RESUMEN
Immunotherapy has revolutionized cancer treatment, yet most patients do not respond. Here, we investigated mechanisms of response by profiling the proteome of clinical samples from advanced stage melanoma patients undergoing either tumor infiltrating lymphocyte (TIL)-based or anti- programmed death 1 (PD1) immunotherapy. Using high-resolution mass spectrometry, we quantified over 10,300 proteins in total and â¼4,500 proteins across most samples in each dataset. Statistical analyses revealed higher oxidative phosphorylation and lipid metabolism in responders than in non-responders in both treatments. To elucidate the effects of the metabolic state on the immune response, we examined melanoma cells upon metabolic perturbations or CRISPR-Cas9 knockouts. These experiments indicated lipid metabolism as a regulatory mechanism that increases melanoma immunogenicity by elevating antigen presentation, thereby increasing sensitivity to T cell mediated killing both in vitro and in vivo. Altogether, our proteomic analyses revealed association between the melanoma metabolic state and the response to immunotherapy, which can be the basis for future improvement of therapeutic response.
Asunto(s)
Inmunoterapia/métodos , Melanoma/metabolismo , Melanoma/terapia , Mitocondrias/metabolismo , Proteómica/métodos , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/terapia , Traslado Adoptivo/métodos , Adulto , Anciano , Anciano de 80 o más Años , Animales , Línea Celular Tumoral , Estudios de Cohortes , Femenino , Humanos , Metabolismo de los Lípidos/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Linfocitos T/inmunología , Resultado del Tratamiento , Adulto JovenRESUMEN
The DNA damage response (DDR) is a complex signaling network that relies on cascades of protein phosphorylation, which are initiated by three protein kinases of the family of PI3-kinase-related protein kinases (PIKKs): ATM, ATR, and DNA-PK. ATM is missing or inactivated in the genome instability syndrome, ataxia-telangiectasia (A-T). The relative shares of these PIKKs in the response to genotoxic stress and the functional relationships among them are central questions in the genome stability field. We conducted a comprehensive phosphoproteomic analysis in human wild-type and A-T cells treated with the double-strand break-inducing chemical, neocarzinostatin, and validated the results with the targeted proteomic technique, selected reaction monitoring. We also matched our results with 34 published screens for DDR factors, creating a valuable resource for identifying strong candidates for novel DDR players. We uncovered fine-tuned dynamics between the PIKKs following genotoxic stress, such as DNA-PK-dependent attenuation of ATM. In A-T cells, partial compensation for ATM absence was provided by ATR and DNA-PK, with distinct roles and kinetics. The results highlight intricate relationships between these PIKKs in the DDR.
Asunto(s)
Daño del ADN/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Fosfatidilinositol 3-Quinasas/genética , Proteómica/métodos , Transducción de Señal/genéticaRESUMEN
Amyloid-beta (Aß), a family of aggregation-prone and neurotoxic peptides, has been implicated in the pathophysiology of age-related macular degeneration (AMD). We have previously shown that oligomeric and fibrillar species of Aß42 exerted retinal toxicity in rats, but while the consequences of exposure to amyloid were related to intracellular effects, the mechanism of Aß42 internalization in the retina is not well characterized. In the brain, the 67 kDa laminin receptor (67LR) participates in Aß-related neuronal cell death. A short peptide derived from pigment epithelium-derived factor (PEDF), formerly designated PEDF-335, was found to mitigate experimental models of ischemic retinopathy via targeting of 67LR. In the present study, we hypothesized that 67LR mediates the uptake of pathogenic Aß42 assemblies in the retina, and that targeting of this receptor by PEDF-335 may limit the internalization of Aß, thereby ameliorating its retinotoxicity. To test this assumption ARPE-19 cells in culture were incubated with PEDF-335 before treatment with fibrillar or oligomeric structures of Aß42. Immunostaining confirmed that PEDF-335 treatment substantially prevented amyloid internalization into ARPE-19 cells and maintained their viability in the presence of toxic oligomeric and fibrillar Aß42 entities in vitro. FRET competition assay was performed and confirmed the binding of PEDF-335 to 67LR in RPE-like cells. Wild-type rats were treated with intravitreal PEDF-335 in the experimental eye 2 days prior to administration of retinotoxic Aß42 oligomers or fibrils to both eyes. Retinal function was assessed by electroretinography through 6 weeks post injection. The ERG responses in rats treated with oligomeric or fibrillar Aß42 assemblies were near-normal in eyes previously treated with intravitreal PEDF-335, whereas those measured in the control eyes treated with injection of the Aß42 assemblies alone showed pathologic attenuation of the retinal function through 6 weeks. The retinal presence of 67LR was determined ex vivo by immunostaining and western blotting. Retinal staining demonstrated the constitutional expression of 67LR mainly in the retinal nuclear layers. In the presence of Aß42, the levels of 67LR were increased, although its retinal distribution remained largely unaltered. In contrast, no apparent differences in the retinal expression level of 67LR were noted following exposure to PEDF-335 alone, and its pattern of localization in the retina remained similarly concentrated primarily in the inner and outer nuclear layers. In summary, we found that PEDF-335 confers protection against Aß42-mediated retinal toxicity, with significant effects noted in cells as well as in vivo in rats. The effects of PEDF-335 in the retina are potentially mediated via binding to 67LR and by at least partial inhibition of Aß42 internalization. These results suggest that PEDF-335 may merit further consideration in the development of targeted inhibition of amyloid-related toxicity in the retina. More broadly, our observations provide evidence on the importance of extracellular versus intracellular Aß42 in the retina and suggest concepts on the molecular mechanism of Aß retinal pathogenicity.
Asunto(s)
Péptidos beta-Amiloides , Electrorretinografía , Proteínas del Ojo , Factores de Crecimiento Nervioso , Serpinas , Animales , Serpinas/metabolismo , Proteínas del Ojo/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Ratas , Péptidos beta-Amiloides/toxicidad , Péptidos beta-Amiloides/metabolismo , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Fragmentos de Péptidos/toxicidad , Modelos Animales de Enfermedad , Receptores de Laminina/metabolismo , Masculino , Retina/efectos de los fármacos , Retina/metabolismo , Humanos , Inyecciones Intravítreas , Western Blotting , Enfermedades de la Retina/prevención & control , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/inducido químicamente , Células CultivadasRESUMEN
High-grade ovarian cancer (HGOC) is the leading cause of mortality from gynecological malignancies, because of diagnosis at a metastatic stage. Current screening options fail to improve mortality because of the absence of early-stage-specific biomarkers. We postulated that a liquid biopsy, such as utero-tubal lavage (UtL), may identify localized lesions better than systemic approaches of serum/plasma analysis. Further, while mutation-based assays are challenged by the rarity of tumor DNA within nonmutated DNA, analyzing the proteomic profile, is expected to enable earlier detection, as it reveals perturbations in both the tumor as well as in its microenvironment. To attain deep proteomic coverage and overcome the high dynamic range of this body fluid, we applied our method for microvesicle proteomics to the UtL samples. Liquid biopsies from HGOC patients (n = 49) and controls (n = 127) were divided into a discovery and validation sets. Data-dependent analysis of the samples on the Q-Exactive mass spectrometer provided depth of 8578 UtL proteins in total, and on average â¼3000 proteins per sample. We used support vector machine algorithms for sample classification, and crossed three feature-selection algorithms, to construct and validate a 9-protein classifier with 70% sensitivity and 76.2% specificity. The signature correctly identified all Stage I lesions. These results demonstrate the potential power of microvesicle-based proteomic biomarkers for early cancer diagnosis.
Asunto(s)
Micropartículas Derivadas de Células/metabolismo , Detección Precoz del Cáncer , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/patología , Proteómica/métodos , Útero/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Biopsia Líquida , Clasificación del Tumor , Proteínas de Neoplasias/metabolismo , Neoplasias Ováricas/genética , Reproducibilidad de los ResultadosRESUMEN
Human brain imaging typically employs structured and controlled tasks to avoid variable and inconsistent activation patterns. Here we expand this assumption by showing that an extremely open-ended, high-level cognitive task of thinking about an abstract content, loosely defined as "abstract thinking" - leads to highly consistent activation maps. Specifically, we show that activation maps generated during such cognitive process were precisely located relative to borders of well-known networks such as internal speech, visual and motor imagery. The activation patterns allowed decoding the thought condition at >95%. Surprisingly, the activated networks remained the same regardless of changes in thought content. Finally, we found remarkably consistent activation maps across individuals engaged in abstract thinking. This activation bordered, but strictly avoided visual and motor networks. On the other hand, it overlapped with left lateralized language networks. Activation of the default mode network (DMN) during abstract thought was similar to DMN activation during rest. These observations were supported by a quantitative neuronal distance metric analysis. Our results reveal that despite its high level, and varied content nature - abstract thinking activates surprisingly precise and consistent networks in participants' brains.
Asunto(s)
Mapeo Encefálico , Red en Modo Predeterminado/fisiología , Imaginación/fisiología , Lenguaje , Actividad Motora/fisiología , Red Nerviosa/fisiología , Pensamiento/fisiología , Percepción Visual/fisiología , Adulto , Red en Modo Predeterminado/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Adulto JovenRESUMEN
A major limitation of conventional human brain research has been its basis in highly artificial laboratory experiments. Due to technical constraints, little is known about the nature of cortical activations during ecological real life. We have previously proposed the "spontaneous trait reactivation (STR)" hypothesis arguing that resting-state patterns, which emerge spontaneously in the absence of external stimulus, reflect the statistics of habitual cortical activations during real life. Therefore, these patterns can serve as a window into daily life cortical activity. A straightforward prediction of this hypothesis is that spontaneous patterns should preferentially correlate to patterns generated by naturalistic stimuli compared with artificial ones. Here we targeted high-level category-selective visual areas and tested this prediction by comparing BOLD functional connectivity patterns formed during rest to patterns formed in response to naturalistic stimuli, as well as to more artificial category-selective, dynamic stimuli. Our results revealed a significant correlation between the resting-state patterns and functional connectivity patterns generated by naturalistic stimuli. Furthermore, the correlations to naturalistic stimuli were significantly higher than those found between resting-state patterns and those generated by artificial control stimuli. These findings provide evidence of a stringent link between spontaneous patterns and the activation patterns during natural vision.
Asunto(s)
Encéfalo/fisiología , Percepción Visual/fisiología , Adulto , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiología , Estimulación Luminosa , Corteza Visual/fisiología , Adulto JovenRESUMEN
In the absence of stimulus or task, the cortex spontaneously generates rich and consistent functional connectivity patterns (termed resting state networks) which are evident even within individual cortical areas. We and others have previously hypothesized that habitual cortical network activations during daily life contribute to the shaping of these connectivity patterns. Here we tested this hypothesis by comparing, using blood oxygen level-dependent-functional magnetic resonance imaging, the connectivity patterns that spontaneously emerge during rest in retinotopic visual areas to the patterns generated by naturalistic visual stimuli (repeated movie segments). These were then compared with connectivity patterns produced by more standard retinotopic mapping stimuli (polar and eccentricity mapping). Our results reveal that the movie-driven patterns were significantly more similar to the spontaneously emerging patterns, compared with the connectivity patterns of either eccentricity or polar mapping stimuli. Intentional visual imagery of naturalistic stimuli was unlikely to underlie these results, since they were duplicated when participants were engaged in an auditory task. Our results suggest that the connectivity patterns that appear during rest better reflect naturalistic activations rather than controlled, artificially designed stimuli. The results are compatible with the hypothesis that the spontaneous connectivity patterns in human retinotopic areas reflect the statistics of cortical coactivations during natural vision.
Asunto(s)
Corteza Visual/fisiología , Percepción Visual/fisiología , Adulto , Mapeo Encefálico , Circulación Cerebrovascular/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Películas Cinematográficas , Oxígeno/sangre , Estimulación Luminosa , Descanso , Corteza Visual/diagnóstico por imagenRESUMEN
Through studies with ligand binding to the acetylcholine binding protein (AChBP), we previously identified a series of 4,6-substituted 2-aminopyrimidines that associate with this soluble surrogate of the nicotinic acetylcholine receptor (nAChR) in a cooperative fashion, not seen for classical nicotinic agonists and antagonists. To examine receptor interactions of this structural family on ligand-gated ion channels, we employed HEK cells transfected with cDNAs encoding three requisite receptor subtypes: α7-nAChR, α4ß2-nAChR, and a serotonin receptor (5-HT3AR), along with a fluorescent reporter. Initial screening of a series of over 50 newly characterized 2-aminopyrimidines with affinity for AChBP showed only two to be agonists on the α7-nAChR below 10 µM concentration. Their unique structural features were incorporated into design of a second subset of 2-aminopyrimidines yielding several congeners that elicited α7 activation with EC50 values of 70 nM and Kd values for AChBP in a similar range. Several compounds within this series exhibit specificity for the α7-nAChR, showing no activation or antagonism of α4ß2-nAChR or 5-HT3AR at concentrations up to 10 µM, while others were weaker antagonists (or partial agonists) on these receptors. Analysis following cocrystallization of four ligand complexes with AChBP show binding at the subunit interface, but with an orientation or binding pose that differs from classical nicotinic agonists and antagonists and from the previously analyzed set of 2-aminopyrimidines that displayed distinct cooperative interactions with AChBP. Orientations of aromatic side chains of these complexes are distinctive, suggesting new modes of binding at the agonist-antagonist site and perhaps an allosteric action for heteromeric nAChRs.
Asunto(s)
Acetilcolina/metabolismo , Proteínas Portadoras/metabolismo , Pirimidinas/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Acetilcolina/química , Proteínas Portadoras/química , Cristalografía por Rayos X , Células HEK293 , Humanos , Modelos Moleculares , Estructura Molecular , Pirimidinas/química , Receptor Nicotínico de Acetilcolina alfa 7/química , Receptor Nicotínico de Acetilcolina alfa 7/aislamiento & purificaciónRESUMEN
Unbiased proteomic analysis of plasma samples holds the promise to reveal clinically invaluable disease biomarkers. However, the tremendous dynamic range of the plasma proteome has so far hampered the identification of such low abundant markers. To overcome this challenge we analyzed the plasma microparticle proteome, and reached an unprecedented depth of over 3000 plasma proteins in single runs. To add a quantitative dimension, we developed PROMIS-Quan-PROteomics of MIcroparticles with Super-Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) Quantification, a novel mass spectrometry-based technology for plasma microparticle proteome quantification. PROMIS-Quan enables a two-step relative and absolute SILAC quantification. First, plasma microparticle proteomes are quantified relative to a super-SILAC mix composed of cell lines from distinct origins. Next, the absolute amounts of selected proteins of interest are quantified relative to the super-SILAC mix. We applied PROMIS-Quan to prostate cancer and compared plasma microparticle samples of healthy individuals and prostate cancer patients. We identified in total 5374 plasma-microparticle proteins, and revealed a predictive signature of three proteins that were elevated in the patient-derived plasma microparticles. Finally, PROMIS-Quan enabled determination of the absolute quantitative changes in prostate specific antigen (PSA) upon treatment. We propose PROMIS-Quan as an innovative platform for biomarker discovery, validation, and quantification in both the biomedical research and in the clinical worlds.
Asunto(s)
Aminoácidos/metabolismo , Biomarcadores/sangre , Micropartículas Derivadas de Células/metabolismo , Marcaje Isotópico/métodos , Proteómica/métodos , Proteínas Sanguíneas/metabolismo , Técnicas de Cultivo de Célula , Humanos , Masculino , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/metabolismo , Proteoma/metabolismo , Estándares de Referencia , Reproducibilidad de los ResultadosRESUMEN
The nicotinic acetylcholine receptor (nAChR) and the acetylcholine binding protein (AChBP) are pentameric oligomers in which binding sites for nicotinic agonists and competitive antagonists are found at selected subunit interfaces. The nAChR spontaneously exists in multiple conformations associated with its activation and desensitization steps, and conformations are selectively stabilized by binding of agonists and antagonists. In the nAChR, agonist binding and the associated conformational changes accompanying activation and desensitization are cooperative. AChBP, which lacks the transmembrane spanning and cytoplasmic domains, serves as a homology model of the extracellular domain of the nAChRs. We identified unique cooperative binding behavior of a number of 4,6-disubstituted 2-aminopyrimidines to Lymnaea AChBP, with different molecular variants exhibiting positive, nH > 1.0, and negative cooperativity, nH < 1.0. Therefore, for a distinctive set of ligands, the extracellular domain of a nAChR surrogate suffices to accommodate cooperative interactions. X-ray crystal structures of AChBP complexes with examples of each allowed the identification of structural features in the ligands that confer differences in cooperative behavior. Both sets of molecules bind at the agonist-antagonist site, as expected from their competition with epibatidine. An analysis of AChBP quaternary structure shows that cooperative ligand binding is associated with a blooming or flare conformation, a structural change not observed with the classical, noncooperative, nicotinic ligands. Positively and negatively cooperative ligands exhibited unique features in the detailed binding determinants and poses of the complexes.
Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo , Acetilcolina , Animales , Unión Competitiva , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Compuestos Bicíclicos Heterocíclicos con Puentes/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Piridinas/química , Piridinas/metabolismo , TritioRESUMEN
Recently we proposed that the information contained in spontaneously emerging (resting-state) fluctuations may reflect individually unique neuro-cognitive traits. One prediction of this conjecture, termed the "spontaneous trait reactivation" (STR) hypothesis, is that resting-state activity patterns could be diagnostic of unique personalities, talents and life-styles of individuals. Long-term meditators could provide a unique experimental group to test this hypothesis. Using fMRI we found that, during resting-state, the amplitude of spontaneous fluctuations in long-term mindfulness meditation (MM) practitioners was enhanced in the visual cortex and significantly reduced in the DMN compared to naïve controls. Importantly, during a visual recognition memory task, the MM group showed heightened visual cortex responsivity, concomitant with weaker negative responses in Default Mode Network (DMN) areas. This effect was also reflected in the behavioral performance, where MM practitioners performed significantly faster than the control group. Thus, our results uncover opposite changes in the visual and default mode systems in long-term meditators which are revealed during both rest and task. The results support the STR hypothesis and extend it to the domain of local changes in the magnitude of the spontaneous fluctuations.
Asunto(s)
Potenciación a Largo Plazo/fisiología , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Reconocimiento Visual de Modelos/fisiología , Tiempo de Reacción/fisiología , Descanso/fisiología , Corteza Visual/fisiología , Adulto , Mapeo Encefálico/métodos , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Análisis y Desempeño de TareasRESUMEN
Pelizaeus-Merzbacher disease is an X-linked hypomyelinating leukodystrophy caused by mutations or rearrangements in PLP1. It presents in infancy with nystagmus, jerky head movements, hypotonia and developmental delay evolving into spastic tetraplegia with optic atrophy and variable movement disorders. A clinically similar phenotype caused by recessive mutations in GJC2 is known as Pelizaeus-Merzbacher-like disease. Both genes encode proteins associated with myelin. We describe three siblings of a consanguineous family manifesting the typical infantile-onset Pelizaeus-Merzbacher disease-like phenotype slowly evolving into a form of complicated hereditary spastic paraplegia with mental retardation, dysarthria, optic atrophy and peripheral neuropathy in adulthood. Magnetic resonance imaging and spectroscopy were consistent with a demyelinating leukodystrophy. Using genetic linkage and exome sequencing, we identified a homozygous missense c.399C>G; p.S133R mutation in MAG. This gene, previously associated with hereditary spastic paraplegia, encodes myelin-associated glycoprotein, which is involved in myelin maintenance and glia-axon interaction. This mutation is predicted to destabilize the protein and affect its tertiary structure. Examination of the sural nerve biopsy sample obtained in childhood in the oldest sibling revealed complete absence of myelin-associated glycoprotein accompanied by ill-formed onion-bulb structures and a relatively thin myelin sheath of the affected axons. Immunofluorescence, cell surface labelling, biochemical analysis and mass spectrometry-based proteomics studies in a variety of cell types demonstrated a devastating effect of the mutation on post-translational processing, steady state expression and subcellular localization of myelin-associated glycoprotein. In contrast to the wild-type protein, the p.S133R mutant was retained in the endoplasmic reticulum and was subjected to endoplasmic reticulum-associated protein degradation by the proteasome. Our findings identify involvement of myelin-associated glycoprotein in this family with a disorder affecting the central and peripheral nervous system, and suggest that loss of the protein function is responsible for the unique clinical phenotype.
Asunto(s)
Mutación/genética , Glicoproteína Asociada a Mielina/genética , Enfermedad de Pelizaeus-Merzbacher/genética , Adulto , Conexinas/genética , Análisis Mutacional de ADN , Retículo Endoplásmico/metabolismo , Salud de la Familia , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Proteína Proteolipídica de la Mielina/genética , Glicoproteína Asociada a Mielina/metabolismo , Transporte de Proteínas/genética , Proteómica , Proteínas S100/metabolismo , Nervio Sural/patología , Adulto JovenRESUMEN
Electrophysiological mass potentials show complex spectral changes upon neuronal activation. However, it is unknown to what extent these complex band-limited changes are interrelated or, alternatively, reflect separate neuronal processes. To address this question, intracranial electrocorticograms (ECoG) responses were recorded in patients engaged in visuomotor tasks. We found that in the 10- to 100-Hz frequency range there was a significant reduction in the exponent χ of the 1/f(χ) component of the spectrum associated with neuronal activation. In a minority of electrodes showing particularly high activations the exponent reduction was associated with specific band-limited power modulations: emergence of a high gamma (80-100 Hz) and a decrease in the alpha (9-12 Hz) peaks. Importantly, the peaks' height was correlated with the 1/f(χ) exponent on activation. Control simulation ruled out the possibility that the change in 1/f(χ) exponent was a consequence of the analysis procedure. These results reveal a new global, cross-frequency (10-100 Hz) neuronal process reflected in a significant reduction of the power spectrum slope of the ECoG signal.
Asunto(s)
Corteza Cerebral/fisiología , Actividad Motora/fisiología , Percepción Visual/fisiología , Adulto , Ritmo alfa , Percepción Auditiva/fisiología , Electroencefalografía , Epilepsia/fisiopatología , Epilepsia/cirugía , Femenino , Ritmo Gamma , Humanos , Masculino , Pruebas Neuropsicológicas , Reconocimiento en Psicología/fisiología , Procesamiento de Señales Asistido por ComputadorRESUMEN
Despite an extensive body of work, it is still not clear how short term maintenance of information is implemented in the human brain. Most prior research has focused on "working memory"-typically involving the storage of a number of items, requiring the use of a phonological loop and focused attention during the delay period between encoding and retrieval. These studies largely support a model of enhanced activity in the delay interval as the central mechanism underlying working memory. However, multi-item working memory constitutes only a subset of storage phenomena that may occur during daily life. A common task in naturalistic situations is short term memory of a single item-for example, blindly reaching to a previously placed cup of coffee. Little is known about such single-item, effortless, storage in the human brain. Here, we examined the dynamics of brain responses during a single-item maintenance task, using intracranial recordings implanted for clinical purpose in patients (ECoG). Our results reveal that active electrodes were dominated by transient short latency visual and motor responses, reflected in broadband high frequency power increases in occipito-temporal, frontal, and parietal cortex. Only a very small set of electrodes showed activity during the early part of the delay period. Interestingly, no cortical site displayed a significant activation lasting to the response time. These results suggest that single item encoding is characterized by transient high frequency ECoG responses, while the maintenance of information during the delay period may be mediated by mechanisms necessitating only low-levels of neuronal activations.
Asunto(s)
Corteza Cerebral/fisiología , Procesos Mentales/fisiología , Adulto , Mapeo Encefálico , Epilepsia Refractaria/cirugía , Electrodos Implantados , Electroencefalografía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Memoria a Corto Plazo/fisiología , Recuerdo Mental/fisiología , Destreza Motora/fisiología , Procedimientos Neuroquirúrgicos , Estimulación Luminosa , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Tomografía Computarizada por Rayos X , Percepción Visual/fisiología , Adulto JovenRESUMEN
While brain imaging studies emphasized the category selectivity of face-related areas, the underlying mechanisms of our remarkable ability to discriminate between different faces are less understood. Here, we recorded intracranial local field potentials from face-related areas in patients presented with images of faces and objects. A highly significant exemplar tuning within the category of faces was observed in high-Gamma (80-150 Hz) responses. The robustness of this effect was supported by single-trial decoding of face exemplars using a minimal (n = 5) training set. Importantly, exemplar tuning reflected the psychophysical distance between faces but not their low-level features. Our results reveal a neuronal substrate for the establishment of perceptual distance among faces in the human brain. They further imply that face neurons are anatomically grouped according to well-defined functional principles, such as perceptual similarity.
Asunto(s)
Corteza Cerebral/fisiopatología , Epilepsia/complicaciones , Epilepsia/patología , Trastornos de la Percepción/etiología , Percepción Visual/fisiología , Adulto , Mapeo Encefálico , Corteza Cerebral/irrigación sanguínea , Discriminación en Psicología , Electrodos Implantados , Potenciales Evocados Visuales , Cara , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Oxígeno/sangre , Reconocimiento Visual de Modelos , Estimulación Luminosa , Reproducibilidad de los Resultados , Adulto JovenRESUMEN
Despite the profound reduction in conscious awareness associated with sleep, sensory cortex remains highly active during the different sleep stages, exhibiting complex interactions between different cortical sites. The potential functional significance of such spatial patterns and how they change between different sleep stages is presently unknown. In this electrocorticography study of human patients, we examined this question by studying spatial patterns of activity (broadband gamma power) that emerge during sleep (sleep patterns) and comparing them to the functional organization of sensory cortex that is activated by naturalistic stimuli during the awake state. Our results show a high correlation (p < 10(-4), permutation test) between the sleep spatial patterns and the functional organization found during wakefulness. Examining how the sleep patterns changed through the night highlighted a stage-specific difference, whereby the repertoire of such patterns was significantly larger during rapid eye movement (REM) sleep compared with non-REM stages. These results reveal that intricate spatial patterns of sensory functional organization emerge in a stage-specific manner during sleep.
Asunto(s)
Ondas Encefálicas/fisiología , Epilepsia/patología , Fases del Sueño/fisiología , Corteza Somatosensorial/fisiopatología , Vigilia/fisiología , Estimulación Acústica , Adolescente , Adulto , Mapeo Encefálico , Electroencefalografía , Epilepsia/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Dinámicas no Lineales , Estimulación Luminosa , Sueño REM , Estadística como AsuntoRESUMEN
One of the puzzling aspects in the visual attention literature is the discrepancy between electrophysiological and fMRI findings: whereas fMRI studies reveal strong attentional modulation in the earliest visual areas, single-unit and local field potential studies yielded mixed results. In addition, it is not clear to what extent spatial attention effects extend from early to high-order visual areas. Here we addressed these issues using electrocorticography recordings in epileptic patients. The patients performed a task that allowed simultaneous manipulation of both spatial and object-based attention. They were presented with composite stimuli, consisting of a small object (face or house) superimposed on a large one, and in separate blocks, were instructed to attend one of the objects. We found a consistent increase in broadband high-frequency (30-90 Hz) power, but not in visual evoked potentials, associated with spatial attention starting with V1/V2 and continuing throughout the visual hierarchy. The magnitude of the attentional modulation was correlated with the spatial selectivity of each electrode and its distance from the occipital pole. Interestingly, the latency of the attentional modulation showed a significant decrease along the visual hierarchy. In addition, electrodes placed over high-order visual areas (e.g., fusiform gyrus) showed both effects of spatial and object-based attention. Overall, our results help to reconcile previous observations of discrepancy between fMRI and electrophysiology. They also imply that spatial attention effects can be found both in early and high-order visual cortical areas, in parallel with their stimulus tuning properties.
Asunto(s)
Atención/fisiología , Potenciales Evocados Visuales/fisiología , Percepción Espacial/fisiología , Corteza Visual/fisiología , Percepción Visual/fisiología , Adolescente , Adulto , Epilepsia/fisiopatología , Epilepsia/cirugía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estimulación Luminosa , Tiempo de Reacción/fisiologíaRESUMEN
PURPOSE: Immune Checkpoint Inhibitor (ICI) regimens are approved for first-line treatment of metastatic nononcogene-driven NSCLC. Guidelines do not differentiate which patients with PD-L1 ≥ 50% should receive ICI monotherapy. The clinically validated PROphet NSCLC plasma proteomic-based test is designed to inform this therapeutic decision. METHODS: One hundred oncologists were presented with 3 "virtual" metastatic NSCLC cases with PD-L1 scores and asked to recommend an approved first-line regimen. They then watched an online educational webinar on the PROphetNSCLC test. Postwebinar, the same cases were represented with the addition of a PROphet result, and oncologists again recommended a first-line regimen. Responses were compared to assess the impact on first-line treatment selection. RESULTS: Treatment recommendation changed in 39.6% of PROphet-tested cases, with 93% of physicians changing at least 1 case. In the PD-L1 ≥ 50% group, 89% of physicians changed their recommendation, followed by 77%, in PD-L1 < 1%, and 36% in PD-L1 1% to 49%. âIn the PD-L1 ≥ 50%, PROphet POSITIVE group, the recommendation for ICI monotherapy increased from 60% to 89%. âFor the PD-L1 ≥ 50%, PROphet NEGATIVE group, the recommendation for monotherapy dropped from 60% to 9%. In the PD-L1 < 1%, PROphet NEGATIVE group, 35% of patients were spared toxicity from ICI compared to 11% in PROphet untested cases. CONCLUSION: Adding PROphet to PD-L1 expression impacted therapeutic decision making in first-line NSCLC. PROphet identifies those predicted to have an overall survival benefit from ICI monotherapy versus combination versus chemotherapy, improving the probability of efficacy and reducing toxicity for some patients.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Toma de Decisiones Clínicas , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Antígeno B7-H1/antagonistas & inhibidores , Masculino , Femenino , Persona de Mediana Edad , Biomarcadores de Tumor , Pautas de la Práctica en Medicina , Proteómica , AncianoRESUMEN
Age-related macular degeneration (AMD) is a complex disease in which inflammation is implicated as a key factor but the precise molecular mechanisms are poorly understood. AMD lesions contain an excess of the pro-inflammatory S100A9 protein, but its retinal significance was yet unexplored. S100A9 was shown to be intrinsically amyloidogenic in vitro and in vivo. Here, we hypothesized that the retinal effects of S100A9 are related to its supramolecular conformation. ARPE-19 cultures were treated with native dimeric and fibrillar S100A9 preparations, and cell viability was determined. Wild-type rats were treated intravitreally with the S100A9 solutions in the right eye and with the vehicle in the left. Retinal function was assessed longitudinally by electroretinography (ERG), comparing the amplitudes and configurations for each intervention. Native S100A9 had no impact on cellular viability in vitro or on the retinal function in vivo. Despite dispersed intracellular uptake, fibrillar S100A9 did not decrease ARPE-19 cell viability. In contrast, S100A9 fibrils impaired retinal function in vivo following intravitreal injection in rats. Intriguingly, low-dose fibrillar S100A9 induced contrasting in vivo effects, significantly increasing the ERG responses, particularly over 14 days postinjection. The retinal effects of S100A9 were further characterized by glial and microglial cell activation. We provide the first indication for the retinal effects of S100A9, showing that its fibrils inflicted retinal dysfunction and glial activation in vivo, while low dose of the same assemblies resulted in an unpredicted enhancement of the ERG amplitudes. These nonlinear responses highlight the consequences of self-assembly of S100A9 and provide insight into its pathophysiological and possibly physiological roles in the retina.
Asunto(s)
Calgranulina B , Degeneración Macular , Ratas , Animales , Calgranulina B/metabolismo , Retina/metabolismo , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/metabolismo , Electrorretinografía , Inflamación/metabolismo , Modelos Animales de EnfermedadRESUMEN
Introduction: Immune checkpoint inhibitors have made a paradigm shift in the treatment of non-small cell lung cancer (NSCLC). However, clinical response varies widely and robust predictive biomarkers for patient stratification are lacking. Here, we characterize early on-treatment proteomic changes in blood plasma to gain a better understanding of treatment response and resistance. Methods: Pre-treatment (T0) and on-treatment (T1) plasma samples were collected from 225 NSCLC patients receiving PD-1/PD-L1 inhibitor-based regimens. Plasma was profiled using aptamer-based technology to quantify approximately 7000 plasma proteins per sample. Proteins displaying significant fold changes (T1:T0) were analyzed further to identify associations with clinical outcomes using clinical benefit and overall survival as endpoints. Bioinformatic analyses of upregulated proteins were performed to determine potential cell origins and enriched biological processes. Results: The levels of 142 proteins were significantly increased in the plasma of NSCLC patients following ICI-based treatments. Soluble PD-1 exhibited the highest increase, with a positive correlation to tumor PD-L1 status, and, in the ICI monotherapy dataset, an association with improved overall survival. Bioinformatic analysis of the ICI monotherapy dataset revealed a set of 30 upregulated proteins that formed a single, highly interconnected network, including CD8A connected to ten other proteins, suggestive of T cell activation during ICI treatment. Notably, the T cell-related network was detected regardless of clinical benefit. Lastly, circulating proteins of alveolar origin were identified as potential biomarkers of limited clinical benefit, possibly due to a link with cellular stress and lung damage. Conclusions: Our study provides insights into the biological processes activated during ICI-based therapy, highlighting the potential of plasma proteomics to identify mechanisms of therapy resistance and biomarkers for outcome.