RESUMEN
BACKGROUND AND OBJECTIVE: Recently, computational fluid dynamics enables the non-invasive calculation of fractional flow reserve (FFR) based on 3D coronary model, but it is time-consuming. Currently, machine learning technique has emerged as an efficient and reliable approach for prediction, which allows saving a lot of analysis time. This study aimed at developing a simplified FFR prediction model for rapid and accurate assessment of functional significance of stenosis. METHODS: A reduced-order lumped parameter model (LPM) of coronary system and cardiovascular system was constructed for rapidly simulating coronary flow, in which a machine learning model was embedded for accurately predicting stenosis flow resistance at a given flow from anatomical features of stenosis. Importantly, the LPM was personalized in both structures and parameters according to coronary geometries from computed tomography angiography and physiological measurements such as blood pressure and cardiac output for personalized simulations of coronary pressure and flow. Coronary lesions with invasive FFR ≤ 0.80 were defined as hemodynamically significant. RESULTS: A total of 91 patients (93 lesions) who underwent invasive FFR were involved in FFR derived from machine learning (FFRML) calculation. Of the 93 lesions, 27 lesions (29.0%) showed lesion-specific ischemia. The average time of FFRML simulation was about 10 min. On a per-vessel basis, the FFRML and FFR were significantly correlated (r = 0.86, p < 0.001). The diagnostic accuracy, sensitivity, specificity, positive predictive value and negative predictive value were 91.4%, 92.6%, 90.9%, 80.6% and 96.8%, respectively. The area under the receiver-operating characteristic curve of FFRML was 0.984. CONCLUSION: In this selected cohort of patients, the FFRML improves the computational efficiency and ensures the accuracy. The favorable performance of FFRML approach greatly facilitates its potential application in detecting hemodynamically significant coronary stenosis in future routine clinical practice.
Asunto(s)
Reserva del Flujo Fraccional Miocárdico , Humanos , Constricción Patológica , Presión Sanguínea , Angiografía por Tomografía Computarizada , Aprendizaje AutomáticoRESUMEN
BACKGROUND AND OBJECTIVE: The functional assessment of the severity of coronary stenosis from coronary computed tomography angiography (CCTA)-derived fractional flow reserve (FFR) has recently attracted interest. However, existing algorithms run at high computational cost. Therefore, this study proposes a fast calculation method of FFR for the diagnosis of ischemia-causing coronary stenosis. METHODS: We combined CCTA and machine learning to develop a simplified single-vessel coronary model for rapid calculation of FFR. First, a zero-dimensional model of single-vessel coronary was established based on CCTA, and microcirculation resistance was determined through the relationship between coronary pressure and flow. In addition, a coronary stenosis model based on machine learning was introduced to determine stenosis resistance. Computational FFR (cFFR) was then obtained by combining the zero-dimensional model and the stenosis model with inlet boundary conditions for resting (cFFRr) and hyperemic (cFFRh) aortic pressure, respectively. We retrospectively analyzed 75 patients who underwent clinically invasive FFR (iFFR), and verified the model accuracy by comparison of cFFR with iFFR. RESULTS: The average computing time of cFFR was less than 2 s. The correlations between cFFRr and cFFRh with iFFR were r = 0.89 (p < 0.001) and r = 0.90 (p < 0.001), respectively. Diagnostic accuracy, sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, negative likelihood ratio for cFFRr and cFFRh were 90.7%, 95.0%, 89.1%, 76.0%, 98.0%, 8.7, 0.1 and 92.0%, 95.0%, 90.9%, 79.2%, 98.0%, 10.5, 0.1, respectively. CONCLUSIONS: The proposed model enables rapid prediction of cFFR and exhibits high diagnostic performance in selected patient cohorts. The model thus provides an accurate and time-efficient computational tool to detect ischemia-causing stenosis and assist with clinical decision-making.