Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 582
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Circ Res ; 134(2): 165-185, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38166463

RESUMEN

BACKGROUND: Atherosclerosis is a globally prevalent chronic inflammatory disease with high morbidity and mortality. The development of atherosclerotic lesions is determined by macrophages. This study aimed to investigate the specific role of myeloid-derived CD147 (cluster of differentiation 147) in atherosclerosis and its translational significance. METHODS AND RESULTS: We generated mice with a myeloid-specific knockout of CD147 and mice with restricted CD147 overexpression, both in an apoE-deficient (ApoE-/-) background. Here, the myeloid-specific deletion of CD147 ameliorated atherosclerosis and inflammation. Consistent with our in vivo data, macrophages isolated from myeloid-specific CD147 knockout mice exhibited a phenotype shift from proinflammatory to anti-inflammatory macrophage polarization in response to lipopolysaccharide/IFN (interferon)-γ. These macrophages demonstrated a weakened proinflammatory macrophage phenotype, characterized by reduced production of NO and reactive nitrogen species derived from iNOS (inducible NO synthase). Mechanistically, the TRAF6 (tumor necrosis factor receptor-associated factor 6)-IKK (inhibitor of κB kinase)-IRF5 (IFN regulatory factor 5) signaling pathway was essential for the effect of CD147 on proinflammatory responses. Consistent with the reduced size of the necrotic core, myeloid-specific CD147 deficiency diminished the susceptibility of iNOS-mediated late apoptosis, accompanied by enhanced efferocytotic capacity mediated by increased secretion of GAS6 (growth arrest-specific 6) in proinflammatory macrophages. These findings were consistent in a mouse model with myeloid-restricted overexpression of CD147. Furthermore, we developed a new atherosclerosis model in ApoE-/- mice with humanized CD147 transgenic expression and demonstrated that the administration of an anti-human CD147 antibody effectively suppressed atherosclerosis by targeting inflammation and efferocytosis. CONCLUSIONS: Myeloid CD147 plays a crucial role in the growth of plaques by promoting inflammation in a TRAF6-IKK-IRF5-dependent manner and inhibiting efferocytosis by suppressing GAS6 during proinflammatory conditions. Consequently, the use of anti-human CD147 antibodies presents a complementary therapeutic approach to the existing lipid-lowering strategies for treating atherosclerotic diseases.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Ratones , Animales , Eferocitosis , Factor 6 Asociado a Receptor de TNF/metabolismo , Aterosclerosis/metabolismo , Inflamación/genética , Ratones Noqueados , Fenotipo , Apolipoproteínas E , Factores Reguladores del Interferón/genética , Ratones Endogámicos C57BL
2.
Development ; 149(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35142352

RESUMEN

Mammalian oocyte maturation is a unique asymmetric division, which is mainly because of actin-based spindle migration to the cortex. In the present study, we report that a kinesin motor KIFC1, which is associated with microtubules for the maintenance of spindle poles in mitosis, is also involved in actin dynamics in murine oocyte meiosis, co-localizing with microtubules during mouse oocyte maturation. Depletion of KIFC1 caused the failure of polar body extrusion, and we found that meiotic spindle formation and chromosome alignment were disrupted. This might be because of the effects of KIFC1 on HDAC6 and NAT10-based tubulin acetylation, which further affected microtubule stability. Mass spectroscopy analysis revealed that KIFC1 also associated with several actin nucleation factors and we found that KIFC1 was essential for the distribution of actin filaments, which further affected spindle migration. Depletion of KIFC1 leaded to aberrant expression of formin 2 and the ARP2/3 complex, and endoplasmic reticulum distribution was also disturbed. Exogenous KIFC1 mRNA supplement could rescue these defects. Taken together, as well as its roles in tubulin acetylation, our study reported a previously undescribed role of kinesin KIFC1 on the regulation of actin dynamics for spindle migration in mouse oocytes.


Asunto(s)
Cinesinas , Tubulina (Proteína) , beta Carioferinas/metabolismo , Acetilación , Actinas/metabolismo , Animales , Cinesinas/genética , Mamíferos/metabolismo , Meiosis , Ratones , Oocitos/metabolismo , Huso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
3.
EMBO Rep ; 24(10): e56098, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37522391

RESUMEN

A11 dopaminergic neurons regulate somatosensory transduction by projecting from the diencephalon to the spinal cord, but the function of this descending projection in itch remained elusive. Here, we report that dopaminergic projection neurons from the A11 nucleus to the spinal dorsal horn (dopaminergicA11-SDH ) are activated by pruritogens. Inhibition of these neurons alleviates itch-induced scratching behaviors. Furthermore, chemogenetic inhibition of spinal dopamine receptor D1-expressing (DRD1+ ) neurons decreases acute or chronic itch-induced scratching. Mechanistically, spinal DRD1+ neurons are excitatory and mostly co-localize with gastrin-releasing peptide (GRP), an endogenous neuropeptide for itch. In addition, DRD1+ neurons form synapses with GRP receptor-expressing (GRPR+ ) neurons and activate these neurons via AMPA receptor (AMPAR). Finally, spontaneous itch and enhanced acute itch induced by activating spinal DRD1+ neurons are relieved by antagonists against AMPAR and GRPR. Thus, the descending dopaminergic pathway facilitates spinal itch transmission via activating DRD1+ neurons and releasing glutamate and GRP, which directly augments GRPR signaling. Interruption of this descending pathway may be used to treat chronic itch.


Asunto(s)
Receptores de Bombesina , Médula Espinal , Humanos , Receptores de Bombesina/genética , Receptores de Bombesina/metabolismo , Péptido Liberador de Gastrina/genética , Péptido Liberador de Gastrina/metabolismo , Médula Espinal/metabolismo , Ácido Glutámico/metabolismo , Dopamina/metabolismo , Prurito/genética , Prurito/metabolismo , Neuronas Dopaminérgicas/metabolismo , Receptores AMPA/genética , Receptores AMPA/metabolismo
4.
Nano Lett ; 24(11): 3448-3455, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38452056

RESUMEN

Unlike graphene derived from graphite, borophenes represent a distinct class of synthetic two-dimensional materials devoid of analogous bulk-layered allotropes, leading to covalent bonding within borophenes instead of van der Waals (vdW) stacking. Our investigation focuses on 665 vdW-stacking boron bilayers to uncover potential bulk-layered boron allotropes through vdW stacking. Systematic high-throughput screening and stability analysis reveal a prevailing inclination toward covalently bonded layers in the majority of boron bilayers. However, an intriguing outlier emerges in δ5 borophene, demonstrating potential as a vdW-stacking candidate. We delve into electronic and topological structural similarities between δ5 borophene and graphene, shedding light on the structural integrity and stability of vdW-stacked boron structures across bilayers, multilayers, and bulk-layered allotropes. The δ5 borophene analogues exhibit metallic properties and characteristics of phonon-mediated superconductors, boasting a critical temperature near 22 K. This study paves the way for the concept of "borophite", a long-awaited boron analogue of graphite.

5.
J Cell Mol Med ; 28(11): e18410, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38853457

RESUMEN

Troponin T1 (TNNT1) plays a crucial role in muscle contraction but its role in cancer, particularly in kidney renal clear cell carcinoma (KIRC), is not well-understood. This study explores the expression, clinical significance and biological functions of TNNT1 in various cancers, with an emphasis on its involvement in KIRC. We analysed TNNT1 expression in cancers using databases like TCGA and GTEx, assessing its prognostic value, mutation patterns, methylation status and functional implications. The study also examined TNNT1's effect on the tumour microenvironment and drug sensitivity in KIRC, complemented by in vitro TNNT1 knockdown experiments in KIRC cells. TNNT1 is overexpressed in several cancers and linked to adverse outcomes, showing frequent upregulation mutations and abnormal methylation. Functionally, TNNT1 connects to muscle and cancer pathways, affects immune infiltration and drug responses, and its overexpression in KIRC is associated with advanced disease and reduced survival. Knocking down TNNT1 curbed KIRC cell growth. TNNT1's aberrant expression plays a significant role in tumorigenesis and immune modulation, highlighting its value as a prognostic biomarker and a potential therapeutic target in KIRC and other cancers. Further studies are essential to understand TNNT1's oncogenic mechanisms in KIRC.


Asunto(s)
Carcinogénesis , Carcinoma de Células Renales , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales , Troponina T , Humanos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinogénesis/genética , Carcinogénesis/inmunología , Carcinogénesis/patología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Proliferación Celular , Metilación de ADN , Inmunomodulación/genética , Neoplasias Renales/genética , Neoplasias Renales/inmunología , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Mutación/genética , Pronóstico , Troponina T/metabolismo , Troponina T/genética , Microambiente Tumoral/inmunología
6.
J Cell Physiol ; 239(1): 180-192, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992208

RESUMEN

Oocyte maturation defect can lead to maternal reproduction disorder. NAMPT is a rate-limiting enzyme in mammalian NAD+ biosynthesis pathway, which can regulate a variety of cellular metabolic processes including glucose metabolism and DNA damage repair. However, the function of NAMPT in porcine oocytes remains unknown. In this study, we showed that NAMPT involved into multiple cellular events during oocyte maturation. NAMPT expressed during all stages of porcine oocyte meiosis, and inhibition of NAMPT activity caused the cumulus expansion and polar body extrusion defects. Mitochondrial dysfunction was observed in NAMPT-deficient porcine oocytes, which showed decreased membrane potential, ATP and mitochondrial DNA content, increased oxidative stress level and apoptosis. We also found that NAMPT was essential for spindle organization and chromosome arrangement based on Ac-tubulin. Moreover, lack of NAMPT activity caused the increase of lipid droplet and affected the imbalance of lipogenesis and lipolysis. In conclusion, our study indicated that lack of NAMPT activity affected porcine oocyte maturation through its effects on mitochondria function, spindle assembly and lipid metabolism.


Asunto(s)
Metabolismo de los Lípidos , Mitocondrias , Nicotinamida Fosforribosiltransferasa , Oogénesis , Animales , Metabolismo de los Lípidos/genética , Meiosis , Mitocondrias/metabolismo , Oocitos/metabolismo , Estrés Oxidativo , Porcinos , Nicotinamida Fosforribosiltransferasa/metabolismo , Polos del Huso
7.
J Am Chem Soc ; 146(20): 14349-14356, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38742424

RESUMEN

High-purity CO2 rather than dilute CO2 (15 vol %, CO2/N2/O2 = 15:80:5, v/v/v) similar to the flue gas is currently used as the feedstock for the electroreduction of CO2, and the liquid products are usually mixed up with the cathode electrolyte, resulting in high product separation costs. In this work, we showed that a microporous conductive Bi-based metal-organic framework (Bi-HHTP, HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) can not only efficiently capture CO2 from the dilute CO2 under high humidity but also catalyze the electroreduction of the adsorbed CO2 into formic acid with a high current density of 80 mA cm-2 and a Faradaic efficiency of 90% at a very low cell voltage of 2.6 V. Importantly, the performance in a dilute CO2 atmosphere was close to that under a high-purity CO2 atmosphere. This is the first catalyst that can maintain exceptional eCO2RR performance in the presence of both O2 and N2. Moreover, by using dilute CO2 as the feedstock, a 1 cm-2 working electrode coating with Bi-HHTP can continuously produce a 200 mM formic acid aqueous solution with a relative purity of 100% for at least 30 h in a membrane electrode assembly (MEA) electrolyzer. The product does not contain electrolytes, and such a highly concentrated and pure formic acid aqueous solution can be directly used as an electrolyte for formic acid fuel cells. Comprehensive studies revealed that such a high performance might be ascribed to the CO2 capture ability of the micropores on Bi-HHTP and the lower Gibbs free energy of formation of the key intermediate *OCHO on the open Bi sites.

8.
J Am Chem Soc ; 146(1): 1144-1152, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38164902

RESUMEN

It is crucial to achieve continuous production of highly concentrated and pure C2 chemicals through the electrochemical CO2 reduction reaction (eCO2RR) for artificial carbon cycling, yet it has remained unattainable until now. Despite one-pot tandem catalysis (dividing the eCO2RR to C2 into two catalytical reactions of CO2 to CO and CO to C2) offering the potential for significantly enhancing reaction efficiency, its mechanism remains unclear and its performance is unsatisfactory. Herein, we selected different CO2-to-CO catalysts and CO-to-acetate catalysts to construct several tandem catalytic systems for the eCO2RR to acetic acid. Among them, a tandem catalytic system comprising a covalent organic framework (PcNi-DMTP) and a metal-organic framework (MAF-2) as CO2-to-CO and CO-to-acetate catalysts, respectively, exhibited a faradaic efficiency of 51.2% with a current density of 410 mA cm-2 and an ultrahigh acetate yield rate of 2.72 mmol m-2 s-1 under neutral conditions. After electrolysis for 200 h, 1 cm-2 working electrode can continuously produce 20 mM acetic acid aqueous solution with a relative purity of 95+%. Comprehensive studies revealed that the performance of tandem catalysts is influenced not only by the CO supply-demand relationship and electron competition between the two catalytic processes in the one-pot tandem system but also by the performance of the CO-to-C2 catalyst under diluted CO conditions.

9.
Anal Chem ; 96(24): 10074-10083, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38848224

RESUMEN

Numerous high-performance nanotechnologies have been developed, but their practical applications are largely restricted by the nanomaterials' low stabilities and high operation complexity in aqueous substrates. Herein, we develop a simple and high-reliability hydrogel-based nanotechnology based on the in situ formation of Au nanoparticles in molybdenum disulfide (MoS2)-doped agarose (MoS2/AG) hydrogels for electrophoresis-integrated microplate protein recognition. After the incubation of MoS2/AG hydrogels in HAuCl4 solutions, MoS2 nanosheets spontaneously reduce Au ions, and the hydrogels are remarkably stained with the color of as-synthetic plasmonic Au hybrid nanomaterials (Au staining). Proteins can precisely mediate the morphologies and optical properties of Au/MoS2 heterostructures in the hydrogels. Consequently, Au staining-based protein recognition is exhibited, and hydrogels ensure the comparable stabilities and sensitivities of protein analysis. In comparison to the fluorescence imaging and dye staining, enhanced sensitivity and recognition performances of proteins are implemented by Au staining. In Au staining, exfoliated MoS2 semiconductors directly guide the oriented growth of plasmonic Au nanostructures in the presence of formaldehyde, showing environment-friendly features. The Au-stained hydrogels merge the synthesis and recognition applications of plasmonic Au nanomaterials. Significantly, the one-step incubation of the electrophoretic hydrogels leads to high simplicity of operation, largely challenging those multiple-step Ag staining routes which were performed with high complexity and formaldehyde toxicity. Due to its toxic-free, simple, and sensitive merits, the Au staining integrated with electrophoresis-based separation and microplate-based high-throughput measurements exhibits highly promising and improved practicality of those developing nanotechnologies and largely facilitates in-depth understanding of biological information.


Asunto(s)
Disulfuros , Oro , Hidrogeles , Molibdeno , Molibdeno/química , Disulfuros/química , Oro/química , Hidrogeles/química , Nanopartículas del Metal/química , Electroforesis , Proteínas/análisis , Proteínas/química
10.
Cerebellum ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558026

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS), a noninvasive neuroregulatory technique used to treat neurodegenerative diseases, holds promise for spinocerebellar ataxia type 3 (SCA3) treatment, although its efficacy and mechanisms remain unclear. This study aims to observe the short-term impact of cerebellar rTMS on motor function in SCA3 patients and utilize resting-state functional magnetic resonance imaging (RS-fMRI) to assess potential therapeutic mechanisms. Twenty-two SCA3 patients were randomly assigned to receive actual rTMS (AC group, n = 11, three men and eight women; age 32-55 years) or sham rTMS (SH group, n = 11, three men and eight women; age 26-58 years). Both groups underwent cerebellar rTMS or sham rTMS daily for 15 days. The primary outcome measured was the ICARS scores and parameters for regional brain activity. Compared to baseline, ICARS scores decreased more significantly in the AC group than in the SH group after the 15-day intervention. Imaging indicators revealed increased Amplitude of Low Frequency Fluctuation (ALFF) values in the posterior cerebellar lobe and cerebellar tonsil following AC stimulation. This study suggests that rTMS enhances motor functions in SCA3 patients by modulating the excitability of specific brain regions and associated pathways, reinforcing the potential clinical utility of rTMS in SCA3 treatment. The Chinese Clinical Trial Registry identifier is ChiCTR1800020133.

11.
Cell Commun Signal ; 22(1): 199, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553728

RESUMEN

KIFC3 is a member of Kinesin-14 family motor proteins, which play a variety of roles such as centrosome cohesion, cytokinesis, vesicles transportation and cell proliferation in mitosis. Here, we investigated the functional roles of KIFC3 in meiosis. Our findings demonstrated that KIFC3 exhibited expression and localization at centromeres during metaphase I, followed by translocation to the midbody at telophase I throughout mouse oocyte meiosis. Disruption of KIFC3 activity resulted in defective polar body extrusion. We observed aberrant meiotic spindles and misaligned chromosomes, accompanied by the loss of kinetochore-microtubule attachment, which might be due to the failed recruitment of BubR1/Bub3. Coimmunoprecipitation data revealed that KIFC3 plays a crucial role in maintaining the acetylated tubulin level mediated by Sirt2, thereby influencing microtubule stability. Additionally, our findings demonstrated an interaction between KIFC3 and PRC1 in regulating midbody formation during telophase I, which is involved in cytokinesis regulation. Collectively, these results underscore the essential contribution of KIFC3 to spindle assembly and cytokinesis during mouse oocyte meiosis.


Asunto(s)
Citocinesis , Cinesinas , Animales , Ratones , Cinesinas/genética , Cinesinas/metabolismo , Meiosis , Microtúbulos/metabolismo , Oocitos/metabolismo
12.
Bioorg Chem ; 148: 107478, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38788366

RESUMEN

The current standard treatment for ovarian cancer consists of surgery to reduce the size of the tumor, followed by treatment with chemotherapeutic drugs, which have major side effects. Therefore, finding a new natural product drug with fewer side effects is a strategy. Delphinium brunonianum (D. brunonianum) is a traditional Tibetan medicine, mainly from southern Tibet, China, whereas the chemical constituents in this plant remain elusive. The major metabolites in the dichloromethane fraction of D. brunonianum were analyzed and purified by HPLC and various column chromatography techniques. Nine diterpenoid alkaloids (1-9) and one amide alkaloid (10) were isolated from D. brunonianum, including three novel C19-type diterpenoid alkaloids (Brunonianines D-F) (1-3). Their structures were elucidated by 1D/2D NMR, HR-ESI-MS and single-crystal X-ray diffraction analyses. All compounds were evaluated for toxicity in four tumor cell lines. Most of the compounds exhibited potent inhibitory effects on Skov-3 cell lines, with IC50 values ranging from 2.57 to 8.05 µM. The western blotting experiment was used to further analyze the expression levels of molecules in the Bax/Bcl-2/Caspase-3 signaling pathway for compound 1. Molecular docking was performed to predict the binding modes of Brunonianine D with target proteins. In vivo experiments were also performed and evaluated in real time by monitoring the size of the Skov-3 tumor. Additionally, tumor H&E staining and the TUNEL assay used to evaluate anti-tumor effects.


Asunto(s)
Alcaloides , Antineoplásicos Fitogénicos , Apoptosis , Proliferación Celular , Delphinium , Diterpenos , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias Ováricas , Femenino , Humanos , Delphinium/química , Alcaloides/farmacología , Alcaloides/química , Alcaloides/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Relación Estructura-Actividad , Animales , Estructura Molecular , Diterpenos/farmacología , Diterpenos/química , Diterpenos/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ratones , Relación Dosis-Respuesta a Droga , Línea Celular Tumoral , Simulación del Acoplamiento Molecular
13.
Drug Resist Updat ; 66: 100907, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36527888

RESUMEN

The binding of programmed death-1 (PD-1) on the surface of T cells and PD-1 ligand 1 (PD-L1) on tumor cells can prevent the immune-killing effect of T cells on tumor cells and promote the immune escape of tumor cells. Therefore, immune checkpoint blockade targeting PD-1/PD-L1 is a reliable tumor therapy with remarkable efficacy. However, the main challenges of this therapy are low response rate and acquired resistance, so that the outcomes of this therapy are usually unsatisfactory. This review begins with the description of biological structure of the PD-1/PD-L1 immune checkpoint and its role in a variety of cells. Subsequently, the therapeutic effects of immune checkpoint blockers (PD-1 / PD-L1 inhibitors) in various tumors were introduced and analyzed, and the reasons affecting the function of PD-1/PD-L1 were systematically analyzed. Then, we focused on analyzing, sorting out and introducing the possible underlying mechanisms of primary and acquired resistance to PD-1/PD-L1 blockade including abnormal expression of PD-1/PD-L1 and some factors, immune-related pathways, tumor immune microenvironment, and T cell dysfunction and others. Finally, promising therapeutic strategies to sensitize the resistant patients with PD-1/PD-L1 blockade treatment were described. This review is aimed at providing guidance for the treatment of various tumors, and highlighting the drug resistance mechanisms to offer directions for future tumor treatment and improvement of patient prognosis.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias , Receptor de Muerte Celular Programada 1 , Humanos , Antígeno B7-H1 , Resistencia a Medicamentos , Inmunoterapia , Microambiente Tumoral
14.
Mar Drugs ; 22(6)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38921594

RESUMEN

Endothelial hyperpermeability is pivotal in sepsis-associated multi-organ dysfunction. Increased von Willebrand factor (vWF) plasma levels, stemming from activated platelets and endothelium injury during sepsis, can bind to integrin αvß3, exacerbating endothelial permeability. Hence, targeting this pathway presents a potential therapeutic avenue for sepsis. Recently, we identified isaridin E (ISE), a marine-derived fungal cyclohexadepsipeptide, as a promising antiplatelet and antithrombotic agent with a low bleeding risk. ISE's influence on septic mortality and sepsis-induced lung injury in a mouse model of sepsis, induced by caecal ligation and puncture, is investigated in this study. ISE dose-dependently improved survival rates, mitigating lung injury, thrombocytopenia, pulmonary endothelial permeability, and vascular inflammation in the mouse model. ISE markedly curtailed vWF release from activated platelets in septic mice by suppressing vesicle-associated membrane protein 8 and soluble N-ethylmaleide-sensitive factor attachment protein 23 overexpression. Moreover, ISE inhibited healthy human platelet adhesion to cultured lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells (HUVECs), thereby significantly decreasing vWF secretion and endothelial hyperpermeability. Using cilengitide, a selective integrin αvß3 inhibitor, it was found that ISE can improve endothelial hyperpermeability by inhibiting vWF binding to αvß3. Activation of the integrin αvß3-FAK/Src pathway likely underlies vWF-induced endothelial dysfunction in sepsis. In conclusion, ISE protects against sepsis by inhibiting endothelial hyperpermeability and platelet-endothelium interactions.


Asunto(s)
Plaquetas , Células Endoteliales de la Vena Umbilical Humana , Sepsis , Factor de von Willebrand , Animales , Sepsis/tratamiento farmacológico , Factor de von Willebrand/metabolismo , Humanos , Ratones , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Masculino , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/antagonistas & inhibidores , Permeabilidad Capilar/efectos de los fármacos
15.
Nano Lett ; 23(24): 11409-11415, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38095312

RESUMEN

A prominent characteristic of 2D magnetic systems is the enhanced spin fluctuations, which reduce the ordering temperature. We report that a magnetic field of only 1000th of the Heisenberg superexchange interaction can induce a crossover, which for practical purposes is the effective ordering transition, at temperatures about 6 times the Néel transition in a site-diluted two-dimensional anisotropic quantum antiferromagnet. Such a strong magnetic response is enabled because the system directly enters the antiferromagnetically ordered state from the isotropic disordered state, skipping the intermediate anisotropic stage. The underlying mechanism is achieved on a pseudospin-half square lattice realized in the [(SrIrO3)1/(SrTiO3)2] superlattice thin film that is designed to linearly couple the staggered magnetization to external magnetic fields by virtue of the rotational symmetry-preserving Dzyaloshinskii-Moriya interaction. Our model analysis shows that the skipping of the anisotropic regime despite finite anisotropy is due to the enhanced isotropic fluctuations under moderate dilution.

16.
J Am Chem Soc ; 145(39): 21672-21678, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37732812

RESUMEN

It is challenging and important to achieve high performance for an electrochemical CO2 reduction reaction (eCO2RR) to yield CH4 under neutral conditions. So far, most of the reported active sites for eCO2RR to yield CH4 are single metal sites; the performances are far below the commercial requirements. Herein, we reported a nanosheet metal-organic layer in single-layer, namely, [Cu2(obpy)2] (Cuobpy-SL, Hobpy = 1H-[2,2']bipyridinyl-6-one), possessing dicopper(I) sites for eCO2RR to yield CH4 in a neutral aqueous solution. Detailed examination of Cuobpy-SL revealed high performance for CH4 production with a faradic efficiency of 82(1)% and a current density of ∼90 mA cm-2 at -1.4 V vs. reversible hydrogen electrode (RHE). No obvious degradation was observed over 100 h of continuous operation, representing a remarkable performance to date. Mechanism studies showed that compared with the conventional single-copper sites and completely exposed dicopper(I) sites, the dicopper(I) sites in the confined space formed by the molecular stacking have a strong affinity to key C1 intermediates such as *CO, *CHO, and *CH2O to facilitate the CH4 production, yet inhibiting C-C coupling.

17.
J Am Chem Soc ; 145(12): 6773-6780, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36821052

RESUMEN

The activation of dinitrogen (N2) and direct incorporation of its N atom into C-H bonds to create aliphatic C-N compounds remains unresolved. Incompatible conditions between dinitrogen reduction and C-H functionalization make this process extremely challenging. Herein, we report the first example of dinitrogen insertion into an aliphatic Csp3-H bond on the ligand scaffold of a 1,3-propane-bridged [N2N]2--type dititanium complex. Mechanistic investigations on the behaviors of dinuclear and mononuclear Ti complexes indicated the intramolecular synergistic effect of two Ti centers at a C-N bond-forming step. Computational studies revealed the critical isomerization between the inactive side-on N2 complex and the active nitridyl complex, which is responsible for the Csp3-H amination. This strategy maps an efficient route toward the future synthesis of aliphatic amines directly from N2.

18.
Anal Chem ; 95(30): 11440-11448, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37478154

RESUMEN

The development of noninvasive and sensitive detection methods for the early diagnosis and monitoring of bladder cancer is critical but challenging. Herein, an ultrasensitive electrochemiluminescence (ECL) immunosensor that uses Ru(bpy)32+-metal-organic framework (Ru-MOF) nanospheres and a DNA tetrahedral (TDN) probe was established for bladder cancer marker complement factor H-related protein (CFHR1) detection. The synthesized Ru(bpy)32+-metal-organic frameworks (Ru-MOFs) served as a linked substrate for immobilization of AuNPs and antibody (Ab2) to prepare the ECL signal probe (Ru-MOF@AuNPs-Ab2), exhibiting a stable and strengthened ECL emission. At the same time, the inherent advantages of TDN probes on the electrode as the capture probe (TDN-Ab1) improve the accessibility of targets to probes. In the presence of CFHR1, the signal probe Ru-MOF@AuNPs-Ab2 was modified on the electrode through immune binding, thereby obtaining an outstanding ECL signal. As expected, the developed ECL immunosensor exhibited splendid performance for CFHR1 detection in the range of 0.1 fg/mL to 10 pg/mL with a quite low detection limit of 0.069 fg/mL. By using the proposed strategy to detect CFHR1 from urine, it showed acceptable accuracy, which can effectively distinguish between bladder cancer patients and healthy samples. This work contributes to a novel, noninvasive, and accurate method for early clinical diagnosis of bladder cancer.

19.
Anal Chem ; 95(51): 18859-18870, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38096265

RESUMEN

Trivalent Au ions are easily reduced to be zerovalent atoms by coexisting reductant reagents, resulting in the subsequent accumulation of Au atoms and formation of plasmonic nanostructures. In the absence of stabilizers or presence of weak stabilizers, aggregative growth of Au nanoparticles (NPs) always occurs, and unregular multidimensional Au materials are consequently constructed. Herein, the addition of nanomole-level mercury ions can efficiently prevent the epitaxial accumulation of Au atoms, and separated Au NPs with mediated morphologies and superior plasmonic characteristics are obtained. Experimental results and theoretical simulation demonstrate the Hg-concentration-reliant formation of plasmonic nanostructures with their mediated sizes and shapes in the presence of weak reductants. Moreover, the sensitive plasmonic responses of reaction systems exhibit selectivity comparable to that of Hg species. As a concept of proof, polymeric carbon dots (CDs) were used as the initial reductant, and the reactions between trivalent Au and CDs were studies. Significantly, Hg atoms prevent the epitaxial accumulation of Au atoms, and plasmonic NPs with decreased sizes were in situ synthesized, corresponding to varied surface plasmonic resonance absorption performance of the CD-induced hybrids. Moreover, with the integration of sensing substrates of CD-doped hydrogels, superior response stabilities, analysis selectivity, and sensitivity of Hg2+ ions were achieved on the basis of the mercury-mediated in situ chemical reactions between trivalent Au ions and reductant CDs. Consequently, a high-performance sensing strategy with the use of Au NP-staining hydrogels (nanostaining hydrogels) was exhibited. In addition to Hg sensing, the nanostaining hydrogels facilitated by doping of emerging materials and advanced chem/biostrategies can be developed as high-performance on-site monitoring routes to various pollutant species.

20.
Langmuir ; 39(8): 3052-3061, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36787386

RESUMEN

The way of accurately regulating the growth of chiral plasmonics is of great importance for exploring the chirality information and improving its potential values. Herein, cysteine enantiomers modulate the anisotropic and epitaxial growth of gold nanoplasmonics on seeds of exfoliated MoS2 nanosheets. The heterostructural Au and MoS2 hybrids induced by enantiomeric cysteine are presented with chiroptical characteristics, dendritic morphologies, and plasmonic performances. Moreover, the synthesis, condition optimization, formation mechanism, and plasmonic properties of Au and MoS2 dendritic nanostructures are studied. The chirality characteristics are identified using the circular dichroism spectra and scanning electron microscopy. Time-resolved transmission electron microscopy and UV-vis spectra of the intermediate products captured are analyzed to confirm the formation mechanism of dendritic plasmonic nanostructures at heterostructural surfaces. The specific dendritic morphologies originate from the synergistic impacts of heterostructural MoS2 interfaces and enantiomeric cysteine-induced anisotropic manipulation. Significantly, the developed synthesis strategy of chiral nanostructures at heterostructural interfaces is highly promising in promoting the understanding of the plasmonic function and crucial chirality bioinformation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA