Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 150: 106362, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38169208

RESUMEN

Micro-injection molding (MiM) is a promising technique for manufacturing biodegradable polymeric vascular stents (BPVSs) at scale, in which a trapezoidal strut cross section is needed to ensure high-quality de-molding. However, there is a lack of research on the influence of the strut cross-sectional shape on its mechanical properties, posing a challenge in determining the key geometries of the strut when using MiM to produce BPVSs. Hence, this work has investigated the relationships between the geometry parameters, including the de-molding angle, and the radial support property of BPVSs using the finite element method. The results reveal that the radial stiffness of BPVSs is significantly affected by the de-molding angle, which can be counteracted by adjusting strut height, bending radius, and strut thickness. Stress distribution analysis underscores the crucial role of the curved portion of the support ring during compression, with the inner side of the curved region experiencing stress concentration. A mathematical model has been established to describe the relationships between the geometry parameters and the radial support property of the BPVSs. Notably, the radius of the neutral layer emerges as a key determinant of radial stiffness. This study is expected to serve as a guideline for the development of BPVSs that can be manufactured using MiM.


Asunto(s)
Radio (Anatomía) , Stents , Diseño de Prótesis , Polímeros , Modelos Teóricos
2.
Sci Data ; 11(1): 1116, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39390007

RESUMEN

The human thermal stress indices and datasets are vital for promoting public health and reducing negative environmental impacts as global climate change and extreme meteorological events increase. The current thermal indices generally use an instantaneous or average value to describe thermal stress which cannot reflect the distribution of thermal comfort conditions over time, and there are no global-scale thermal stress datasets with both 0.1° or higher spatial resolution and hourly temporal resolution available yet. A novel human thermal metric, Thermal Stress Duration (TSD), is proposed to represent the accumulative time of different thermal stress levels within a certain period. A high temporal resolution global gridded dataset of human thermal stress metrics (HiGTS) is presented, which consists of hourly gridded maps of Universal Thermal Climate Index (UTCI), Universal Thermal Stress (UTS), and daily TSD at 0.1° × 0.1° spatial resolution over the global land surface, spanning from January 1, 2000, to December 31, 2023.


Asunto(s)
Cambio Climático , Humanos
3.
Metabolites ; 13(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36677044

RESUMEN

Low-molecular-weight organic acids (LMWOAs) are widely distributed in forests. Fresh leaves, litter, humus, and the topsoil layer of representative Rhododendron delavayi (RD), Rhododendron agastum (RA), and Rhododendron irroratum (RI) in the Baili Rhododendron National Forest Park were sampled to explore their seasonal changes. The contents of oxalic, tartaric, malic, citric, acetic, lactic, succinic, and formic acids in samples from different seasons were determined by high-performance liquid chromatography. The results showed that the composition and content of the LMWOAs in the fresh leaves, litter, humus, and topsoil layer of the rhododendrons were affected by the tree species, samples, and season. The main LMWOA was oxalic acid (the average content in the samples was 195.31 µg/g), followed by malic acid (the average content in the samples was 68.55 µg/g) and tartaric acid (the average content in the samples was 59.82 µg/g). Succinic acid had the lowest content; the average content in the samples was 18.40 µg/g. The LMWOAs of the RD were the highest (the average content in the samples was 517.42 µg/g), and the LMWOAs of the RI were the lowest (the average content in the samples was 445.18 µg/g). The LMWOAs in the three rhododendron forests were in the order of fresh leaves > litter > humus > soil layers. This study showed the seasonal distribution characteristics of LMWOAs in three evergreen broadleaf rhododendron forests, and the results provide a reference for ecosystem management and the protection of wild rhododendron forests.

4.
Metabolites ; 13(2)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36837898

RESUMEN

The nutrient turnover of subtropical rhododendron forests is slow, natural regeneration is difficult, and the decomposition of litter is slow. Lignin, cellulose, and hemicellulose are the key factors affecting the decomposition rate of litters. In this study, the litters of three forest stands, namely evergreen broadleaf Rhododendron delavayi, evergreen broadleaf Rhododendron agastum, and deciduous broadleaf mixed forest, were taken as the research objects to explore the dynamic changes and effects of lignin, cellulose, and hemicellulose contents in litters of different stands under indoor artificial control measures. Exogenous nitrogen, phosphorus, alkaline substances, and microbial agents were added to decompose litters in the laboratory for 140 days. Our results showed that (1) the contents of lignin and cellulose in the litters of the three stands decreased significantly in the early stage of decomposition and the content of hemicellulose was stable, and (2) low concentrations of nitrogen and phosphorus can accelerate the degradation of lignin, cellulose, and hemicellulose in litters of the three stands and thus promote the decomposition of litters. This study provides basic data for the nutrient return of artificial intervention in subtropical rhododendron forests in China.

5.
Biofabrication ; 15(4)2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37579750

RESUMEN

Heart valve disease has become a serious global health problem, which calls for numerous implantable prosthetic valves to fulfill the broader needs of patients. Although current three-dimensional (3D) bioprinting approaches can be used to manufacture customized valve prostheses, they still have some complications, such as limited biocompatibility, constrained structural complexity, and difficulty to make heterogeneous constructs, to name a few. To overcome these challenges, a sacrificial scaffold-assisted direct ink writing approach has been explored and proposed in this work, in which a sacrificial scaffold is printed to temporarily support sinus wall and overhanging leaflets of an aortic valve prosthesis that can be removed easily and mildly without causing any potential damages to the valve prosthesis. The bioinks, composed of alginate, gelatin, and nanoclay, used to print heterogenous valve prostheses have been designed in terms of rheological/mechanical properties and filament formability. The sacrificial ink made from Pluronic F127 has been developed by evaluating rheological behavior and gel temperature. After investigating the effects of operating conditions, complex 3D structures and homogenous/heterogenous aortic valve prostheses have been successfully printed. Lastly, numerical simulation and cycling experiments have been performed to validate the function of the printed valve prostheses as one-way valves.


Asunto(s)
Bioimpresión , Tinta , Humanos , Válvula Aórtica , Impresión Tridimensional , Andamios del Tejido/química , Bioimpresión/métodos , Ingeniería de Tejidos/métodos , Hidrogeles/química
6.
Chemosphere ; 122: 213-218, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25532766

RESUMEN

An experimental study of Na/K additives and flyash on NO reduction during the selective non-catalytic reduction (SNCR) process were carried out in an entrained flow reactor (EFR). The effects of reaction temperature (Tr), water vapor, Na/K additives (NaCl, KCl, Na2CO3) and flyash characteristics on NO reduction were analyzed. The results indicated that NO removal efficiency shows a pattern of increasing first and decreasing later with the increase of the temperature at Tr=850-1150°C. Water vapor can improve the performance of NO reduction, and the NO reduction of 70.5% was obtained while the flue gas containing 4% water vapor at 950°C. Na/K additives have a significant promoting effect on NO reduction and widen the SNCR temperature window, the promoting effect of the test additives is ordered as Na2CO3>KCl>NaCl. NO removal efficiency with 125ppm Na2CO3 and 4% water vapor can reach up to 84.9% at the optimal reaction temperature. The additive concentration has no significant effects on NO reduction while its concentration is above 50ppm. Addition of circulating fluidized combustion (CFB) flyash deteriorates NO reduction significantly. However, CFB flyash and Na/K additives will get a coupling effect on NO reduction during the SNCR process, and the best NO reduction can reach 72.3% while feeding Na2CO3-impregnated CFB flyash at 125ppm Na2CO3 and Tr=950°C.


Asunto(s)
Contaminantes Atmosféricos/química , Carbonatos/química , Ceniza del Carbón/química , Óxido Nítrico/química , Cloruro de Potasio/química , Cloruro de Sodio/química , Oxidación-Reducción , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA