Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(11): e2307802121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437557

RESUMEN

RNA interference (RNAi) therapeutics are an emerging class of medicines that selectively target mRNA transcripts to silence protein production and combat disease. Despite the recent progress, a generalizable approach for monitoring the efficacy of RNAi therapeutics without invasive biopsy remains a challenge. Here, we describe the development of a self-reporting, theranostic nanoparticle that delivers siRNA to silence a protein that drives cancer progression while also monitoring the functional activity of its downstream targets. Our therapeutic target is the transcription factor SMARCE1, which was previously identified as a key driver of invasion in early-stage breast cancer. Using a doxycycline-inducible shRNA knockdown in OVCAR8 ovarian cancer cells both in vitro and in vivo, we demonstrate that SMARCE1 is a master regulator of genes encoding proinvasive proteases in a model of human ovarian cancer. We additionally map the peptide cleavage profiles of SMARCE1-regulated proteases so as to design a readout for downstream enzymatic activity. To demonstrate the therapeutic and diagnostic potential of our approach, we engineered self-assembled layer-by-layer nanoparticles that can encapsulate nucleic acid cargo and be decorated with peptide substrates that release a urinary reporter upon exposure to SMARCE1-related proteases. In an orthotopic ovarian cancer xenograft model, theranostic nanoparticles were able to knockdown SMARCE1 which was in turn reported through a reduction in protease-activated urinary reporters. These LBL nanoparticles both silence gene products by delivering siRNA and noninvasively report on downstream target activity by delivering synthetic biomarkers to sites of disease, enabling dose-finding studies as well as longitudinal assessments of efficacy.


Asunto(s)
Neoplasias Ováricas , Péptidos , Humanos , Femenino , Interferencia de ARN , Péptidos/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/terapia , Péptido Hidrolasas , ARN Interferente Pequeño/genética , Endopeptidasas , Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN
3.
Biochem Biophys Res Commun ; 701: 149550, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38310688

RESUMEN

The beneficial effect of a beta-lactam antibiotic, Ceftriaxone (CEF), to improve depressive-like symptoms has been documented previously, attributed to its modulation of glutamate neurotransmission. Here, we aimed to determine whether CEF could improve LPS-altered glutamatergic signaling associated with neuroinflammation-allied depression. To assess our goals, we established a neuroinflammation-allied depression mice model by injecting lipopolysaccharides (LPS), followed by behavioral and biochemical analysis. LPS-treated mice displayed depressive symptoms, neuroinflammation, dysregulated glutamate and its transporter (GLT-1) expression, altered expression of astrocyte reactive markers (GFAP, cxcl10, steap4, GBP2, and SRGN), and dysregulated BDNF/TrkB signaling. However, these changes were rescued by CEF treatment, as we found decreased neuroinflammation, relief of depression symptoms, and improved GLT-1 and BDNF/TrkB signaling upon CEF treatment. Moreover, GLT-1 and BDNF/TrkB regulation role of CEF was validated by K252a and DHK treatment. In summary, the anti-depressive effects of glutamate modulators, like CEF, are closely related to their anti-inflammatory role.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Ceftriaxona , Ratones , Animales , Ceftriaxona/farmacología , Ceftriaxona/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Lipopolisacáridos , Enfermedades Neuroinflamatorias , Ácido Glutámico/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo
4.
Genes Dev ; 29(7): 732-45, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25838542

RESUMEN

Glioblastoma multiforme (GBM) is a lethal, therapy-resistant brain cancer consisting of numerous tumor cell subpopulations, including stem-like glioma-initiating cells (GICs), which contribute to tumor recurrence following initial response to therapy. Here, we identified miR-182 as a regulator of apoptosis, growth, and differentiation programs whose expression level is correlated with GBM patient survival. Repression of Bcl2-like12 (Bcl2L12), c-Met, and hypoxia-inducible factor 2α (HIF2A) is of central importance to miR-182 anti-tumor activity, as it results in enhanced therapy susceptibility, decreased GIC sphere size, expansion, and stemness in vitro. To evaluate the tumor-suppressive function of miR-182 in vivo, we synthesized miR-182-based spherical nucleic acids (182-SNAs); i.e., gold nanoparticles covalently functionalized with mature miR-182 duplexes. Intravenously administered 182-SNAs penetrated the blood-brain/blood-tumor barriers (BBB/BTB) in orthotopic GBM xenografts and selectively disseminated throughout extravascular glioma parenchyma, causing reduced tumor burden and increased animal survival. Our results indicate that harnessing the anti-tumor activities of miR-182 via safe and robust delivery of 182-SNAs represents a novel strategy for therapeutic intervention in GBM.


Asunto(s)
Apoptosis/genética , Diferenciación Celular/genética , Glioblastoma/genética , MicroARNs/metabolismo , Animales , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/fisiopatología , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/tratamiento farmacológico , Glioblastoma/fisiopatología , Humanos , Ratones , Ratones SCID , MicroARNs/administración & dosificación , MicroARNs/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Análisis de Supervivencia
5.
Nat Mater ; 20(10): 1440-1448, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34267368

RESUMEN

Therapeutic outcomes in oncology may be aided by precision diagnostics that offer early detection, localization and the opportunity to monitor response to therapy. Here, we report a multimodal nanosensor engineered to target tumours through acidosis, respond to proteases in the microenvironment to release urinary reporters and (optionally) carry positron emission tomography probes to enable localization of primary and metastatic cancers in mouse models of colorectal cancer. We present a paradigm wherein this multimodal sensor can be employed longitudinally to assess burden of disease non-invasively, including tumour progression and response to chemotherapy. Specifically, we showed that acidosis-mediated tumour insertion enhanced on-target release of matrix metalloproteinase-responsive reporters in urine. Subsequent on-demand loading of the radiotracer 64Cu allowed pH-dependent tumour visualization, enabling enriched microenvironmental characterization when compared with the conventional metabolic tracer 18F-fluorodeoxyglucose. Through tailored target specificities, this modular platform has the capacity to be engineered as a pan-cancer test that may guide treatment decisions for numerous tumour types.


Asunto(s)
Acidosis/diagnóstico , Neoplasias Colorrectales/diagnóstico , Imagen Multimodal , Medicina de Precisión , Microambiente Tumoral , Acidosis/complicaciones , Animales , Neoplasias Colorrectales/complicaciones , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Femenino , Fluorodesoxiglucosa F18 , Ratones , Ratones Endogámicos BALB C , Tomografía de Emisión de Positrones
6.
Angew Chem Int Ed Engl ; 59(7): 2776-2783, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-31747099

RESUMEN

Layer-by-layer nanoparticles (NPs) are modular drug delivery vehicles that incorporate multiple functional materials through sequential deposition of polyelectrolytes onto charged nanoparticle cores. Herein, we combined the multicomponent features and tumor targeting capabilities of layer-by-layer assembly with functional biosensing peptides to create a new class of nanotheranostics. These NPs encapsulate a high weight percentage of siRNA while also carrying a synthetic biosensing peptide on the surface that is cleaved into a urinary reporter upon exposure to specific proteases overexpressed in the tumor microenvironment. Importantly, this biosensor reports back on a molecular signature characteristic to metastatic tumors and associated with poor prognosis, MMP9 protease overexpression. This nanotheranostic mediates noninvasive urinary-based diagnostics in mouse models of three different cancers with simultaneous gene silencing in flank and metastatic mouse models of ovarian cancer.


Asunto(s)
Neoplasias Colorrectales/diagnóstico , Nanopartículas/química , Neoplasias Ováricas/diagnóstico , Péptidos/química , Nanomedicina Teranóstica , Animales , Técnicas Biosensibles , Neoplasias Colorrectales/genética , Sistemas de Liberación de Medicamentos , Femenino , Silenciador del Gen , Ratones , Neoplasias Ováricas/genética , Péptidos/síntesis química
7.
Proc Natl Acad Sci U S A ; 112(13): 3892-7, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25775582

RESUMEN

Immunomodulatory nucleic acids have extraordinary promise for treating disease, yet clinical progress has been limited by a lack of tools to safely increase activity in patients. Immunomodulatory nucleic acids act by agonizing or antagonizing endosomal toll-like receptors (TLR3, TLR7/8, and TLR9), proteins involved in innate immune signaling. Immunomodulatory spherical nucleic acids (SNAs) that stimulate (immunostimulatory, IS-SNA) or regulate (immunoregulatory, IR-SNA) immunity by engaging TLRs have been designed, synthesized, and characterized. Compared with free oligonucleotides, IS-SNAs exhibit up to 80-fold increases in potency, 700-fold higher antibody titers, 400-fold higher cellular responses to a model antigen, and improved treatment of mice with lymphomas. IR-SNAs exhibit up to eightfold increases in potency and 30% greater reduction in fibrosis score in mice with nonalcoholic steatohepatitis (NASH). Given the clinical potential of SNAs due to their potency, defined chemical nature, and good tolerability, SNAs are attractive new modalities for developing immunotherapies.


Asunto(s)
Neoplasias Experimentales/terapia , Enfermedad del Hígado Graso no Alcohólico/terapia , Ácidos Nucleicos/química , Receptores Toll-Like/agonistas , Animales , Antígenos/química , Línea Celular , Femenino , Humanos , Inmunidad Innata , Cirrosis Hepática/patología , Linfoma/terapia , Ratones , Ratones Endogámicos C57BL , Nanomedicina/métodos , Nanopartículas/química , Conformación de Ácido Nucleico , Ácidos Nucleicos/uso terapéutico , Oligonucleótidos/uso terapéutico
8.
Small ; 13(10)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28026123

RESUMEN

Emerging evidence indicates that long noncoding RNAs (lncRNAs) are actively involved in a number of developmental and tumorigenic processes. Here, the authors describe the first successful use of spherical nucleic acids as an effective nanoparticle platform for regulating lncRNAs in cells; specifically, for the targeted knockdown of the nuclear-retained metastasis associated lung adenocarcinoma transcript 1 (Malat1), a key oncogenic lncRNA involved in metastasis of several cancers. Utilizing the liposomal spherical nucleic acid (LSNA) constructs, the authors first explored the delivery of antisense oligonucleotides to the nucleus. A dose-dependent inhibition of Malat1 upon LSNA treatment as well as the consequent up-regulation of tumor suppressor messenger RNA associated with Malat1 knockdown are shown. These findings reveal the biologic and therapeutic potential of a LSNA-based antisense strategy in targeting disease-associated, nuclear-retained lncRNAs.


Asunto(s)
Liposomas/metabolismo , Ácidos Nucleicos/metabolismo , Células A549 , Núcleo Celular , Humanos , Oligonucleótidos Fosforotioatos/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
9.
Proc Natl Acad Sci U S A ; 110(19): 7625-30, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23613589

RESUMEN

Intracellular delivery of nucleic acids as gene regulation agents typically requires the use of cationic carriers or viral vectors, yet issues related to cellular toxicity or immune responses hamper their attractiveness as therapeutic candidates. The discovery that spherical nucleic acids (SNAs), polyanionic structures comprised of densely packed, highly oriented oligonucleotides covalently attached to the surface of nanoparticles, can effectively enter more than 50 different cell types presents a potential strategy for overcoming the limitations of conventional transfection agents. Unfortunately, little is known about the mechanism of endocytosis of SNAs, including the pathway of entry and specific proteins involved. Here, we demonstrate that the rapid cellular uptake kinetics and intracellular transport of SNAs stem from the arrangement of oligonucleotides into a 3D architecture, which supports their targeting of class A scavenger receptors and endocytosis via a lipid-raft-dependent, caveolae-mediated pathway. These results reinforce the notion that SNAs can serve as therapeutic payloads and targeting structures to engage biological pathways not readily accessible with linear oligonucleotides.


Asunto(s)
Endocitosis , Nanopartículas/química , Ácidos Nucleicos/farmacocinética , Animales , Transporte Biológico , Línea Celular , ADN de Cadena Simple/química , Técnicas de Transferencia de Gen , Vectores Genéticos , Humanos , Microdominios de Membrana/metabolismo , Ratones , Oligonucleótidos/química , Oligonucleótidos/farmacocinética , Interferencia de ARN , Factores de Tiempo , Transfección
10.
J Am Chem Soc ; 137(33): 10528-10531, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-26271335

RESUMEN

Ribozymes are highly structured RNA sequences that can be tailored to recognize and cleave specific stretches of mRNA. Their current therapeutic efficacy remains low due to their large size and structural instability compared to shorter therapeutically relevant RNA such as small interfering RNA (siRNA) and microRNA (miRNA). Herein, a synthetic strategy that makes use of the spherical nucleic acid (SNA) architecture to stabilize ribozymes and transfect them into live cells is reported. The properties of this novel ribozyme-SNA are characterized in the context of the targeted knockdown of O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein involved in chemotherapeutic resistance of solid tumors, foremost glioblastoma multiforme (GBM). Data showing the direct cleavage of full-length MGMT mRNA, knockdown of MGMT protein, and increased sensitization of GBM cells to therapy-mediated apoptosis, independent of transfection agents, provide compelling evidence for the promising properties of this new chemical architecture.


Asunto(s)
ARN Catalítico/química , ARN Catalítico/genética , Transporte Biológico , Caspasas/metabolismo , Línea Celular Tumoral , Metilasas de Modificación del ADN/deficiencia , Metilasas de Modificación del ADN/genética , Activación Enzimática , Silenciador del Gen , Humanos , Transfección
11.
Small ; 11(40): 5360-8, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26297167

RESUMEN

By grafting multiple DNA strands onto one terminus of a polyester chain, a DNA-brush block copolymer that can assemble into micelle structure is constructed. These micelle spherical nucleic acids have a density of nucleic acids that is substantively higher than linear DNA block copolymer structures, which makes them effective cellular transfection and intracellular gene regulation agents.


Asunto(s)
Micelas , Ácidos Nucleicos/química , Polímeros/química , ADN/química , Polietilenglicoles/química
12.
Small ; 11(33): 4173-82, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26097111

RESUMEN

The sequence-dependent cellular uptake of spherical nucleic acid nanoparticle conjugates (SNAs) is investigated. This process occurs by interaction with class A scavenger receptors (SR-A) and caveolae-mediated endocytosis. It is known that linear poly(guanine) (poly G) is a natural ligand for SR-A, and it has been proposed that interaction of poly G with SR-A is dependent on the formation of G-quadruplexes. Since G-rich oligonucleotides are known to interact strongly with SR-A, it is hypothesized that SNAs with higher G contents would be able to enter cells in larger amounts than SNAs composed of other nucleotides, and as such, cellular internalization of SNAs is measured as a function of constituent oligonucleotide sequence. Indeed, SNAs with enriched G content show the highest cellular uptake. Using this hypothesis, a small molecule (camptothecin) is chemically conjugated with SNAs to create drug-SNA conjugates and it is observed that poly G SNAs deliver the most camptothecin to cells and have the highest cytotoxicity in cancer cells. Our data elucidate important design considerations for enhancing the intracellular delivery of spherical nucleic acids.


Asunto(s)
Endocitosis , G-Cuádruplex , Oro , Nanopartículas del Metal , Nanoconjugados , Ácidos Nucleicos/farmacocinética , Animales , Secuencia de Bases , Células Cultivadas , ADN de Cadena Simple/química , ADN de Cadena Simple/farmacocinética , Oro/química , Oro/farmacocinética , Humanos , Nanopartículas del Metal/química , Ratones , Células 3T3 NIH , Nanoconjugados/química , Ácidos Nucleicos/química , Especificidad por Sustrato
13.
Proc Natl Acad Sci U S A ; 109(12): 4377-82, 2012 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-22392973

RESUMEN

We report the development of a powerful analytical method that utilizes a tilted elastomeric pyramidal pen array in the context of a scanning probe lithography experiment to rapidly prepare libraries having as many as 25 million features over large areas with a range of feature sizes from the nano- to microscale. This technique can be used to probe important chemical and biological processes, opening up the field of nanocombinatorics. In a proof-of-concept investigation of mesenchymal stem cell (MSC) differentiation, combinatorial patterns first enabled a rapid and systematic screening of MSC adhesion, as a function of feature size, while uniform patterns were used to study differentiation with statistically significant sample sizes. Without media containing osteogenic-inducing chemical cues, cells cultured on nanopatterned fibronectin substrates direct MSC differentiation towards osteogenic fates when compared to nonpatterned fibronectin substrates. This powerful and versatile approach enables studies of many systems spanning biology, chemistry, and engineering areas.


Asunto(s)
Fibronectinas/química , Microscopía de Sonda de Barrido/métodos , Adhesión Celular , Diferenciación Celular , Células Cultivadas , Adhesiones Focales , Humanos , Células Madre Mesenquimatosas/citología , Microscopía Confocal/métodos , Microscopía Electrónica de Rastreo/métodos , Microscopía Fluorescente/métodos , Nanotecnología/métodos , Osteogénesis , Polímeros/química , Células Madre/citología
14.
Proc Natl Acad Sci U S A ; 109(35): 14030-4, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22891326

RESUMEN

Notch plays a critical role in the transition from proliferation to differentiation in the epidermis and corneal epithelium. Furthermore, aberrant Notch signaling is a feature of diseases like psoriasis, eczema, nonmelanoma skin cancer, and melanoma where differentiation and proliferation are impaired. Whereas much is known about the downstream events following Notch signaling, factors responsible for negatively regulating Notch receptor signaling after ligand activation are incompletely understood. Notch can undergo hydroxylation by factor-inhibiting hypoxia-inducible factor 1 (FIH-1); however, the biological significance of this phenomenon is unclear. Here we show that FIH-1 expression is up-regulated in diseased epidermis and corneal epithelium. Elevating FIH-1 levels in primary human epidermal keratinocytes (HEKs) and human corneal epithelial keratinocytes (HCEKs) impairs differentiation in submerged cultures and in a "three-dimensional" organotypic raft model of human epidermis, in part, via a coordinate decrease in Notch signaling. Knockdown of FIH-1 enhances keratinocyte differentiation. Loss of FIH-1 in vivo increased Notch activity in the limbal epithelium, resulting in a more differentiated phenotype. microRNA-31 (miR-31) is an endogenous negative regulator of FIH-1 expression that results in keratinocyte differentiation, mediated by Notch activation. Ectopically expressing miR-31 in an undifferentiated corneal epithelial cell line promotes differentiation and recapitulates a corneal epithelium in a three-dimensional raft culture model. Our results define a previously unknown mechanism for keratinocyte fate decisions where Notch signaling potential is, in part, controlled through a miR-31/FIH-1 nexus.


Asunto(s)
Queratinocitos/citología , Queratinocitos/fisiología , MicroARNs/metabolismo , Oxigenasas de Función Mixta/metabolismo , Psoriasis/metabolismo , Proteínas Represoras/metabolismo , Animales , Diferenciación Celular/fisiología , Línea Celular Transformada , Células Epidérmicas , Epidermis/fisiología , Células Epiteliales/citología , Células Epiteliales/fisiología , Epitelio Corneal/citología , Epitelio Corneal/fisiología , Femenino , Humanos , Ratones , Ratones Transgénicos , Oxigenasas de Función Mixta/genética , Técnicas de Cultivo de Órganos , Fenotipo , Psoriasis/genética , Psoriasis/patología , Receptores Notch/metabolismo , Proteínas Represoras/genética , Transducción de Señal/fisiología
15.
J Am Chem Soc ; 136(21): 7726-33, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-24841494

RESUMEN

Spherical nucleic acid (SNA) nanoparticle conjugates are a class of bionanomaterials that are extremely potent in many biomedical applications. Their unique ability to enter multiple mammalian cell types as single-entity agents arises from their novel three-dimensional architecture, which consists of a dense shell of highly oriented oligonucleotides chemically attached typically to a gold nanoparticle core. This architecture allows SNAs to engage certain cell surface receptors to facilitate entry. Here, we report studies aimed at determining the intracellular fate of SNAs and the trafficking events that occur inside C166 mouse endothelial cells after cellular entry. We show that SNAs traffic through the endocytic pathway into late endosomes and reside there for up to 24 h after incubation. Disassembly of oligonucleotides from the nanoparticle core is observed 16 h after cellular entry, most likely due to degradation by enzymes such as DNase II localized in late endosomes. Our observations point to these events being likely independent of core composition and treatment conditions, and they do not seem to be particularly dependent upon oligonucleotide sequence. Significantly and surprisingly, the SNAs do not enter the lysosomes under the conditions studied. To independently track the fate of the particle core and the fluorophore-labeled oligonucleotides that comprise its shell, we synthesized a novel class of quantum dot SNAs to determine that as the SNA structures are broken down over the 24 h time course of the experiment, the oligonucleotide fragments are recycled out of the cell while the nanoparticle core is not. This mechanistic insight points to the importance of designing and synthesizing next-generation SNAs that can bypass the degradation bottleneck imposed by their residency in late endosomes, and it also suggests that such structures might be extremely useful for endosomal signaling pathways by engaging receptors that are localized within the endosome.


Asunto(s)
Células Endoteliales/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Animales , Línea Celular , Endodesoxirribonucleasas/metabolismo , Ratones
16.
Nat Mater ; 12(8): 741-6, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23685863

RESUMEN

Nanoparticles can be combined with nucleic acids to programme the formation of three-dimensional colloidal crystals where the particles' size, shape, composition and position can be independently controlled. However, the diversity of the types of material that can be used is limited by the lack of a general method for preparing the basic DNA-functionalized building blocks needed to bond nanoparticles of different chemical compositions into lattices in a controllable manner. Here we show that by coating nanoparticles protected with aliphatic ligands with an azide-bearing amphiphilic polymer, followed by the coupling of DNA to the polymer using strain-promoted azide-alkyne cycloaddition (also known as copper-free azide-alkyne click chemistry), nanoparticles bearing a high-density shell of nucleic acids can be created regardless of nanoparticle composition. This method provides a route to a virtually endless class of programmable atom equivalents for DNA-based colloidal crystallization.


Asunto(s)
ADN/química , Nanopartículas/química , Azidas/química , Nanopartículas de Magnetita/química , Modelos Moleculares , Conformación Molecular , Tamaño de la Partícula , Puntos Cuánticos
17.
Microorganisms ; 12(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38399715

RESUMEN

Pseudothermotoga hypogea is an extremely thermophilic bacterium capable of growing at 90 °C and producing ethanol, which is catalyzed by an alcohol dehydrogenase (ADH). The gene encoding P. hypogea ADH (PhADH) was cloned, sequenced and over-expressed. The gene sequence (1164 bp) was obtained by sequencing all fragments of the gene, which were amplified from the genomic DNA. The deduced amino acid sequence showed high identity to iron-containing ADHs from other Thermotoga species and harbored typical iron- and NADP-binding motifs, Asp195His199His268His282 and Gly39Gly40Gly41Ser42, respectively. Structural modeling showed that the N-terminal domain of PhADH contains an α/ß-dinucleotide-binding motif and that its C-terminal domain is an α-helix-rich region containing the iron-binding motif. The recombinant PhADH was soluble, active, and thermostable, with a subunit size of 43 ± 1 kDa revealed by SDS-PAGE analyses. The recombinant PhADH (69 ± 2 U/mg) was shown to have similar properties to the native enzyme. The optimal pH values for alcohol oxidation and aldehyde reduction were 11.0 and 8.0, respectively. It was also thermostable, with a half-life of 5 h at 70 °C. The successful expression of the recombinant PhADH in E. coli significantly enhanced the yield of enzyme production and thus will facilitate further investigation of the catalytic mechanisms of iron-containing ADHs.

18.
Mol Biotechnol ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771419

RESUMEN

Resveratrol exhibits inhibitory effects on the progression of various cancers including colorectal cancer (CRC), however, the underlying mechanism in regulating CRC development remains elusive. The present study aims to uncover the role and molecular mechanism of resveratrol in modulating CRC cell tumor properties. NCM460 cells, LoVo cells, SW480 cells, and BALB/c nude mice were utilized in this study. RNA levels of miR-769-5p and musashi RNA-binding protein 1 (MSI1) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was assessed by western blotting or immunohistochemistry assay. Cell viability was analyzed by CCK-8 assay, while cell proliferation and apoptosis were evaluated by 5-Ethynyl-2'-deoxyuridine assay and flow cytometry analysis. Cell migration was investigated by transwell and wound-healing assays. The association between miR-769-5p and MSI1 was identified by a dual-luciferase reporter assay. Tumor formation was analyzed using a xenograft mouse model assay. Compared to control groups, miR-769-5p expression was downregulated, while MSI1 expression was upregulated in CRC tissues and cells. Resveratrol treatment led to increased miR-769-5p expression and decreased MSI1 expression in CRC cells. Resveratrol treatment or miR-769-5p upregulation inhibited CRC cell proliferation and migration, and induced apoptosis. These effects were enhanced after combined treatment with resveratrol and miR-769-5p mimics. MSI1 was identified as a target of miR-769-5p, and its overexpression attenuated the effects of miR-769-5p mimics on cell proliferation, migration, and apoptosis. Moreover, miR-769-5p overexpression enhanced the inhibitory effects of resveratrol on tumor growth in vivo. Resveratrol inhibited colorectal cancer cell tumor properties by activating the miR-769-5p/MSI1 pathway.

19.
Sci Adv ; 10(1): eadj9591, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38181080

RESUMEN

Although low-dose computed tomography screening improves lung cancer survival in at-risk groups, inequality remains in lung cancer diagnosis due to limited access to and high costs of medical imaging infrastructure. We designed a needleless and imaging-free platform, termed PATROL (point-of-care aerosolizable nanosensors with tumor-responsive oligonucleotide barcodes), to reduce resource disparities for early detection of lung cancer. PATROL formulates a set of DNA-barcoded, activity-based nanosensors (ABNs) into an inhalable format. Lung cancer-associated proteases selectively cleave the ABNs, releasing synthetic DNA reporters that are eventually excreted via the urine. The urinary signatures of barcoded nanosensors are quantified within 20 min at room temperature using a multiplexable paper-based lateral flow assay. PATROL detects early-stage tumors in an autochthonous lung adenocarcinoma mouse model with high sensitivity and specificity. Tailoring the library of ABNs may enable not only the modular PATROL platform to lower the resource threshold for lung cancer early detection tools but also the rapid detection of chronic pulmonary disorders and infections.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Animales , Ratones , Sistemas de Atención de Punto , Neoplasias Pulmonares/diagnóstico , Modelos Animales de Enfermedad , ADN
20.
FASEB J ; 26(8): 3140-7, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22532441

RESUMEN

Corneal epithelium relies on abundant glycogen stores as its primary energy source. MicroRNA-31 (miR-31), a corneal epithelial-preferred miRNA, negatively regulates factor inhibiting hypoxia-inducible factor-1 (FIH-1). Since HIF-1α is involved in anaerobic energy production, we investigated the role that miR-31 and FIH-1 play in regulating corneal epithelial glycogen. We used antagomirs (antago) to reduce the level of miR-31 in primary human corneal epithelial keratinocytes (HCEKs), and a miR-31-resistant FIH-1 to increase FIH-1 levels. Antago-31 raised FIH-1 levels and significantly reduced glycogen stores in HCEKs compared to irrelevant-antago treatment. Similarly, HCEKs retrovirally transduced with a miR-31-resistant FIH-1 had markedly reduced glycogen levels compared with empty vector controls. In addition, we observed no change in a HIF-1α reporter or known genes downstream of HIF-1α indicating that the action of FIH-1 and miR-31 on glycogen is HIF-1α-independent. An enzyme-dead FIH-1 mutation failed to restore glycogen stores, indicating that FIH-1 negatively regulates glycogen in a hydroxylase-independent manner. FIH-1 overexpression in HCEKs decreased AKT signaling, activated GSK-3ß, and inactivated glycogen synthase. Treatment of FIH-1-transduced HCEKs with either a myristolated Akt or a GSK-3ß inhibitor restored glycogen stores, confirming the direct involvement of Akt/GSK-3ß signaling. Silencing FIH-1 in HCEKs reversed the observed changes in Akt-signaling. Glycogen regulation in a HIF-1α-independent manner is a novel function for FIH-1 and provides new insight into how the corneal epithelium regulates its energy requirements.


Asunto(s)
Epitelio Corneal/metabolismo , Glucógeno/metabolismo , Queratinocitos/metabolismo , MicroARNs/fisiología , Oxigenasas de Función Mixta/antagonistas & inhibidores , Proteínas Represoras/antagonistas & inhibidores , Animales , Células Cultivadas , Epitelio Corneal/efectos de los fármacos , Femenino , Glucógeno Sintasa/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Queratinocitos/efectos de los fármacos , Ratones , Oxigenasas de Función Mixta/metabolismo , Oligorribonucleótidos/farmacología , Proteínas Proto-Oncogénicas c-akt/fisiología , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA