Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Genet ; 57: 435-459, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37722687

RESUMEN

Programmed cell death (self-induced) is intrinsic to all cellular life forms, including unicellular organisms. However, cell death research has focused on animal models to understand cancer, degenerative disorders, and developmental processes. Recently delineated suicidal death mechanisms in bacteria and fungi have revealed ancient origins of animal cell death that are intertwined with immune mechanisms, allaying earlier doubts that self-inflicted cell death pathways exist in microorganisms. Approximately 20 mammalian death pathways have been partially characterized over the last 35 years. By contrast, more than 100 death mechanisms have been identified in bacteria and a few fungi in recent years. However, cell death is nearly unstudied in most human pathogenic microbes that cause major public health burdens. Here, we consider how the current understanding of programmed cell death arose through animal studies and how recently uncovered microbial cell death mechanisms in fungi and bacteria resemble and differ from mechanisms of mammalian cell death.


Asunto(s)
Apoptosis , Hongos , Animales , Humanos , Apoptosis/genética , Hongos/genética , Hongos/metabolismo , Bacterias , Mamíferos
2.
Cell ; 152(3): 383-4, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23374333

RESUMEN

Self-interacting BAX proteins permeabilize outer mitochondrial membranes to trigger apoptotic cell death. Czabotar et al. present two revealing structures of BAX dimers: one dimer has an activator BH3 helix bound into its canonical cleft, and the other dimer exposes a planar hydrophobic face potentially critical for membrane interactions.

3.
Mol Cell ; 75(6): 1087-1089, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31539505

RESUMEN

The role of hormones in triggering cell death has been controversial. In this issue of Molecular Cell, Li et al. (2019) have defined a molecular pathway where an unexpected estrogen receptor, phosphodiesterase 3A, allows its partner Schlafen-12 to inhibit survival pathways, ultimately leading to apoptosis.


Asunto(s)
Apoptosis , Estrógenos , Receptores de Estrógenos
4.
Proc Natl Acad Sci U S A ; 120(2): e2217111120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36603033

RESUMEN

A pet cockatoo was the suspected source of Cryptococcus neoformans recovered from an immunocompromised patient with cryptococcosis based on molecular analyses available in 2000. Here, we report whole genome sequence analysis of the clinical and cockatoo strains. Both are closely related MATα strains belonging to the VNII lineage, confirming that the human infection likely originated from pet bird exposure. The two strains differ by 61 single nucleotide polymorphisms, including eight nonsynonymous changes involving seven genes. To ascertain whether changes in these genes are selected for during mammalian infection, we passaged the cockatoo strain in mice. Remarkably, isolates obtained from mouse tissue possess a frameshift mutation in one of the seven genes altered in the human sample (LQVO5_000317), a gene predicted to encode an SWI-SNF chromatin-remodeling complex protein. In addition, both cockatoo and patient strains as well as mouse-passaged isolates obtained from brain tissue had a premature stop codon in a homologue of ZFC3 (LQVO5_004463), a predicted single-zinc finger containing protein, which is associated with larger capsules when deleted and reverted to a full-length protein in the mouse-passaged isolates obtained from lung tissue. The patient strain and mouse-passaged isolates show variability in virulence factors, with differences in capsule size, melanization, rates of nonlytic expulsion from macrophages, and amoeba predation resistance. Our results establish that environmental strains undergo genomic and phenotypic changes during mammalian passage, suggesting that animal virulence can be a mechanism for genetic change and that the genomes of clinical isolates may provide a readout of mutations acquired during infection.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Humanos , Animales , Ratones , Cryptococcus neoformans/genética , Virulencia/genética , Factores de Virulencia/genética , Evolución Biológica , Mamíferos
5.
Cell ; 141(3): 402-4, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20434981

RESUMEN

The mechanism by which the apoptosome activates caspases during apoptosis has been controversial. Qi et al. (2010) now present a crystal structure of a funnel-shaped octameric apoptosome complex from the nematode Caenorhabditis elegans that challenges currently held assumptions about the human apoptosome structure.

6.
Mol Cell ; 52(4): 485-94, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24211263

RESUMEN

Loss or duplication of chromosome segments can lead to further genomic changes associated with cancer. However, it is not known whether only a select subset of genes is responsible for driving further changes. To determine whether perturbation of any given gene in a genome suffices to drive subsequent genetic changes, we analyzed the yeast knockout collection for secondary mutations of functional consequence. Unlike wild-type, most gene knockout strains were found to have one additional mutant gene affecting nutrient responses and/or heat-stress-induced cell death. Moreover, independent knockouts of the same gene often evolved mutations in the same secondary gene. Genome sequencing identified acquired mutations in several human tumor suppressor homologs. Thus, mutation of any single gene may cause a genomic imbalance, with consequences sufficient to drive adaptive genetic changes. This complicates genetic analyses but is a logical consequence of losing a functional unit originally acquired under pressure during evolution.


Asunto(s)
Genoma Fúngico , Saccharomyces cerevisiae/genética , Adaptación Biológica/genética , Secuencia de Bases , Evolución Molecular , Eliminación de Gen , Técnicas de Inactivación de Genes , Heterogeneidad Genética , Inestabilidad Genómica , Humanos , Mutación , Neoplasias/genética , Fenotipo , Análisis de Secuencia de ADN , Estrés Fisiológico/genética
7.
PLoS Genet ; 14(8): e1007592, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30142151

RESUMEN

Yeast WHI2 was originally identified in a genetic screen for regulators of cell cycle arrest and later suggested to function in general stress responses. However, the function of Whi2 is unknown. Whi2 has predicted structure and sequence similarity to human KCTD family proteins, which have been implicated in several cancers and are causally associated with neurological disorders but are largely uncharacterized. The identification of conserved functions between these yeast and human proteins may provide insight into disease mechanisms. We report that yeast WHI2 is a new negative regulator of TORC1 required to suppress TORC1 activity and cell growth specifically in response to low amino acids. In contrast to current opinion, WHI2 is dispensable for TORC1 inhibition in low glucose. The only widely conserved mechanism that actively suppresses both yeast and mammalian TORC1 specifically in response to low amino acids is the conserved SEACIT/GATOR1 complex that inactivates the TORC1-activating RAG-like GTPases. Unexpectedly, Whi2 acts independently and simultaneously with these established GATOR1-like Npr2-Npr3-Iml1 and RAG-like Gtr1-Gtr2 complexes, and also acts independently of the PKA pathway. Instead, Whi2 inhibits TORC1 activity through its binding partners, protein phosphatases Psr1 and Psr2, which were previously thought to only regulate amino acid levels downstream of TORC1. Furthermore, the ability to suppress TORC1 is conserved in the SKP1/BTB/POZ domain-containing, Whi2-like human protein KCTD11 but not other KCTD family members tested.


Asunto(s)
Aminoácidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Animales , Células COS , Chlorocebus aethiops , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
8.
Trends Biochem Sci ; 40(12): 736-748, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26541461

RESUMEN

B cell lymphoma-2 (BCL-2)-related proteins control programmed cell death through a complex network of protein-protein interactions mediated by BCL-2 homology 3 (BH3) domains. Given their roles as dynamic linchpins, the discovery of novel BH3-containing proteins has attracted considerable attention. However, without a clearly defined BH3 signature sequence the BCL-2 family has expanded to include a nebulous group of nonhomologous BH3-only proteins, now justified by an intriguing twist. We present evidence that BH3s from both ordered and disordered proteins represent a new class of short linear motifs (SLiMs) or molecular recognition features (MoRFs) and are diverse in their evolutionary histories. The implied corollaries are that BH3s have a broad phylogenetic distribution and could potentially bind to non-BCL-2-like structural domains with distinct functions.


Asunto(s)
Proteína Proapoptótica que Interacciona Mediante Dominios BH3/química , Secuencias de Aminoácidos , Animales , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Humanos , Modelos Moleculares , Conformación Proteica
9.
Curr Genet ; 65(3): 701-709, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30701278

RESUMEN

A critical function of human, yeast, and bacterial cells is the ability to sense and respond to available nutrients such as glucose and amino acids. Cells must also detect declining nutrient levels to adequately prepare for starvation conditions by inhibiting cell growth and activating autophagy. The evolutionarily conserved protein complex TORC1 regulates these cellular responses to nutrients, and in particular to amino acid availability. Recently, we found that yeast Whi2 (Saccharomyces cerevisiae) and a human counterpart, KCTD11, that shares a conserved BTB structural domain, are required to suppress TORC1 activity under low amino acid conditions. Using yeast, the mechanisms were more readily dissected. Unexpectedly, Whi2 suppresses TORC1 activity independently of the well-known SEACIT-GTR pathway, analogous to the GATOR1-RAG pathway in mammals. Instead, Whi2 requires the plasma membrane-associated phosphatases Psr1 and Psr2, which were known to bind Whi2, although their role was unknown. Yeast WHI2 was previously reported to be involved in regulating several fundamental cellular processes including cell cycle arrest, general stress responses, the Ras-cAMP-PKA pathway, autophagy, and mitophagy, and to be frequently mutated in the yeast knockout collections and in genome evolution studies. Most of these observations are likely explained by the ability of Whi2 to inhibit TORC1. Thus, understanding the function of yeast Whi2 will provide deeper insights into the disease-related KCTD family proteins and the pathogenesis of plant and human fungal infections.


Asunto(s)
Aminoácidos/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
Ann Neurol ; 84(5): 766-780, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30295347

RESUMEN

OBJECTIVE: Several small case series identified KCTD7 mutations in patients with a rare autosomal recessive disorder designated progressive myoclonic epilepsy (EPM3) and neuronal ceroid lipofuscinosis (CLN14). Despite the name KCTD (potassium channel tetramerization domain), KCTD protein family members lack predicted channel domains. We sought to translate insight gained from yeast studies to uncover disease mechanisms associated with deficiencies in KCTD7 of unknown function. METHODS: Novel KCTD7 variants in new and published patients were assessed for disease causality using genetic analyses, cell-based functional assays of patient fibroblasts and knockout yeast, and electron microscopy of patient samples. RESULTS: Patients with KCTD7 mutations can exhibit movement disorders or developmental regression before seizure onset, and are distinguished from similar disorders by an earlier age of onset. Although most published KCTD7 patient variants were excluded from a genome sequence database of normal human variations, most newly identified patient variants are present in this database, potentially challenging disease causality. However, genetic analysis and impaired biochemical interactions with cullin 3 support a causal role for patient KCTD7 variants, suggesting deleterious alleles of KCTD7 and other rare disease variants may be underestimated. Both patient-derived fibroblasts and yeast lacking Whi2 with sequence similarity to KCTD7 have impaired autophagy consistent with brain pathology. INTERPRETATION: Biallelic KCTD7 mutations define a neurodegenerative disorder with lipofuscin and lipid droplet accumulation but without defining features of neuronal ceroid lipofuscinosis or lysosomal storage disorders. KCTD7 deficiency appears to cause an underlying autophagy-lysosome defect conserved in yeast, thereby assigning a biological role for KCTD7. Ann Neurol 2018;84:774-788.


Asunto(s)
Autofagia/genética , Lisosomas/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Canales de Potasio/deficiencia , Edad de Inicio , Preescolar , Femenino , Humanos , Lactante , Lisosomas/patología , Masculino , Mutación , Linaje , Canales de Potasio/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
FEMS Yeast Res ; 18(8)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30165592

RESUMEN

Cells are exquisitely tuned to environmental ques. Amino acid availability is rapidly sensed, allowing cells to adjust molecular processes and implement short or long-term metabolic shifts accordingly. How levels of most individual amino acids may be sensed and subsequently signaled to inform cells of their nutrient status is largely unknown. We made the unexpected observation that small changes in the levels of specific amino acids can have a profound effect on yeast cell growth, leading to the identification of yeast Whi2 as a negative regulator of cell growth in low amino acids. Although Whi2 was originally thought to be fungi-specific, Whi2 appears to share a conserved structural domain found in a family of 25 largely uncharacterized human genes encoding the KCTD (potassium channel tetramerization domain) protein family. Insights gained from yeast Whi2 are likely to be revealing about human KCTDs, many of which have been implicated or demonstrated to cause disease when mutated. Here we report new evidence that Whi2 responds to specific amino acids in the medium, particularly low leucine levels. We also discuss the known pathways of amino acid signaling and potential points of regulation by Whi2 in nutrient signaling in yeast and mammals.


Asunto(s)
Adaptación Fisiológica , Regulación Fúngica de la Expresión Génica , Leucina/metabolismo , Viabilidad Microbiana , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética
13.
Semin Cell Dev Biol ; 39: 3-11, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25725369

RESUMEN

Inappropriate survival of abnormal cells underlies tumorigenesis. Most discoveries about programmed cell death have come from studying model organisms. Revisiting the experimental contexts that inspired these discoveries helps explain confounding biases that inevitably accompany such discoveries. Amending early biases has added a newcomer to the collection of cell death models. Analysis of gene-dependent death in yeast revealed the surprising influence of single gene mutations on subsequent eukaryotic genome evolution. Similar events may influence the selection for mutations during early tumorigenesis. The possibility that any early random mutation might drive the selection for a cancer driver mutation is conceivable but difficult to demonstrate. This was tested in yeast, revealing that mutation of almost any gene appears to specify the selection for a new second mutation. Some human tumors contain pairs of mutant genes homologous to co-occurring mutant genes in yeast. Here we consider how yeast again provide novel insights into tumorigenesis.


Asunto(s)
Evolución Biológica , Muerte Celular , Neoplasias/genética , Neoplasias/patología , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Animales , Humanos , Metamorfosis Biológica , Mutación , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
14.
PLoS Biol ; 10(9): e1001399, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23049484

RESUMEN

Cell death by apoptosis is indispensable for proper development and tissue homeostasis in all multicellular organisms, and its deregulation plays a key role in cancer and many other diseases. A crucial event in apoptosis is the formation of protein-permeable pores in the outer mitochondrial membrane that release cytochrome c and other apoptosis-promoting factors into the cytosol. Research efforts over the past two decades have established that apoptotic pores require BCL-2 family proteins, with the proapoptotic BAX-type proteins being direct effectors of pore formation. Accumulating evidence indicates that other cellular components also cooperate with BCL-2 family members to regulate the apoptotic pore. Despite this knowledge, the molecular pathway leading to apoptotic pore formation at the outer mitochondrial membrane and the precise nature of this outer membrane pore remain enigmatic. In this issue of PLOS Biology, Kushnareva and colleagues describe a novel kinetic analysis of the dynamics of BAX-dependent apoptotic pore formation recapitulated in native mitochondrial outer membranes. Their study reveals the existence of a hitherto unknown outer mitochondrial membrane factor that is critical for BAX-mediated apoptotic pore formation, and challenges the currently popular view that the apoptotic pore is a purely proteinaceous multimeric assembly of BAX proteins. It also supports the notion that membrane remodeling events are implicated in the formation of a lipid-containing apoptotic pore.


Asunto(s)
Apoptosis , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Animales , Humanos , Membranas Mitocondriales/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Modelos Biológicos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
16.
mBio ; 15(4): e0307823, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38511961

RESUMEN

Cryptococcus neoformans causes lethal meningitis and accounts for approximately 10%-15% of AIDS-associated deaths worldwide. There are major gaps in our understanding of how this fungus invades the mammalian brain. To investigate the dynamics of C. neoformans tissue invasion, we mapped fungal localization and host cell interactions in infected brain, lung, and upper airways using mouse models of systemic and airway infection. To enable this, we developed an in situ imaging pipeline capable of measuring large volumes of tissue while preserving anatomical and cellular information by combining thick tissue sections, tissue clarification, and confocal imaging. We confirm high fungal burden in mouse upper airway after nasal inoculation. Yeast in turbinates were frequently titan cells, with faster kinetics than reported in mouse lungs. Importantly, we observed one instance of fungal cells enmeshed in lamina propria of the upper airways, suggesting penetration of airway mucosa as a possible route of tissue invasion and dissemination to the bloodstream. We extend previous literature positing bloodstream dissemination of C. neoformans, by finding viable fungi in the bloodstream of mice a few days after intranasal infection. As early as 24 h post systemic infection, the majority of C. neoformans cells traversed the blood-brain barrier, and were engulfed or in close proximity to microglia. Our work presents a new method for investigating microbial invasion, establishes that C. neoformans can breach multiple tissue barriers within the first days of infection, and demonstrates microglia as the first cells responding to C. neoformans invasion of the brain.IMPORTANCECryptococcal meningitis causes 10%-15% of AIDS-associated deaths globally. Still, brain-specific immunity to cryptococci is a conundrum. By employing innovative imaging, this study reveals what occurs during the first days of infection in brain and in airways. We found that titan cells predominate in upper airways and that cryptococci breach the upper airway mucosa, which implies that, at least in mice, the upper airways are a site for fungal dissemination. This would signify that mucosal immunity of the upper airway needs to be better understood. Importantly, we also show that microglia, the brain-resident macrophages, are the first responders to infection, and microglia clusters are formed surrounding cryptococci. This study opens the field to detailed molecular investigations on airway immune response, how fungus traverses the blood-brain barrier, how microglia respond to infection, and ultimately how microglia monitor the blood-brain barrier to preserve brain function.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Criptococosis , Cryptococcus neoformans , Meningitis , Ratones , Animales , Microglía , Criptococosis/microbiología , Encéfalo/microbiología , Mamíferos
17.
bioRxiv ; 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38014111

RESUMEN

The fungus Cryptococcus neoformans causes lethal meningitis in humans with weakened immune systems and is estimated to account for 10-15% of AIDS-associated deaths worldwide. There are major gaps in our understanding of how this environmental fungus evades the immune system and invades the mammalian brain before the onset of overt symptoms. To investigate the dynamics of C. neoformans tissue invasion, we mapped early fungal localisation and host cell interactions at early times in infected brain, lung, and upper airways using mouse models of systemic and airway infection. To enable this, we developed an in situ imaging pipeline capable of measuring large volumes of tissue while preserving anatomical and cellular information by combining thick tissue sections, tissue clarification, and confocal imaging. Made possible by these techniques, we confirm high fungal burden in mouse upper airway turbinates after nasal inoculation. Surprisingly, most yeasts in turbinates were titan cells, indicating this microenvironment enables titan cell formation with faster kinetics than reported in mouse lungs. Importantly, we observed one instance of fungal cells enmeshed in lamina propria of upper airways, suggesting penetration of airway mucosa as a possible route of tissue invasion and dissemination to the bloodstream. We extend previous literature positing bloodstream dissemination of C. neoformans, via imaging C. neoformans within blood vessels of mouse lungs and finding viable fungi in the bloodstream of mice a few days after intranasal infection, suggesting that bloodstream access can occur via lung alveoli. In a model of systemic cryptococcosis, we show that as early as 24 h post infection, majority of C. neoformans cells traversed the blood-brain barrier, and are engulfed or in close proximity to microglia. Our work establishes that C. neoformans can breach multiple tissue barriers within the first days of infection. This work presents a new method for investigating cryptococcal invasion mechanisms and demonstrates microglia as the primary cells responding to C. neoformans invasion.

18.
Biochim Biophys Acta ; 1813(4): 597-607, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20950655

RESUMEN

Although mitochondria are essential organelles for long-term survival of eukaryotic cells, recent discoveries in biochemistry and genetics have advanced our understanding of the requirements for mitochondria in cell death. Much of what we understand about cell death is based on the identification of conserved cell death genes in Drosophila melanogaster and Caenorhabditis elegans. However, the role of mitochondria in cell death in these models has been much less clear. Considering the active role that mitochondria play in apoptosis in mammalian cells, the mitochondrial contribution to cell death in non-mammalian systems has been an area of active investigation. In this article, we review the current research on this topic in three non-mammalian models, C. elegans, Drosophila, and Saccharomyces cerevisiae. In addition, we discuss how non-mammalian models have provided important insight into the mechanisms of human disease as they relate to the mitochondrial pathway of cell death. The unique perspective derived from each of these model systems provides a more complete understanding of mitochondria in programmed cell death. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.


Asunto(s)
Apoptosis , Caenorhabditis elegans/metabolismo , Drosophila melanogaster/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Saccharomyces cerevisiae/metabolismo , Animales , Humanos
19.
Commun Biol ; 5(1): 1364, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36510005

RESUMEN

A key component of the insect immune response is melanin production, including within nodules, or aggregations of immune cells surrounding microbes. Melanization produces oxidative and toxic intermediates that limit microbial infections. However, a direct fungicidal role of melanin during infection has not been demonstrated. We previously reported that the fungus Cryptococcus neoformans is encapsulated with melanin within nodules of Galleria mellonella hosts. Here we developed techniques to study melanin's role during C. neoformans infection in G. mellonella. We provided evidence that in vivo melanin-encapsulation was fungicidal. To further study immune melanization, we applied tissue-clearing techniques to visualize melanized nodules in situ throughout the larvae. Further, we developed a time-lapse microscopy protocol to visualize the melanization kinetics in extracted hemolymph following fungal exposure. Using this technique, we found that cryptococcal melanin and laccase enhance immune melanization. We extended this approach to study the fungal pathogens Candida albicans and Candida auris. We find that the yeast morphologies of these fungi elicited robust melanization responses, while hyphal and pseudohyphal morphologies were melanin-evasive. Approximately 23% of melanin-encapsulated C. albicans yeast can survive and breakthrough the encapsulation. Overall, our results provide direct evidence that immune melanization functions as a direct antifungal mechanism in G. mellonella.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Fungicidas Industriales , Mariposas Nocturnas , Animales , Criptococosis/microbiología , Candida albicans , Hemolinfa , Melaninas
20.
Cell Rep ; 39(2): 110647, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35417721

RESUMEN

Unicellular eukaryotes have been suggested as undergoing self-inflicted destruction. However, molecular details are sparse compared with the mechanisms of programmed/regulated cell death known for human cells and animal models. Here, we report a molecular cell death pathway in Saccharomyces cerevisiae leading to vacuole/lysosome membrane permeabilization. Following a transient cell death stimulus, yeast cells die slowly over several hours, consistent with an ongoing molecular dying process. A genome-wide screen for death-promoting factors identified all subunits of the AP-3 complex, a vesicle trafficking adapter known to transport and install newly synthesized proteins on the vacuole/lysosome membrane. To promote cell death, AP-3 requires its Arf1-GTPase-dependent vesicle trafficking function and the kinase Yck3, which is selectively transported to the vacuole membrane by AP-3. Video microscopy revealed a sequence of events where vacuole permeability precedes the loss of plasma membrane integrity. AP-3-dependent death appears to be conserved in the human pathogenic yeast Cryptococcus neoformans.


Asunto(s)
Muerte Celular , Proteínas de Unión al ADN , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factores de Transcripción , Quinasa de la Caseína I/metabolismo , Membrana Celular/metabolismo , Lisosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA