Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
PLoS Pathog ; 18(3): e1010393, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35294495

RESUMEN

Arthropod endosymbiont Wolbachia pipientis is part of a global biocontrol strategy to reduce the replication of mosquito-borne RNA viruses such as alphaviruses. We previously demonstrated the importance of a host cytosine methyltransferase, DNMT2, in Drosophila and viral RNA as a cellular target during pathogen-blocking. Here we report a role for DNMT2 in Wolbachia-induced alphavirus inhibition in Aedes species. Expression of DNMT2 in mosquito tissues, including the salivary glands, is elevated upon virus infection. Notably, this is suppressed in Wolbachia-colonized animals, coincident with reduced virus replication and decreased infectivity of progeny virus. Ectopic expression of DNMT2 in cultured Aedes cells is proviral, increasing progeny virus infectivity, and this effect of DNMT2 on virus replication and infectivity is dependent on its methyltransferase activity. Finally, examining the effects of Wolbachia on modifications of viral RNA by LC-MS show a decrease in the amount of 5-methylcytosine modification consistent with the down-regulation of DNMT2 in Wolbachia colonized mosquito cells and animals. Collectively, our findings support the conclusion that disruption of 5-methylcytosine modification of viral RNA is a vital mechanism operative in pathogen blocking. These data also emphasize the essential role of epitranscriptomic modifications in regulating fundamental alphavirus replication and transmission processes.


Asunto(s)
Aedes , Alphavirus , Artrópodos , Flavivirus , Wolbachia , 5-Metilcitosina/metabolismo , Alphavirus/genética , Animales , Artrópodos/genética , Flavivirus/genética , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Replicación Viral , Wolbachia/fisiología
2.
PLoS Pathog ; 16(6): e1008513, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32555677

RESUMEN

The ability of the endosymbiont Wolbachia pipientis to restrict RNA viruses is presently being leveraged to curb global transmission of arbovirus-induced diseases. Past studies have shown that virus replication is limited early in arthropod cells colonized by the bacterium, although it is unclear if this phenomenon is replicated in mosquito cells that first encounter viruses obtained through a vertebrate blood meal. Furthermore, these cellular events neither explain how Wolbachia limits dissemination of viruses between mosquito tissues, nor how it prevents transmission of infectious viruses from mosquitoes to vertebrate host. In this study, we try to address these issues using an array of mosquito cell culture models, with an additional goal being to identify a common viral target for pathogen blocking. Our results establish the viral RNA as a cellular target for Wolbachia-mediated inhibition, with the incoming viral RNA experiencing rapid turnover following internalization in cells. This early block in replication in mosquito cells initially infected by the virus thus consequently reduces the production of progeny viruses from these same cells. However, this is not the only contributor to pathogen blocking. We show that the presence of Wolbachia reduces the per-particle infectivity of progeny viruses on naïve mosquito and vertebrate cells, consequently limiting virus dissemination and transmission, respectively. Importantly, we demonstrate that this aspect of pathogen blocking is independent of any particular Wolbachia-host association and affects viruses belonging to Togaviridae and Flaviviridae families of RNA viruses. Finally, consistent with the idea of the viral RNA as a target, we find that the encapsidated virion RNA is less infectious for viruses produced from Wolbachia-colonized cells. Collectively, our findings present a common mechanism of pathogen blocking in mosquitoes that establish a link between virus inhibition in the cell to virus dissemination and transmission.


Asunto(s)
Flavivirus/metabolismo , ARN Viral/metabolismo , Togaviridae/metabolismo , Wolbachia/metabolismo , Aedes , Animales , Línea Celular , Chlorocebus aethiops , Cricetinae , Drosophila melanogaster , Flavivirus/genética , ARN Viral/genética , Togaviridae/genética , Células Vero , Wolbachia/genética
3.
BMC Genomics ; 21(1): 227, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32171258

RESUMEN

BACKGROUND: Halyomorpha halys (Stål), the brown marmorated stink bug, is a highly invasive insect species due in part to its exceptionally high levels of polyphagy. This species is also a nuisance due to overwintering in human-made structures. It has caused significant agricultural losses in recent years along the Atlantic seaboard of North America and in continental Europe. Genomic resources will assist with determining the molecular basis for this species' feeding and habitat traits, defining potential targets for pest management strategies. RESULTS: Analysis of the 1.15-Gb draft genome assembly has identified a wide variety of genetic elements underpinning the biological characteristics of this formidable pest species, encompassing the roles of sensory functions, digestion, immunity, detoxification and development, all of which likely support H. halys' capacity for invasiveness. Many of the genes identified herein have potential for biomolecular pesticide applications. CONCLUSIONS: Availability of the H. halys genome sequence will be useful for the development of environmentally friendly biomolecular pesticides to be applied in concert with more traditional, synthetic chemical-based controls.


Asunto(s)
Heterópteros/genética , Proteínas de Insectos/genética , Resistencia a los Insecticidas , Secuenciación Completa del Genoma/métodos , Animales , Ecosistema , Transferencia de Gen Horizontal , Tamaño del Genoma , Heterópteros/clasificación , Especies Introducidas , Filogenia
4.
J Virol ; 92(7)2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29321325

RESUMEN

Arthropod-borne viruses, such as the members of the genus Alphavirus, are a significant concern to global public health. As obligate intracellular pathogens, RNA viruses must interact with the host cell machinery to establish and complete their life cycles. Despite considerable efforts to define the host-pathogen interactions essential for alphaviral replication, an unbiased and inclusive assessment of alphaviral RNA-protein interactions has not been undertaken. Moreover, the biological and molecular importance of these interactions, in the full context of their molecular function as RNA-binding proteins, has not been fully realized. The data presented here introduce a robust viral RNA-protein discovery method to elucidate the Sindbis virus (SINV) RNA-protein host interface. Cross-link-assisted mRNP purification (CLAMP) assessment revealed an extensive array of host-pathogen interactions centered on the viral RNAs (vRNAs). After prioritization of the host proteins associated with the vRNAs, we identified the site of protein-vRNA interaction by a UV cross-linking and immunoprecipitation sequencing (CLIP-seq) approach and assessed the consequences of the RNA-protein binding event of hnRNP K, hnRNP I, and hnRNP M in regard to viral infection. Here, we demonstrate that mutation of the prioritized hnRNP-vRNA interaction sites effectively disrupts hnRNP-vRNA interaction. Correlating with disrupted hnRNP-vRNA binding, SINV growth kinetics were reduced relative to wild-type parental viral infections in vertebrate and invertebrate tissue culture models of infection. The molecular mechanism leading to reduced viral growth kinetics was found to be dysregulated structural-gene expression. Collectively, this study further defines the scope and importance of the alphavirus host-pathogen vRNA-protein interactions.IMPORTANCE Members of the genus Alphavirus are widely recognized for their potential to cause severe disease. Despite this recognition, there are no antiviral therapeutics, or safe and effective vaccines, currently available to treat alphaviral infection. Alphaviruses utilize the host cell machinery to efficiently establish and complete their life cycle. However, the extent and importance of host-pathogen RNA-protein interactions are woefully undercharacterized. The efforts detailed in this study fill this critical gap, and the significance of this research is 3-fold. First, the data presented here fundamentally expand the scope and understanding of alphavirus host-pathogen interactions. Second, this study identifies the sites of interaction for several prioritized interactions and defines the contribution of the RNA-protein interaction at the molecular level. Finally, these studies build a strategy by which the importance of the given host-pathogen interactions may be assessed in the future, using a mouse model of infection.


Asunto(s)
Infecciones por Alphavirus/virología , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Interacciones Huésped-Patógeno , ARN Viral/metabolismo , Virus Sindbis/patogenicidad , Replicación Viral , Infecciones por Alphavirus/metabolismo , Células Cultivadas , Ribonucleoproteínas Nucleares Heterogéneas/genética , Humanos , ARN Viral/genética , Virus Sindbis/genética , Ensamble de Virus
5.
PLoS Pathog ; 13(6): e1006427, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28617844

RESUMEN

Wolbachia pipientis is an intracellular endosymbiont known to confer host resistance against RNA viruses in insects. However, the causal mechanism underlying this antiviral defense remains poorly understood. To this end, we have established a robust arthropod model system to study the tripartite interaction involving Sindbis virus and Wolbachia strain wMel within its native host, Drosophila melanogaster. By leveraging the power of Drosophila genetics and a parallel, highly tractable D. melanogaster derived JW18 cell culture system, we determined that in addition to reducing infectious virus production, Wolbachia negatively influences Sindbis virus particle infectivity. This is further accompanied by reductions in viral transcript and protein levels. Interestingly, unchanged ratio of proteins to viral RNA copies suggest that Wolbachia likely does not influence the translational efficiency of viral transcripts. Additionally, expression analyses of candidate host genes revealed D. melanogaster methyltransferase gene Mt2 as an induced host factor in the presence of Wolbachia. Further characterization of viral resistance in Wolbachia-infected flies lacking functional Mt2 revealed partial recovery of virus titer relative to wild-type, accompanied by complete restoration of viral RNA and protein levels, suggesting that Mt2 acts at the stage of viral genome replication. Finally, knockdown of Mt2 in Wolbachia uninfected JW18 cells resulted in increased virus infectivity, thus demonstrating its previously unknown role as an antiviral factor against Sindbis virus. In conclusion, our findings provide evidence supporting the role of Wolbachia-modulated host factors towards RNA virus resistance in arthropods, alongside establishing Mt2's novel antiviral function against Sindbis virus in D. melanogaster.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/virología , Virus Sindbis/fisiología , Wolbachia/fisiología , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/microbiología , Drosophila melanogaster/fisiología , Interacciones Huésped-Patógeno , Simbiosis , Replicación Viral
6.
PLoS Pathog ; 13(6): e1006473, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28662211

RESUMEN

Alphaviruses are arthropod-borne viruses that represent a significant threat to public health at a global level. While the formation of alphaviral nucleocapsid cores, consisting of cargo nucleic acid and the viral capsid protein, is an essential molecular process of infection, the precise interactions between the two partners are ill-defined. A CLIP-seq approach was used to screen for candidate sites of interaction between the viral Capsid protein and genomic RNA of Sindbis virus (SINV), a model alphavirus. The data presented in this report indicates that the SINV capsid protein binds to specific viral RNA sequences in the cytoplasm of infected cells, but its interaction with genomic RNA in mature extracellular viral particles is largely non-specific in terms of nucleotide sequence. Mutational analyses of the cytoplasmic viral RNA-capsid interaction sites revealed a functional role for capsid binding early in infection. Interaction site mutants exhibited decreased viral growth kinetics; however, this defect was not a function of decreased particle production. Rather mutation of the cytoplasmic capsid-RNA interaction sites negatively affected the functional capacity of the incoming viral genomic RNAs leading to decreased infectivity. Furthermore, cytoplasmic capsid interaction site mutants are attenuated in a murine model of neurotropic alphavirus infection. Collectively, the findings of this study indicate that the identified cytoplasmic interactions of the viral capsid protein and genomic RNA, while not essential for particle formation, are necessary for genomic RNA function early during infection. This previously unappreciated role of capsid protein during the alphaviral replication cycle also constitutes a novel virulence determinant.


Asunto(s)
Proteínas de la Cápside/metabolismo , ARN Viral/metabolismo , Virus Sindbis/metabolismo , Animales , Cápside/metabolismo , Citoplasma/metabolismo , Genoma Viral/genética , Virus Sindbis/genética , Virus Sindbis/patogenicidad , Proteínas del Envoltorio Viral/metabolismo , Virión/metabolismo , Virulencia/fisiología , Ensamble de Virus/fisiología
7.
J Gen Virol ; 96(9): 2483-2500, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26219641

RESUMEN

The members of the genus Alphavirus are positive-sense RNA viruses, which are predominantly transmitted to vertebrates by a mosquito vector. Alphavirus disease in humans can be severely debilitating, and depending on the particular viral species, infection may result in encephalitis and possibly death. In recent years, alphaviruses have received significant attention from public health authorities as a consequence of the dramatic emergence of chikungunya virus in the Indian Ocean islands and the Caribbean. Currently, no safe, approved or effective vaccine or antiviral intervention exists for human alphavirus infection. The molecular biology of alphavirus RNA synthesis has been well studied in a few species of the genus and represents a general target for antiviral drug development. This review describes what is currently understood about the regulation of alphavirus RNA synthesis, the roles of the viral non-structural proteins in this process and the functions of cis-acting RNA elements in replication, and points to open questions within the field.


Asunto(s)
Infecciones por Alphavirus/genética , Alphavirus/genética , Alphavirus/metabolismo , ARN Viral/genética , Proteínas no Estructurales Virales/metabolismo , Infecciones por Alphavirus/metabolismo , Animales , Humanos , ARN Viral/metabolismo , Proteínas no Estructurales Virales/genética
8.
J Virol ; 87(8): 4272-80, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23365449

RESUMEN

Alphaviruses establish a persistent infection in arthropod vectors which is essential for the effective transmission of the virus to vertebrate hosts. The development of persistence in insects is not well understood, although it is thought to involve the innate immune response. Using a transgenic fly system expressing a self-replicating viral RNA genome analog, we have previously demonstrated antiviral roles of the Drosophila Imd (immune deficiency) and Jak-STAT innate immunity pathways in response to alphavirus replication. In the present study, comparative microarray analysis of flies harboring an alphavirus replicon and control green fluorescent protein flies identified 95 SINrep-sensitive genes. Furthermore, a subset of these genes is regulated by Rel or STAT transcription factors of the Imd and Jak-STAT pathways, respectively. We identified two antimicrobial peptide genes, attC and dptB, which are SINrep sensitive and regulated by STAT and Rel, respectively. SINrep flies heterozygous for attC had an increased viral RNA level, while knocking down dptB in SINrep flies resulted in impaired development. When injected with whole virus, the double-stranded RNA knockdowns of either attC or dptB showed a significant increase in virus titers. Our data demonstrate an antiviral response involving the Imd and Jak-STAT mediated expression of dptB and attC.


Asunto(s)
Alphavirus/inmunología , Péptidos Catiónicos Antimicrobianos/inmunología , Proteínas de Drosophila/inmunología , Drosophila/virología , Animales , Péptidos Catiónicos Antimicrobianos/genética , Drosophila/inmunología , Proteínas de Drosophila/genética , Perfilación de la Expresión Génica , Análisis por Micromatrices
9.
J Virol ; 87(22): 12216-26, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24006438

RESUMEN

The genus Alphavirus consists of a group of enveloped, single-stranded RNA viruses, many of which are transmitted by arthropods to a wide range of vertebrate host species. Here we report that Sindbis virus (SINV) produced from a representative mammalian cell line consists of at least two unique particle subpopulations, separable on the basis of virion density. In contrast, mosquito-derived SINV consists of a homogeneous population of particles. Our findings indicate that the denser particle subpopulation, SINV(Heavy), is more infectious on a per-particle basis than SINV(Light). SINV produced in mosquito cell lines (SINV(C6/36)) exhibited particle-to-PFU ratios similar to those observed for SINV(Heavy). In mammalian cells, viral RNA was synthesized and accumulated more rapidly following infection with SINV(Heavy) or SINV(C6/36) than following infection with SINV(Light), due partly to enhanced translation of viral genomic RNA early in infection. Analysis of the individual particle subpopulations indicated that SINV(Heavy) and SINV(C6/36) contain host-derived factors whose presence correlates with the enhanced translation, RNA synthesis, and infectivity observed for these particles.


Asunto(s)
Infecciones por Alphavirus/transmisión , Culicidae/virología , Fibroblastos/virología , Interacciones Huésped-Patógeno , Riñón/virología , Virus Sindbis/patogenicidad , Infecciones por Alphavirus/virología , Animales , Células Cultivadas , Cricetinae , Reactivos de Enlaces Cruzados , Fibroblastos/patología , Células HEK293 , Humanos , Inmunoprecipitación , Riñón/patología , Ratones , Reacción en Cadena de la Polimerasa , ARN Viral/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Internalización del Virus , Replicación Viral
10.
Life Sci Alliance ; 7(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38030223

RESUMEN

RNA modifications, such as methylation, can be detected with Oxford Nanopore Technologies direct RNA sequencing. One commonly used tool for detecting 5-methylcytosine (m5C) modifications is Tombo, which uses an "Alternative Model" to detect putative modifications from a single sample. We examined direct RNA sequencing data from diverse taxa including viruses, bacteria, fungi, and animals. The algorithm consistently identified a m5C at the central position of a GCU motif. However, it also identified a m5C in the same motif in fully unmodified in vitro transcribed RNA, suggesting that this is a frequent false prediction. In the absence of further validation, several published predictions of m5C in a GCU context should be reconsidered, including those from human coronavirus and human cerebral organoid samples.


Asunto(s)
Algoritmos , ARN , Animales , Humanos , ARN/genética , Metilación , Análisis de Secuencia de ARN
11.
Proteomics ; 13(5): 756-65, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23303707

RESUMEN

Searching spectral libraries in MS/MS is an important new approach to improving the quality of peptide and protein identification. The idea relies on the observation that ion intensities in an MS/MS spectrum of a given peptide are generally reproducible across experiments, and thus, matching between spectra from an experiment and the spectra of previously identified peptides stored in a spectral library can lead to better peptide identification compared to the traditional database search. However, the use of libraries is greatly limited by their coverage of peptide sequences: even for well-studied organisms a large fraction of peptides have not been previously identified. To address this issue, we propose to expand spectral libraries by predicting the MS/MS spectra of peptides based on the spectra of peptides with similar sequences. We first demonstrate that the intensity patterns of dominant fragment ions between similar peptides tend to be similar. In accordance with this observation, we develop a neighbor-based approach that first selects peptides that are likely to have spectra similar to the target peptide and then combines their spectra using a weighted K-nearest neighbor method to accurately predict fragment ion intensities corresponding to the target peptide. This approach has the potential to predict spectra for every peptide in the proteome. When rigorous quality criteria are applied, we estimate that the method increases the coverage of spectral libraries available from the National Institute of Standards and Technology by 20-60%, although the values vary with peptide length and charge state. We find that the overall best search performance is achieved when spectral libraries are supplemented by the high quality predicted spectra.


Asunto(s)
Bases de Datos de Proteínas , Ensayos Analíticos de Alto Rendimiento/métodos , Péptidos/química , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Algoritmos , Animales , Humanos , Biblioteca de Péptidos
12.
J Virol ; 86(7): 3595-604, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22258238

RESUMEN

The efficient transmission of alphaviruses requires the establishment of a persistent infection in the arthropod vector; however, the nature of the virus-arthropod host interaction is not well understood. The phosphatidylinositol 3-kinase (PI3K)-Akt-TOR pathway is a signaling pathway with which viruses interact to manipulate cellular functions. The viral activation of this pathway can enhance translation and inhibit apoptosis, potentially promoting viral replication; conversely, repression can enhance cell death. Using a system to study Sindbis virus RNA replication in Drosophila melanogaster, we found that the overexpression of Akt enhanced Sindbis virus replication. In contrast, a decrease in viral replication was observed for flies hypomorphic for the Akt gene. Infection of cultured Drosophila cells led to the phosphorylation and activation of Akt. The chemical inhibition of PI3K, Akt, and TOR in mosquito cells reduced virus replication, suggesting that this pathway is proviral. Early after infection, there was an increase in the TOR-dependent phosphorylation of 4E-BP1 in mosquito cells and a consequent increase in the translation of a capped reporter mRNA. In contrast, no change in 4E-BP1 phosphorylation was seen in mammalian cells, and the level of translation of the reporter decreased following infection. Finally, we found that the increase in the phosphorylation of 4E-BP1 was stimulated by replicon RNA but not by UV-inactivated virus. Our data indicate that Sindbis virus replication complex formation in mosquito cells activates the PI3K-Akt-TOR pathway, causing the phosphorylation of 4E-BP1 and increasing the formation of eukaryotic initiation factor 4F (eIF4F), which promote cap-dependent translation. This virus-induced increase in cap-dependent translation allows the efficient translation of viral mRNA while minimizing the burden on the cell.


Asunto(s)
Aedes/virología , Drosophila melanogaster/virología , Proteínas de Insectos/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Virus Sindbis/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Replicación Viral , Aedes/enzimología , Aedes/genética , Animales , Línea Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/metabolismo , Interacciones Huésped-Patógeno , Proteínas de Insectos/genética , Fosfatidilinositol 3-Quinasa/genética , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal , Virus Sindbis/genética , Serina-Treonina Quinasas TOR/genética
13.
Viruses ; 15(8)2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37632027

RESUMEN

Arboviruses are defined by their ability to replicate in both mosquito vectors and mammalian hosts. There is good evidence that arboviruses "prime" their progeny for infection of the next host, such as via differential glycosylation of their outer glycoproteins or packaging of host ribosomal subunits. We and others have previously shown that mosquito-derived viruses more efficiently infect mammalian cells than mammalian-derived viruses. These observations are consistent with arboviruses acquiring host-specific adaptations, and we hypothesized that a virus derived from either the mammalian host or mosquito vector elicits different responses when infecting the mammalian host. Here, we perform an RNA-sequencing analysis of the transcriptional response of Human Embryonic Kidney 293 (HEK-293) cells to infection with either mosquito (Aedes albopictus, C7/10)- or mammalian (Baby Hamster Kidney, BHK-21)-derived Sindbis virus (SINV). We show that the C7/10-derived virus infection leads to a more robust transcriptional response in HEK-293s compared to infection with the BHK-derived virus. Surprisingly, despite more efficient infection, we found an increase in interferon-ß (IFN-ß) and interferon-stimulated gene (ISG) transcripts in response to the C7/10-derived virus infection versus the BHK-derived virus infection. However, translation of interferon-stimulated genes was lower in HEK-293s infected with the C7/10-derived virus, starkly contrasting with the transcriptional response. This inhibition of ISG translation is reflective of a more rapid overall shut-off of host cell translation following infection with the C7/10-derived virus. Finally, we show that the C7/10-derived virus infection of HEK-293 cells leads to elevated levels of phosphorylated eukaryotic translation elongation factor-2 (eEF2), identifying a potential mechanism leading to the more rapid shut-off of host translation. We postulate that the rapid shut-off of host translation in mammalian cells infected with the mosquito-derived virus acts to counter the IFN-ß-stimulated transcriptional response.


Asunto(s)
Aedes , Interferón Tipo I , Lactante , Animales , Cricetinae , Humanos , Virus Sindbis/genética , Células HEK293 , Interferón beta/genética , Mamíferos
14.
bioRxiv ; 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37205495

RESUMEN

RNA modifications, such as méthylation, can be detected with Oxford Nanopore Technologies direct RNA sequencing. One commonly used tool for detecting 5-methylcytosine (m5C) modifications is Tombo, which uses an "Alternative Model" to detect putative modifications from a single sample. We examined direct RNA sequencing data from diverse taxa including virus, bacteria, fungi, and animals. The algorithm consistently identified a 5-methylcytosine at the central position of a GCU motif. However, it also identified a 5-methylcytosine in the same motif in fully unmodified in vitro transcribed RNA, suggesting that this a frequent false prediction. In the absence of further validation, several published predictions of 5-methylcytosine in human coronavirus and human cerebral organoid RNA in a GCU context should be reconsidered.

15.
J Virol ; 85(7): 3449-60, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21248049

RESUMEN

The Sindbis virus RNA-dependent RNA polymerase nsP4 possesses an amino-terminal region that is unique to alphaviruses and is predicted to be disordered. To determine the importance of this region during alphavirus replication, 29 mutations were introduced, and resultant viruses were assessed for growth defects. Three small plaque mutants, D41A, G83L, and the triple mutant GPG((8-10))VAV, had defects in subgenome synthesis, minus-strand synthesis, and overall levels of viral RNA synthesis, respectively. Large plaque viruses were selected following passage in BHK-21 cells, and the genomes of these were sequenced. Suppressor mutations in nsP1, nsP2, and nsP3 that restored viral RNA synthesis were identified. An nsP2 change from M282 to L and an nsP3 change from H99 to N corrected the D41A-induced defect in subgenomic RNA synthesis. Three changes in nsP1, I351 to V, I388 to V, or the previously identified change, N374 to H (C. L. Fata, S. G. Sawicki, and D. L. Sawicki, J. Virol. 76:8641-8649, 2002), suppressed the minus-strand synthetic defect. A direct reversion back to G at position 8 reduced the RNA synthesis defect of the GPG((8-10))VAV virus. These results imply that nsP4's amino-terminal domain participates in distinct interactions with other nsPs in the context of differentially functioning RNA synthetic complexes, and flexibility in this domain is important for viral RNA synthesis. Additionally, the inability of the mutant viruses to efficiently inhibit host protein synthesis suggests a role for nsP4 in the regulation of host cell gene expression.


Asunto(s)
Virus Sindbis/fisiología , Proteínas no Estructurales Virales/metabolismo , Factores de Virulencia/metabolismo , Replicación Viral , Sustitución de Aminoácidos/genética , Animales , Línea Celular , Cricetinae , Análisis Mutacional de ADN , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Estructura Terciaria de Proteína , Virus Sindbis/crecimiento & desarrollo , Supresión Genética , Proteínas no Estructurales Virales/genética , Ensayo de Placa Viral , Factores de Virulencia/genética
16.
Viruses ; 14(12)2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36560610

RESUMEN

Alphaviruses must interact efficiently with two distinct host environments in order to replicate and transmit between vertebrate and mosquito hosts. Some host-origin-dependent differences in virus particle composition that appear to facilitate the transmission cycle are known. However, the impact of host-mediated modification of packaged viral genomic RNA on subsequent infection has not been previously investigated. Here we show that in human (HEK-293) cells, mosquito-derived Sindbis virus (SINV) replicates and spreads faster, producing a more infectious virus than its mammalian-derived counterpart. This enhanced replication is neither a result of differences in the stability nor the production of the infecting genomic RNA. Nevertheless, purified genomic RNA from mosquito-derived SINV established infection in HEK-293 cells more efficiently than that of mammalian-derived SINV, indicating that the genomic RNA itself is different between the two producing hosts and this difference is a determinant of infection. In agreement with this idea, we show that mosquito-derived SINV genomic RNA is a more active template for translation than mammalian-derived SINV genomic RNA, and we attribute this difference to host-dependent changes in modification of packaged genomic RNA as determined by LC/MS-MS. Our data support the hypothesis that among other factors, the host-dependent modification profile of the packaged vRNA is likely to play an important role in the efficiency of SINV infection and replication in mammalian cells.


Asunto(s)
Infecciones por Alphavirus , Alphavirus , Culicidae , Animales , Humanos , Células HEK293 , Alphavirus/genética , Replicación Viral , Virus Sindbis/genética , ARN Viral/genética , Genómica , Mamíferos
17.
PLoS Pathog ; 5(9): e1000582, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19763182

RESUMEN

Alphaviruses are RNA viruses transmitted between vertebrate hosts by arthropod vectors, primarily mosquitoes. How arthropods counteract alphaviruses or viruses per se is not very well understood. Drosophila melanogaster is a powerful model system for studying innate immunity against bacterial and fungal infections. In this study we report the use of a novel system to analyze replication of Sindbis virus (type species of the alphavirus genus) RNA following expression of a Sindbis virus replicon RNA from the fly genome. We demonstrate deficits in the immune deficiency (Imd) pathway enhance viral replication while mutations in the Toll pathway fail to affect replication. Similar results were observed with intrathoracic injections of whole virus and confirmed in cultured mosquito cells. These findings show that the Imd pathway mediates an antiviral response to Sindbis virus replication. To our knowledge, this is the first demonstration of an antiviral role for the Imd pathway in insects.


Asunto(s)
Proteínas de Drosophila/fisiología , Interacciones Huésped-Patógeno , ARN Viral/biosíntesis , Virus Sindbis/fisiología , Replicación Viral/fisiología , Animales , Línea Celular , Vectores de Enfermedades , Drosophila melanogaster/virología , Inmunidad Innata , Virus de Insectos/fisiología , Mutación , Organismos Modificados Genéticamente , ARN Mensajero/metabolismo
18.
Virology ; 560: 34-42, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34023723

RESUMEN

Alphaviruses are positive sense, RNA viruses commonly transmitted by an arthropod vector to a mammalian or avian host. In recent years, a number of the Alphavirus members have reemerged as public health concerns. Transmission from mosquito vector to vertebrate hosts requires an understanding of the interaction between the virus and both vertebrate and insect hosts to develop rational intervention strategies. The current study uncovers a novel role for capsid protein during Chikungunya virus replication whereby the interaction with viral RNA in the E1 coding region regulates protein synthesis processes early in infection. Studies done in both the mammalian and mosquito cells indicate that interactions between viral RNA and capsid protein have functional consequences that are host species specific. Our data support a vertebrate-specific role for capsid:vRNA interaction in temporally regulating viral translation in a manner dependent on the PI3K-AKT-mTOR pathway.


Asunto(s)
Proteínas de la Cápside/metabolismo , Virus Chikungunya/crecimiento & desarrollo , Biosíntesis de Proteínas/genética , ARN Viral/metabolismo , Replicación Viral/fisiología , Aedes/virología , Animales , Cápside/metabolismo , Línea Celular , Fiebre Chikungunya/patología , Virus Chikungunya/genética , Cricetinae , Regulación Viral de la Expresión Génica/genética , Mosquitos Vectores/virología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Viral/genética , Serina-Treonina Quinasas TOR/metabolismo
19.
Viruses ; 13(8)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34452330

RESUMEN

Eukaryotic nucleic acid methyltransferase (MTase) proteins are essential mediators of epigenetic and epitranscriptomic regulation. DNMT2 belongs to a large, conserved family of DNA MTases found in many organisms, including holometabolous insects such as fruit flies and mosquitoes, where it is the lone MTase. Interestingly, despite its nomenclature, DNMT2 is not a DNA MTase, but instead targets and methylates RNA species. A growing body of literature suggests that DNMT2 mediates the host immune response against a wide range of pathogens, including RNA viruses. Curiously, although DNMT2 is antiviral in Drosophila, its expression promotes virus replication in mosquito species. We, therefore, sought to understand the divergent regulation, function, and evolution of these orthologs. We describe the role of the Drosophila-specific host protein IPOD in regulating the expression and function of fruit fly DNMT2. Heterologous expression of these orthologs suggests that DNMT2's role as an antiviral is host-dependent, indicating a requirement for additional host-specific factors. Finally, we identify and describe potential evidence of positive selection at different times throughout DNMT2 evolution within dipteran insects. We identify specific codons within each ortholog that are under positive selection and find that they are restricted to four distinct protein domains, which likely influence substrate binding, target recognition, and adaptation of unique intermolecular interactions. Collectively, our findings highlight the evolution of DNMT2 in Dipteran insects and point to structural, regulatory, and functional differences between mosquito and fruit fly homologs.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Dípteros/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/microbiología , Interacciones Huésped-Patógeno , Wolbachia/fisiología , Adaptación Biológica , Aedes/enzimología , Aedes/genética , Aedes/inmunología , Aedes/microbiología , Secuencia de Aminoácidos , Animales , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/inmunología , Dípteros/clasificación , Dípteros/enzimología , Dípteros/inmunología , Proteínas de Drosophila/química , Proteínas de Drosophila/inmunología , Drosophila melanogaster/genética , Drosophila melanogaster/inmunología , Evolución Molecular , Filogenia , Conformación Proteica , Alineación de Secuencia , Wolbachia/genética
20.
mBio ; 12(1)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563832

RESUMEN

Wolbachia is a maternally transmitted bacterium that manipulates arthropod and nematode biology in myriad ways. The Wolbachia strain colonizing Drosophila melanogaster creates sperm-egg incompatibilities and protects its host against RNA viruses, making it a promising tool for vector control. Despite successful trials using Wolbachia-transfected mosquitoes for dengue control, knowledge of how Wolbachia and viruses jointly affect insect biology remains limited. Using the Drosophila melanogaster model, transcriptomics and gene expression network analyses revealed pathways with altered expression and splicing due to Wolbachia colonization and virus infection. Included are metabolic pathways previously unknown to be important for Wolbachia-host interactions. Additionally, Wolbachia-colonized flies exhibit a dampened transcriptomic response to virus infection, consistent with early blocking of virus replication. Finally, using Drosophila genetics, we show that Wolbachia and expression of nucleotide metabolism genes have interactive effects on virus replication. Understanding the mechanisms of pathogen blocking will contribute to the effective development of Wolbachia-mediated vector control programs.IMPORTANCE Recently developed arbovirus control strategies leverage the symbiotic bacterium Wolbachia, which spreads in insect populations and blocks viruses from replicating. While this strategy has been successful, details of how this "pathogen blocking" works are limited. Here, we use a combination of virus infections, fly genetics, and transcriptomics to show that Wolbachia and virus interact at host nucleotide metabolism pathways.


Asunto(s)
Drosophila melanogaster/genética , Redes y Vías Metabólicas , Interacciones Microbianas , Nucleótidos/metabolismo , Transcriptoma , Virus/patogenicidad , Wolbachia/patogenicidad , Animales , Drosophila melanogaster/microbiología , Drosophila melanogaster/virología , Femenino , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Masculino , Mosquitos Vectores/microbiología , Mosquitos Vectores/virología , Nucleótidos/genética , Simbiosis , Virosis/virología , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA