC47A1 expression and splicing. None of the common variants including rs2289669 showed significant association with metformin response. Genomic editing of either rs2289669 or rs8065082 did not alter SLC47A1 expression or splicing. Experimental and in silico analyses show that the rs2289669-containing haploblock does not appear to carry genetic variants that could explain its previously reported association with metformin efficacy.


Asunto(s)
Metformina , Genómica , Genotipo , Hemoglobina Glucada/genética , Hipoglucemiantes/uso terapéutico , Metformina/farmacología , Proteínas de Transporte de Catión Orgánico/genética , Polimorfismo de Nucleótido Simple/genética
3.
Cell Mol Life Sci ; 79(8): 459, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35913515

RESUMEN

Differentiation of smooth muscle cells (SMCs) depends on serum response factor (SRF) and its co-activator myocardin (MYOCD). The role of MYOCD for the SMC program of gene transcription is well established. In contrast, the role of MYOCD in control of SMC-specific alternative exon usage, including exon splicing, has not been explored. In the current work we identified four splicing factors (MBNL1, RBPMS, RBPMS2, and RBFOX2) that correlate with MYOCD across human SMC tissues. Forced expression of MYOCD family members in human coronary artery SMCs in vitro upregulated expression of these splicing factors. For global profiling of transcript diversity, we performed RNA-sequencing after MYOCD transduction. We analyzed alternative transcripts with three different methods. Exon-based analysis identified 1637 features with differential exon usage. For example, usage of 3´ exons in MYLK that encode telokin increased relative to 5´ exons, as did the 17 kDa telokin to 130 kDa MYLK protein ratio. Dedicated event-based analysis identified 239 MYOCD-driven splicing events. Events involving MBNL1, MCAM, and ACTN1 were among the most prominent, and this was confirmed using variant-specific PCR analyses. In support of a role for RBPMS and RBFOX2 in MYOCD-driven splicing we found enrichment of their binding motifs around differentially spliced exons. Moreover, knockdown of either RBPMS or RBFOX2 antagonized splicing events stimulated by MYOCD, including those involving ACTN1, VCL, and MBNL1. Supporting an in vivo role of MYOCD-SRF-driven splicing, we demonstrate altered Rbpms expression and splicing in inducible and SMC-specific Srf knockout mice. We conclude that MYOCD-SRF, in part via RBPMS and RBFOX2, induce a program of differential exon usage and alternative splicing as part of the broader program of SMC differentiation.


Asunto(s)
Empalme Alternativo , Miocitos del Músculo Liso , Empalme Alternativo/genética , Animales , Diferenciación Celular/genética , Exones/genética , Humanos , Ratones , Miocitos del Músculo Liso/metabolismo , Proteínas Nucleares , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Proteínas Represoras/metabolismo , Transactivadores
4.
BMC Endocr Disord ; 21(1): 32, 2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33639916

RESUMEN

BACKGROUND: Insulin resistance (IR) in skeletal muscle is a key feature of the pre-diabetic state, hypertension, dyslipidemia, cardiovascular diseases and also predicts type 2 diabetes. However, the underlying molecular mechanisms are still poorly understood. METHODS: To explore these mechanisms, we related global skeletal muscle gene expression profiling of 38 non-diabetic men to a surrogate measure of insulin sensitivity, i.e. homeostatic model assessment of insulin resistance (HOMA-IR). RESULTS: We identified 70 genes positively and 110 genes inversely correlated with insulin sensitivity in human skeletal muscle, identifying autophagy-related genes as positively correlated with insulin sensitivity. Replication in an independent study of 9 non-diabetic men resulted in 10 overlapping genes that strongly correlated with insulin sensitivity, including SIRT2, involved in lipid metabolism, and FBXW5 that regulates mammalian target-of-rapamycin (mTOR) and autophagy. The expressions of SIRT2 and FBXW5 were also positively correlated with the expression of key genes promoting the phenotype of an insulin sensitive myocyte e.g. PPARGC1A. CONCLUSIONS: The muscle expression of 180 genes were correlated with insulin sensitivity. These data suggest that activation of genes involved in lipid metabolism, e.g. SIRT2, and genes regulating autophagy and mTOR signaling, e.g. FBXW5, are associated with increased insulin sensitivity in human skeletal muscle, reflecting a highly flexible nutrient sensing.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Resistencia a la Insulina/genética , Músculo Esquelético/metabolismo , Adulto , Células Cultivadas , Estudios de Cohortes , Femenino , Expresión Génica , Humanos , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Conducta Sedentaria
5.
Bioinformatics ; 33(4): 471-474, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27563026

RESUMEN

Motivation: Depletion of loss-of-function (LoF) mutations may provide a rank of genic functional intolerance and consequently susceptibility to disease. Results: Here we have studied LoF mutations in 60 706 unrelated individuals and show that the most intolerant quartile of ranked genes is enriched in rare and early onset diseases and explains 87% of de novo haploinsufficient OMIM mutations, 17% more than any other gene scoring tool. We detected particular enrichment in expression of the depleted LoF genes in brain (odds ratio = 1.5; P -value = 4.2e-07). By searching for de novo haploinsufficient mutations putatively associated with neurodevelopmental disorders in four recent studies, we were able to explain 81% of them. Taken together, this study provides a novel gene intolerance ranking system, called LoFtool, which may help in ranking genes of interest based on their LoF intolerance and tissue expression. Availability and implementation: The LoFtool gene scores are available in the Supplementary data . Contact: joaofadista@gmail.com. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Genoma Humano , Genómica/métodos , Mutación con Pérdida de Función , Programas Informáticos , Encéfalo , Humanos
6.
Diabetologia ; 60(2): 314-323, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27807598

RESUMEN

AIMS/HYPOTHESIS: Salt-inducible kinases (SIKs) are related to the metabolic regulator AMP-activated protein kinase (AMPK). SIK2 is abundant in adipose tissue. The aims of this study were to investigate the expression of SIKs in relation to human obesity and insulin resistance, and to evaluate whether changes in the expression of SIKs might play a causal role in the development of disturbed glucose uptake in human adipocytes. METHODS: SIK mRNA and protein was determined in human adipose tissue or adipocytes, and correlated to clinical variables. SIK2 and SIK3 expression and phosphorylation were analysed in adipocytes treated with TNF-α. Glucose uptake, GLUT protein levels and localisation, phosphorylation of protein kinase B (PKB/Akt) and the SIK substrate histone deacetylase 4 (HDAC4) were analysed after the SIKs had been silenced using small interfering RNA (siRNA) or inhibited using a pan-SIK-inhibitor (HG-9-91-01). RESULTS: We demonstrate that SIK2 and SIK3 mRNA are downregulated in adipose tissue from obese individuals and that the expression is regulated by weight change. SIK2 is also negatively associated with in vivo insulin resistance (HOMA-IR), independently of BMI and age. Moreover, SIK2 protein levels and specific kinase activity display a negative correlation to BMI in human adipocytes. Furthermore, SIK2 and SIK3 are downregulated by TNF-α in adipocytes. Silencing or inhibiting SIK1-3 in adipocytes results in reduced phosphorylation of HDAC4 and PKB/Akt, less GLUT4 at the plasma membrane, and lower basal and insulin-stimulated glucose uptake in adipocytes. CONCLUSION/INTERPRETATION: This is the first study to describe the expression and function of SIKs in human adipocytes. Our data suggest that SIKs might be protective in the development of obesity-induced insulin resistance, with implications for future treatment strategies.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Obesidad/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adulto , Anciano , Animales , Western Blotting , Femenino , Humanos , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Masculino , Ratones , Persona de Mediana Edad , Fosforilación/efectos de los fármacos , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor de Necrosis Tumoral alfa/farmacología
7.
PLoS Biol ; 12(5): e1001871, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24866127

RESUMEN

Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy metabolism pathways. These metabolic changes could not be attributed to environmental conditions and were confirmed against the expression of their corresponding enzymes. We further conducted muscle strength tests in humans, chimpanzees, and macaques. The results suggest that, while humans are characterized by superior cognition, their muscular performance might be markedly inferior to that of chimpanzees and macaque monkeys.


Asunto(s)
Macaca/metabolismo , Metaboloma , Músculo Esquelético/metabolismo , Pan troglodytes/metabolismo , Corteza Prefrontal/metabolismo , Animales , Evolución Biológica , Cognición/fisiología , Metabolismo Energético , Femenino , Humanos , Macaca/psicología , Masculino , Ratones , Fuerza Muscular/fisiología , Pan troglodytes/psicología , Especificidad de la Especie
8.
Proc Natl Acad Sci U S A ; 111(38): 13924-9, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25201977

RESUMEN

Genetic variation can modulate gene expression, and thereby phenotypic variation and susceptibility to complex diseases such as type 2 diabetes (T2D). Here we harnessed the potential of DNA and RNA sequencing in human pancreatic islets from 89 deceased donors to identify genes of potential importance in the pathogenesis of T2D. We present a catalog of genetic variants regulating gene expression (eQTL) and exon use (sQTL), including many long noncoding RNAs, which are enriched in known T2D-associated loci. Of 35 eQTL genes, whose expression differed between normoglycemic and hyperglycemic individuals, siRNA of tetraspanin 33 (TSPAN33), 5'-nucleotidase, ecto (NT5E), transmembrane emp24 protein transport domain containing 6 (TMED6), and p21 protein activated kinase 7 (PAK7) in INS1 cells resulted in reduced glucose-stimulated insulin secretion. In addition, we provide a genome-wide catalog of allelic expression imbalance, which is also enriched in known T2D-associated loci. Notably, allelic imbalance in paternally expressed gene 3 (PEG3) was associated with its promoter methylation and T2D status. Finally, RNA editing events were less common in islets than previously suggested in other tissues. Taken together, this study provides new insights into the complexity of gene regulation in human pancreatic islets and better understanding of how genetic variation can influence glucose metabolism.


Asunto(s)
Genómica , Glucosa , Transcriptoma/fisiología , 5'-Nucleotidasa/biosíntesis , 5'-Nucleotidasa/genética , Línea Celular , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Proteínas Ligadas a GPI/biosíntesis , Proteínas Ligadas a GPI/genética , Glucosa/genética , Glucosa/metabolismo , Humanos , Islotes Pancreáticos , Masculino , Edición de ARN/fisiología , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/genética , Tetraspaninas/biosíntesis , Tetraspaninas/genética , Proteínas de Transporte Vesicular/biosíntesis , Proteínas de Transporte Vesicular/genética , Quinasas p21 Activadas/biosíntesis , Quinasas p21 Activadas/genética
9.
PLoS Genet ; 10(4): e1004235, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24699409

RESUMEN

Variants in the growth factor receptor-bound protein 10 (GRB10) gene were in a GWAS meta-analysis associated with reduced glucose-stimulated insulin secretion and increased risk of type 2 diabetes (T2D) if inherited from the father, but inexplicably reduced fasting glucose when inherited from the mother. GRB10 is a negative regulator of insulin signaling and imprinted in a parent-of-origin fashion in different tissues. GRB10 knock-down in human pancreatic islets showed reduced insulin and glucagon secretion, which together with changes in insulin sensitivity may explain the paradoxical reduction of glucose despite a decrease in insulin secretion. Together, these findings suggest that tissue-specific methylation and possibly imprinting of GRB10 can influence glucose metabolism and contribute to T2D pathogenesis. The data also emphasize the need in genetic studies to consider whether risk alleles are inherited from the mother or the father.


Asunto(s)
Proteína Adaptadora GRB10/genética , Proteína Adaptadora GRB10/metabolismo , Islotes Pancreáticos/metabolismo , Alelos , Diabetes Mellitus Tipo 2 , Ayuno/metabolismo , Estudio de Asociación del Genoma Completo/métodos , Glucosa/genética , Glucosa/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Resistencia a la Insulina/genética , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transducción de Señal/genética
10.
Diabetologia ; 59(8): 1702-13, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27155871

RESUMEN

AIMS/HYPOTHESIS: Genome-wide association studies (GWAS) have identified more than 65 genetic loci associated with risk of type 2 diabetes. However, the contribution of distorted parental transmission of alleles to risk of type 2 diabetes has been mostly unexplored. Our goal was therefore to search for parent-of-origin effects (POE) among type 2 diabetes loci in families. METHODS: Families from the Botnia study (n = 4,211, 1,083 families) were genotyped for 72 single-nucleotide polymorphisms (SNPs) associated with type 2 diabetes and assessed for POE on type 2 diabetes. The family-based Hungarian Transdanubian Biobank (HTB) (n = 1,463, >135 families) was used to replicate SNPs showing POE. Association of type 2 diabetes loci within families was also tested. RESULTS: Three loci showed nominal POE, including the previously reported variants in KCNQ1, for type 2 diabetes in families from Botnia (rs2237895: p POE = 0.037), which can be considered positive controls. The strongest POE was seen for rs7578597 SNP in the THADA gene, showing excess transmission of the maternal risk allele T to diabetic offspring (Botnia: p POE = 0.01; HTB p POE = 0.045). These data are consistent with previous evidence of allelic imbalance for expression in islets, suggesting that the THADA gene can be imprinted in a POE-specific fashion. Five CpG sites, including those flanking rs7578597, showed differential methylation between diabetic and non-diabetic donor islets. CONCLUSIONS/INTERPRETATION: Taken together, the data emphasise the need for genetic studies to consider from which parent an offspring has inherited a susceptibility allele.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Proteínas de Neoplasias/genética , Adulto , Alelos , Femenino , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Canal de Potasio KCNQ1/genética , Herencia Materna/genética , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética
11.
Diabetologia ; 59(9): 1928-37, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27338624

RESUMEN

AIMS/HYPOTHESIS: Insufficient insulin release and hyperglucagonaemia are culprits in type 2 diabetes. Cocaine- and amphetamine-regulated transcript (CART, encoded by Cartpt) affects islet hormone secretion and beta cell survival in vitro in rats, and Cart (-/-) mice have diminished insulin secretion. We aimed to test if CART is differentially regulated in human type 2 diabetic islets and if CART affects insulin and glucagon secretion in vitro in humans and in vivo in mice. METHODS: CART expression was assessed in human type 2 diabetic and non-diabetic control pancreases and rodent models of diabetes. Insulin and glucagon secretion was examined in isolated islets and in vivo in mice. Ca(2+) oscillation patterns and exocytosis were studied in mouse islets. RESULTS: We report an important role of CART in human islet function and glucose homeostasis in mice. CART was found to be expressed in human alpha and beta cells and in a subpopulation of mouse beta cells. Notably, CART expression was several fold higher in islets of type 2 diabetic humans and rodents. CART increased insulin secretion in vivo in mice and in human and mouse islets. Furthermore, CART increased beta cell exocytosis, altered the glucose-induced Ca(2+) signalling pattern in mouse islets from fast to slow oscillations and improved synchronisation of the oscillations between different islet regions. Finally, CART reduced glucagon secretion in human and mouse islets, as well as in vivo in mice via diminished alpha cell exocytosis. CONCLUSIONS/INTERPRETATION: We conclude that CART is a regulator of glucose homeostasis and could play an important role in the pathophysiology of type 2 diabetes. Based on the ability of CART to increase insulin secretion and reduce glucagon secretion, CART-based agents could be a therapeutic modality in type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Glucagón/metabolismo , Insulina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Western Blotting , Señalización del Calcio/fisiología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/sangre , Electrofisiología , Exocitosis/genética , Exocitosis/fisiología , Femenino , Células Secretoras de Glucagón/metabolismo , Glucosa/metabolismo , Homeostasis , Humanos , Inmunohistoquímica , Hibridación in Situ , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
Hum Mol Genet ; 23(24): 6419-31, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25015099

RESUMEN

Genome-wide association studies have revealed >60 loci associated with type 2 diabetes (T2D), but the underlying causal variants and functional mechanisms remain largely elusive. Although variants in TCF7L2 confer the strongest risk of T2D among common variants by presumed effects on islet function, the molecular mechanisms are not yet well understood. Using RNA-sequencing, we have identified a TCF7L2-regulated transcriptional network responsible for its effect on insulin secretion in rodent and human pancreatic islets. ISL1 is a primary target of TCF7L2 and regulates proinsulin production and processing via MAFA, PDX1, NKX6.1, PCSK1, PCSK2 and SLC30A8, thereby providing evidence for a coordinated regulation of insulin production and processing. The risk T-allele of rs7903146 was associated with increased TCF7L2 expression, and decreased insulin content and secretion. Using gene expression profiles of 66 human pancreatic islets donors', we also show that the identified TCF7L2-ISL1 transcriptional network is regulated in a genotype-dependent manner. Taken together, these results demonstrate that not only synthesis of proinsulin is regulated by TCF7L2 but also processing and possibly clearance of proinsulin and insulin. These multiple targets in key pathways may explain why TCF7L2 has emerged as the gene showing one of the strongest associations with T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Insulina/genética , Proteínas con Homeodominio LIM/genética , Proinsulina/genética , Proteína 2 Similar al Factor de Transcripción 7/genética , Factores de Transcripción/genética , Alelos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Regulación de la Expresión Génica , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Proteínas con Homeodominio LIM/metabolismo , Factores de Transcripción Maf de Gran Tamaño/genética , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Ratones , Ratones Transgénicos , Polimorfismo de Nucleótido Simple , Proinsulina/metabolismo , Transducción de Señal , Transactivadores/genética , Transactivadores/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
13.
Hum Mol Genet ; 21(1): 196-207, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21965303

RESUMEN

The transcription factor T-cell factor 7-like 2 (TCF7L2) confers type 2 diabetes risk mainly through impaired insulin secretion, perturbed incretin effect and reduced beta-cell survival. The aim of this study was to identify the molecular mechanism through which TCF7L2 influences beta-cell survival. TCF7L2 target genes in INS-1 cells were identified using Chromatin Immunoprecipitation. Validation of targets was obtained by: siRNA silencing, real-time quantitative polymerase chain reaction, electrophoretic mobility shift assay, luciferase reporter assays and western blot. Apoptosis rate was measured by DNA degradation and caspase-3 content. Islet viability was estimated by measuring metabolic rate. TCF7L2 binds to 3646 gene promoters in INS-1 cells in high or low glucose, including Tp53, Pten, Uggt1, Adamts9 and Fto. SiRNA-mediated reduction in TCF7L2 activity resulted in increased apoptosis and increased expression of Tp53, which resulted in elevated p53 protein activity and an increased expression of the p53 target gene Tp53inp1 (encoding p53-induced-nuclear-protein 1). Reversing the increase in p53INP1 protein expression, seen after Tcf7l2 silencing, protected INS-1 cells from Tcf7l2 depletion-induced apoptosis. This result was replicated in primary rat islets. The risk T-allele of rs7903146 is associated with increased TCF7L2 mRNA expression and transcriptional activity. On the other hand, in vitro silencing of TCF7L2 lead to increased apoptosis. One possibility is that the risk T-allele increases expression of an inhibitory TCF7L2 isoform with lower transcriptional activity. These results identify the p53-p53INP1 pathway as a molecular mechanism through which TCF7L2 may affect beta-cell survival and established a molecular link between Tcf7l2 and two type 2 diabetes-associated genes, Tp53inp1 and Adamts9.


Asunto(s)
Proteínas Portadoras/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Proteínas de Choque Térmico/metabolismo , Células Secretoras de Insulina/citología , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Línea Celular , Supervivencia Celular , Diabetes Mellitus Tipo 2/genética , Regulación de la Expresión Génica , Humanos , Células Secretoras de Insulina/metabolismo , Proteínas Nucleares , Ratas , Ratas Wistar , Transducción de Señal , Proteína 2 Similar al Factor de Transcripción 7/genética , Proteína p53 Supresora de Tumor/genética
14.
Aging Cell ; 23(1): e13859, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37128843

RESUMEN

Exercise training prevents age-related decline in muscle function. Targeting epigenetic aging is a promising actionable mechanism and late-life exercise mitigates epigenetic aging in rodent muscle. Whether exercise training can decelerate, or reverse epigenetic aging in humans is unknown. Here, we performed a powerful meta-analysis of the methylome and transcriptome of an unprecedented number of human skeletal muscle samples (n = 3176). We show that: (1) individuals with higher baseline aerobic fitness have younger epigenetic and transcriptomic profiles, (2) exercise training leads to significant shifts of epigenetic and transcriptomic patterns toward a younger profile, and (3) muscle disuse "ages" the transcriptome. Higher fitness levels were associated with attenuated differential methylation and transcription during aging. Furthermore, both epigenetic and transcriptomic profiles shifted toward a younger state after exercise training interventions, while the transcriptome shifted toward an older state after forced muscle disuse. We demonstrate that exercise training targets many of the age-related transcripts and DNA methylation loci to maintain younger methylome and transcriptome profiles, specifically in genes related to muscle structure, metabolism, and mitochondrial function. Our comprehensive analysis will inform future studies aiming to identify the best combination of therapeutics and exercise regimes to optimize longevity.


Asunto(s)
Epigenoma , Transcriptoma , Humanos , Transcriptoma/genética , Epigenoma/genética , Músculo Esquelético/metabolismo , Ejercicio Físico/fisiología , Perfilación de la Expresión Génica
15.
Diabetes Res Clin Pract ; 198: 110595, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36842479

RESUMEN

OBJECTIVE: This longitudinal study examines a possible causal effect between type 2 diabetes and ischemic heart disease (IHD) by using measurements on four occasions from the Swedish Statistics on Income and Living Conditions (SILC) together with nationwide healthcare registers. METHODS: This was a longitudinal study based on a random sample of men and women (n = 2014) from the Swedish population with four measurements in the SILC every eight years. Baseline was 1980/81 and the participants were followed for up to 37 years. The mean age and age range at baseline were 36.5 and 20-59 years, respectively. The study used Marginal Structural Modeling (MSM-Cox) to account for time-varying exposures by implementing inverse probability weighting (IPTW). MSM-Cox with IPTW was compared with Cox proportional hazard modelling. RESULTS: The hazard ratio (HR) for IHD (369 cases) with 95% confidence interval (CI) in participants with type 2 diabetes (11.1%) compared to participants without type 2 diabetes (88.9%) was significantly higher (1.99; CI = 1.15 - 3.44) when using MSM-Cox with IPTW after adjustments for clinical and sociodemographic risk factors. When applying Cox proportional hazard models adjusted for the same variables, the HR was lower and non-significant at 1.34 (CI = 0.94 - 1.98). CONCLUSIONS: This longitudinal study with four measurements assessed a possible causal association between type 2 diabetes and IHD by applying MSM-Cox with IPTW. Although causality cannot be determined due to the remaining risk of residual bias, the results may help to elucidate a potential causal relationship between type 2 diabetes and IHD. Further causal studies on possible underlying mechanisms are, however, needed.


Asunto(s)
Diabetes Mellitus Tipo 2 , Isquemia Miocárdica , Masculino , Humanos , Femenino , Diabetes Mellitus Tipo 2/epidemiología , Estudios Longitudinales , Isquemia Miocárdica/epidemiología , Isquemia Miocárdica/etiología , Factores de Riesgo , Modelos de Riesgos Proporcionales
16.
Clin Physiol Funct Imaging ; 43(4): 271-277, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36943006

RESUMEN

AIM: Tenascin C (TNC) is a large extracellular matrix glycoprotein. It is involved in development and upregulated both during tissue repair and in several pathological conditions, including cardiovascular disease. Extracellular matrix proteins play a role in promoting exercise responses, leading to adaptation, regeneration, and repair. The main goal of this study was to investigate whether a short anaerobic effort leads to increased levels of TNC in serum. METHODS: Thirty-nine healthy men performed a Wingate test followed by a muscle biopsy. Myoblasts were isolated from the muscle biopsies and differentiated to myotubes ex vivo. TNC RNA was quantified in the biopsies, myotubes and myoblasts using RNA sequencing. Blood samples were drawn before and 5 min after the Wingate test. Serum TNC levels were measured using enzyme-linked immunosorbent assay. RESULTS: After the Wingate test, serum TNC increased on average by 23% [15-33], median [interquartile range]; PWilcoxon < 0.0001. This increase is correlated with peak power output and power drop, but not with VO2max . TNC RNA expression is higher in myoblasts and myotubes compared to skeletal muscle tissue. CONCLUSION: TNC is secreted systemically as a response to the Wingate anaerobic test in healthy males. The response was positively correlated with peak power and power drop, but not with VO2max which implicates a relation to mechanical strain and/or blood flow. With higher expression in undifferentiated myoblast cells than muscle tissue, it is likely that TNC plays a role in muscle tissue remodelling in humans. Our findings open for research on how TNC contributes to exercise adaptation.


Asunto(s)
Proteínas de la Matriz Extracelular , Tenascina , Masculino , Humanos , Tenascina/genética , Tenascina/metabolismo , Anaerobiosis , Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , ARN/metabolismo
17.
Cells ; 11(3)2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35159261

RESUMEN

Previously, microRNA-100 (miR-100) and its putative mRNA target, insulin-like growth factor receptor-1 (IGF1R) were identified as differentially and inversely expressed in bovine longissimus dorsi (LD) muscles with divergent intramuscular fat (IMF) content by our group. While IGF1R signaling is implicated in myogenesis and muscle lipid metabolism, the underlying regulatory mechanisms are poorly understood. In the present study, we aimed to investigate the regulation of IGF1R by miR-100 during bovine muscle satellite cell (BMSC) myogenesis and lipid deposition. MiR-100 was confirmed to target the IGF1R 3'-untranslated region (3'-UTR) by luciferase reporter assay. Furthermore, expression of miR-100 and IGF1R was reciprocal during BMSC differentiation, suggesting a crosstalk between the two. Correspondingly, miR-100 mimic (agomiR) suppressed the levels of IGF1R, PI3K/AKT pathway signaling, myogenic gene MYOG, muscle structural components MYH7 and MYH8, whereas the inhibitor (antagomiR) had no clear stimulating effects. The IGF1R inhibitor (BMS-754807) curtailed receptor levels and triggered atrophy in muscle myotubes but did not influence miR-100 expression. AgomiR increased oleic acid-induced lipid deposition in BMSC myotubes supporting its involvement in intramuscular fat deposition, while antagomiR had no effect. Moreover, mitochondrial beta-oxidation and long-chain fatty acid synthesis-related genes were modulated by agomiR addition. Our results demonstrate modulatory roles of miR-100 in BMSC development, lipid deposition, and metabolism and suggest a role of miR-100 in marbling characteristics of meat animals and fat oxidation in muscle.


Asunto(s)
MicroARNs , Fosfatidilinositol 3-Quinasas , Animales , Antagomirs , Bovinos , Lípidos , MicroARNs/genética , MicroARNs/metabolismo , Desarrollo de Músculos , Fibras Musculares Esqueléticas/metabolismo
18.
Curr Pharm Des ; 28(10): 800-805, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35152860

RESUMEN

Exercise is considered to be a "medicine" due to its modulatory roles in metabolic disorders, such as diabetes and obesity. The intensity and duration of exercise determine the mechanism of energy production by various tissues of the body, especially by muscles, in which the requirement for adenosine triphosphate (ATP) increases by as much as 100-fold. Naturally, athletes try to improve their exercise performance by dietary supplementation with, e.g., vitamins, metabolites, and amino acids. MNAM, as a vitamin B3 metabolite, reduces serum levels and liver contents of triglycerides and cholesterol, and induces lipolysis. It stimulates gluconeogenesis and prohibits liver cholesterol and fatty acid synthesis through the expression of sirtuin1 (SIRT1). It seems that MNAM is not responsible for the actions of NNMT in the adipose tissues as MNAM inhibits the activity of NNMT in the adipose tissue and acts as an inhibitor of its activity.NNMT-MNAM axis is more activated in the muscles of individuals undergoing the high-volume-low-intensity exercise and caloric restriction. Therefore, MNAM could be an important myokine during exercise and fasting where it provides the required energy for muscles through the induction of lipolysis and gluconeogenesis in the liver and adipose tissues, respectively. Increased levels of MNAM in exercise and fasting led us to propose that the consumption of MNAM during training, especially endurance training, could boost exercise capacity and improve performance. Therefore, in this review, we shed light on the potential of MNAM as a dietary supplement in sports medicine.


Asunto(s)
Atletas , Suplementos Dietéticos , Colesterol , Humanos , Niacinamida/análogos & derivados
19.
Heliyon ; 8(7): e09944, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35874080

RESUMEN

The aim of our study was to test the hypothesis that administration of Regenerating islet-derived protein 3α (Reg3α), a protein described as having protective effects against oxidative stress and anti-inflammatory activity, could participate in the control of glucose homeostasis and potentially be a new target of interest in the treatment of type 2 diabetes. To that end the recombinant human Reg3α protein was administered for one month in insulin-resistant mice fed high fat diet. We performed glucose and insulin tolerance tests, assayed circulating chemokines in plasma and measured glucose uptake in insulin sensitive tissues. We evidenced an increase in insulin sensitivity during an oral glucose tolerance test in ALF-5755 treated mice vs controls and decreased the pro-inflammatory cytokine C-X-C Motif Chemokine Ligand 5 (CXCL5). We also demonstrated an increase in glucose uptake in skeletal muscle. Finally, correlation studies using human and mouse muscle biopsies showed negative correlation between intramuscular Reg3α mRNA expression (or its murine isoform Reg3γ) and insulin resistance. Thus, we have established the proof of concept that Reg3α could be a novel molecule of interest in the treatment of T2D by increasing insulin sensitivity via a skeletal muscle effect.

20.
Skelet Muscle ; 12(1): 16, 2022 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-35780170

RESUMEN

BACKGROUND: Skeletal muscle fiber type distribution has implications for human health, muscle function, and performance. This knowledge has been gathered using labor-intensive and costly methodology that limited these studies. Here, we present a method based on muscle tissue RNA sequencing data (totRNAseq) to estimate the distribution of skeletal muscle fiber types from frozen human samples, allowing for a larger number of individuals to be tested. METHODS: By using single-nuclei RNA sequencing (snRNAseq) data as a reference, cluster expression signatures were produced by averaging gene expression of cluster gene markers and then applying these to totRNAseq data and inferring muscle fiber nuclei type via linear matrix decomposition. This estimate was then compared with fiber type distribution measured by ATPase staining or myosin heavy chain protein isoform distribution of 62 muscle samples in two independent cohorts (n = 39 and 22). RESULTS: The correlation between the sequencing-based method and the other two were rATPas = 0.44 [0.13-0.67], [95% CI], and rmyosin = 0.83 [0.61-0.93], with p = 5.70 × 10-3 and 2.00 × 10-6, respectively. The deconvolution inference of fiber type composition was accurate even for very low totRNAseq sequencing depths, i.e., down to an average of ~ 10,000 paired-end reads. CONCLUSIONS: This new method ( https://github.com/OlaHanssonLab/PredictFiberType ) consequently allows for measurement of fiber type distribution of a larger number of samples using totRNAseq in a cost and labor-efficient way. It is now feasible to study the association between fiber type distribution and e.g. health outcomes in large well-powered studies.


Asunto(s)
Fibras Musculares Esqueléticas , ARN , Secuencia de Bases , Humanos , Análisis de Secuencia de ARN , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA