Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell ; 185(25): 4703-4716.e16, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36455558

RESUMEN

We report genome-wide data from 33 Ashkenazi Jews (AJ), dated to the 14th century, obtained following a salvage excavation at the medieval Jewish cemetery of Erfurt, Germany. The Erfurt individuals are genetically similar to modern AJ, but they show more variability in Eastern European-related ancestry than modern AJ. A third of the Erfurt individuals carried a mitochondrial lineage common in modern AJ and eight carried pathogenic variants known to affect AJ today. These observations, together with high levels of runs of homozygosity, suggest that the Erfurt community had already experienced the major reduction in size that affected modern AJ. The Erfurt bottleneck was more severe, implying substructure in medieval AJ. Overall, our results suggest that the AJ founder event and the acquisition of the main sources of ancestry pre-dated the 14th century and highlight late medieval genetic heterogeneity no longer present in modern AJ.


Asunto(s)
Judíos , Población Blanca , Humanos , Judíos/genética , Genética de Población , Genoma Humano
2.
Cell ; 181(5): 1131-1145.e21, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32386546

RESUMEN

There are many unanswered questions about the population history of the Central and South Central Andes, particularly regarding the impact of large-scale societies, such as the Moche, Wari, Tiwanaku, and Inca. We assembled genome-wide data on 89 individuals dating from ∼9,000-500 years ago (BP), with a particular focus on the period of the rise and fall of state societies. Today's genetic structure began to develop by 5,800 BP, followed by bi-directional gene flow between the North and South Highlands, and between the Highlands and Coast. We detect minimal admixture among neighboring groups between ∼2,000-500 BP, although we do detect cosmopolitanism (people of diverse ancestries living side-by-side) in the heartlands of the Tiwanaku and Inca polities. We also highlight cases of long-range mobility connecting the Andes to Argentina and the Northwest Andes to the Amazon Basin. VIDEO ABSTRACT.


Asunto(s)
Antropología/métodos , ADN Antiguo/análisis , Flujo Génico/genética , América Central , ADN Mitocondrial/genética , Flujo Génico/fisiología , Genética de Población/métodos , Haplotipos , Humanos , Análisis de Secuencia de ADN , América del Sur
3.
Cell ; 171(1): 59-71.e21, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28938123

RESUMEN

We assembled genome-wide data from 16 prehistoric Africans. We show that the anciently divergent lineage that comprises the primary ancestry of the southern African San had a wider distribution in the past, contributing approximately two-thirds of the ancestry of Malawi hunter-gatherers ∼8,100-2,500 years ago and approximately one-third of the ancestry of Tanzanian hunter-gatherers ∼1,400 years ago. We document how the spread of farmers from western Africa involved complete replacement of local hunter-gatherers in some regions, and we track the spread of herders by showing that the population of a ∼3,100-year-old pastoralist from Tanzania contributed ancestry to people from northeastern to southern Africa, including a ∼1,200-year-old southern African pastoralist. The deepest diversifications of African lineages were complex, involving either repeated gene flow among geographically disparate groups or a lineage more deeply diverging than that of the San contributing more to some western African populations than to others. We finally leverage ancient genomes to document episodes of natural selection in southern African populations. PAPERCLIP.


Asunto(s)
Población Negra/genética , Genoma Humano , África , Huesos/química , ADN Antiguo/análisis , Femenino , Fósiles , Genética Médica , Genética de Población , Estudio de Asociación del Genoma Completo , Humanos , Estilo de Vida , Masculino
4.
Nature ; 610(7930): 112-119, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36131019

RESUMEN

The history of the British Isles and Ireland is characterized by multiple periods of major cultural change, including the influential transformation after the end of Roman rule, which precipitated shifts in language, settlement patterns and material culture1. The extent to which migration from continental Europe mediated these transitions is a matter of long-standing debate2-4. Here we study genome-wide ancient DNA from 460 medieval northwestern Europeans-including 278 individuals from England-alongside archaeological data, to infer contemporary population dynamics. We identify a substantial increase of continental northern European ancestry in early medieval England, which is closely related to the early medieval and present-day inhabitants of Germany and Denmark, implying large-scale substantial migration across the North Sea into Britain during the Early Middle Ages. As a result, the individuals who we analysed from eastern England derived up to 76% of their ancestry from the continental North Sea zone, albeit with substantial regional variation and heterogeneity within sites. We show that women with immigrant ancestry were more often furnished with grave goods than women with local ancestry, whereas men with weapons were as likely not to be of immigrant ancestry. A comparison with present-day Britain indicates that subsequent demographic events reduced the fraction of continental northern European ancestry while introducing further ancestry components into the English gene pool, including substantial southwestern European ancestry most closely related to that seen in Iron Age France5,6.


Asunto(s)
Pool de Genes , Migración Humana , Arqueología , ADN Antiguo/análisis , Dinamarca , Inglaterra , Femenino , Francia , Genética de Población , Genoma Humano/genética , Alemania , Historia Medieval , Migración Humana/historia , Humanos , Lenguaje , Masculino , Dinámica Poblacional , Armas/historia
5.
Am J Hum Genet ; 110(9): 1447-1453, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37541241

RESUMEN

Ancient DNA studies have begun to explore the possibility of identifying identical DNA segments shared between historical and living people. This research requires access to large genetic datasets to maximize the likelihood of identifying previously unknown, close genetic connections. Direct-to-consumer genetic testing companies, such as 23andMe, Inc., manage by far the largest and most diverse genetic databases that can be used for this purpose. It is therefore important to think carefully about guidelines for carrying out collaborations between researchers and such companies. Such collaborations require consideration of ethical issues, including policies for sharing ancient DNA datasets, and ensuring reproducibility of research findings when access to privately controlled genetic datasets is limited. At the same time, they introduce unique possibilities for returning results to the research participants whose data are analyzed, including those who are identified as close genetic relatives of historical individuals, thereby enabling ancient DNA research to contribute to the restoration of information about ancestral connections that were lost over time, which can be particularly meaningful for families and groups where such history has not been well documented. We explore these issues by describing our experience designing and carrying out a study searching for genetic connections between 18th- and 19th-century enslaved and free African Americans who labored at Catoctin Furnace, Maryland, and 23andMe research participants. We share our experience in the hope of helping future researchers navigate similar ethical considerations, recognizing that our perspective is part of a larger conversation about best ethical practices.


Asunto(s)
Comunicación , ADN Antiguo , Humanos , Reproducibilidad de los Resultados , ADN/genética , Bases de Datos Genéticas
6.
Proc Natl Acad Sci U S A ; 119(17): e2116722119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35412864

RESUMEN

The bacterial pathogen Yersinia pestis gave rise to devastating outbreaks throughout human history, and ancient DNA evidence has shown it afflicted human populations as far back as the Neolithic. Y. pestis genomes recovered from the Eurasian Late Neolithic/Early Bronze Age (LNBA) period have uncovered key evolutionary steps that led to its emergence from a Yersinia pseudotuberculosis-like progenitor; however, the number of reconstructed LNBA genomes are too few to explore its diversity during this critical period of development. Here, we present 17 Y. pestis genomes dating to 5,000 to 2,500 y BP from a wide geographic expanse across Eurasia. This increased dataset enabled us to explore correlations between temporal, geographical, and genetic distance. Our results suggest a nonflea-adapted and potentially extinct single lineage that persisted over millennia without significant parallel diversification, accompanied by rapid dispersal across continents throughout this period, a trend not observed in other pathogens for which ancient genomes are available. A stepwise pattern of gene loss provides further clues on its early evolution and potential adaptation. We also discover the presence of the flea-adapted form of Y. pestis in Bronze Age Iberia, previously only identified in in the Caucasus and the Volga regions, suggesting a much wider geographic spread of this form of Y. pestis. Together, these data reveal the dynamic nature of plague's formative years in terms of its early evolution and ecology.


Asunto(s)
Genoma Bacteriano , Peste , Yersinia pestis , Crianza de Animales Domésticos/historia , Animales , ADN Antiguo , Variación Genética , Historia Antigua , Migración Humana/historia , Humanos , Filogenia , Peste/epidemiología , Peste/historia , Peste/microbiología , Yersinia pestis/clasificación , Yersinia pestis/genética , Yersinia pestis/aislamiento & purificación
7.
Genome Res ; 31(3): 472-483, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33579752

RESUMEN

Ancient DNA sampling methods-although optimized for efficient DNA extraction-are destructive, relying on drilling or cutting and powdering (parts of) bones and teeth. As the field of ancient DNA has grown, so have concerns about the impact of destructive sampling of the skeletal remains from which ancient DNA is obtained. Due to a particularly high concentration of endogenous DNA, the cementum of tooth roots is often targeted for ancient DNA sampling, but destructive sampling methods of the cementum often result in the loss of at least one entire root. Here, we present a minimally destructive method for extracting ancient DNA from dental cementum present on the surface of tooth roots. This method does not require destructive drilling or grinding, and, following extraction, the tooth remains safe to handle and suitable for most morphological studies, as well as other biochemical studies, such as radiocarbon dating. We extracted and sequenced ancient DNA from 30 teeth (and nine corresponding petrous bones) using this minimally destructive extraction method in addition to a typical tooth sampling method. We find that the minimally destructive method can provide ancient DNA that is of comparable quality to extracts produced from teeth that have undergone destructive sampling processes. Further, we find that a rigorous cleaning of the tooth surface combining diluted bleach and UV light irradiation seems sufficient to minimize external contaminants usually removed through the physical removal of a superficial layer when sampling through regular powdering methods.


Asunto(s)
ADN Antiguo/aislamiento & purificación , Cemento Dental/química , Diente/química , Humanos , Masculino , Diente/anatomía & histología
8.
Nature ; 555(7695): 197-203, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29466330

RESUMEN

Farming was first introduced to Europe in the mid-seventh millennium bc, and was associated with migrants from Anatolia who settled in the southeast before spreading throughout Europe. Here, to understand the dynamics of this process, we analysed genome-wide ancient DNA data from 225 individuals who lived in southeastern Europe and surrounding regions between 12000 and 500 bc. We document a west-east cline of ancestry in indigenous hunter-gatherers and, in eastern Europe, the early stages in the formation of Bronze Age steppe ancestry. We show that the first farmers of northern and western Europe dispersed through southeastern Europe with limited hunter-gatherer admixture, but that some early groups in the southeast mixed extensively with hunter-gatherers without the sex-biased admixture that prevailed later in the north and west. We also show that southeastern Europe continued to be a nexus between east and west after the arrival of farmers, with intermittent genetic contact with steppe populations occurring up to 2,000 years earlier than the migrations from the steppe that ultimately replaced much of the population of northern Europe.


Asunto(s)
Agricultores/historia , Genoma Humano/genética , Genómica , Migración Humana/historia , Agricultura/historia , Asia/etnología , ADN Antiguo , Europa (Continente) , Femenino , Genética de Población , Pradera , Historia Antigua , Humanos , Masculino , Distribución por Sexo
9.
Nature ; 555(7695): 190-196, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29466337

RESUMEN

From around 2750 to 2500 bc, Bell Beaker pottery became widespread across western and central Europe, before it disappeared between 2200 and 1800 bc. The forces that propelled its expansion are a matter of long-standing debate, and there is support for both cultural diffusion and migration having a role in this process. Here we present genome-wide data from 400 Neolithic, Copper Age and Bronze Age Europeans, including 226 individuals associated with Beaker-complex artefacts. We detected limited genetic affinity between Beaker-complex-associated individuals from Iberia and central Europe, and thus exclude migration as an important mechanism of spread between these two regions. However, migration had a key role in the further dissemination of the Beaker complex. We document this phenomenon most clearly in Britain, where the spread of the Beaker complex introduced high levels of steppe-related ancestry and was associated with the replacement of approximately 90% of Britain's gene pool within a few hundred years, continuing the east-to-west expansion that had brought steppe-related ancestry into central and northern Europe over the previous centuries.


Asunto(s)
Evolución Cultural/historia , Genoma Humano/genética , Genómica , Migración Humana/historia , Cromosomas Humanos Y/genética , ADN Antiguo , Europa (Continente) , Pool de Genes , Genética de Población , Haplotipos , Historia Antigua , Humanos , Masculino , Análisis Espacio-Temporal
11.
Genome Res ; 30(3): 427-436, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32098773

RESUMEN

DNA recovery from ancient human remains has revolutionized our ability to reconstruct the genetic landscape of the past. Ancient DNA research has benefited from the identification of skeletal elements, such as the cochlear part of the osseous inner ear, that provides optimal contexts for DNA preservation; however, the rich genetic information obtained from the cochlea must be counterbalanced against the loss of morphological information caused by its sampling. Motivated by similarities in developmental processes and histological properties between the cochlea and auditory ossicles, we evaluate the ossicles as an alternative source of ancient DNA. We show that ossicles perform comparably to the cochlea in terms of DNA recovery, finding no substantial reduction in data quantity and minimal differences in data quality across preservation conditions. Ossicles can be sampled from intact skulls or disarticulated petrous bones without damage to surrounding bone, and we argue that they should be used when available to reduce damage to human remains. Our results identify another optimal skeletal element for ancient DNA analysis and add to a growing toolkit of sampling methods that help to better preserve skeletal remains for future research while maximizing the likelihood that ancient DNA analysis will produce useable results.


Asunto(s)
ADN Antiguo/análisis , Osículos del Oído/química , Cóclea/química , Osículos del Oído/anatomía & histología , Osículos del Oído/embriología , Humanos , Análisis de Secuencia de ADN
12.
Nature ; 551(7680): 368-372, 2017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29144465

RESUMEN

Ancient DNA studies have established that Neolithic European populations were descended from Anatolian migrants who received a limited amount of admixture from resident hunter-gatherers. Many open questions remain, however, about the spatial and temporal dynamics of population interactions and admixture during the Neolithic period. Here we investigate the population dynamics of Neolithization across Europe using a high-resolution genome-wide ancient DNA dataset with a total of 180 samples, of which 130 are newly reported here, from the Neolithic and Chalcolithic periods of Hungary (6000-2900 bc, n = 100), Germany (5500-3000 bc, n = 42) and Spain (5500-2200 bc, n = 38). We find that genetic diversity was shaped predominantly by local processes, with varied sources and proportions of hunter-gatherer ancestry among the three regions and through time. Admixture between groups with different ancestry profiles was pervasive and resulted in observable population transformation across almost all cultural transitions. Our results shed new light on the ways in which gene flow reshaped European populations throughout the Neolithic period and demonstrate the potential of time-series-based sampling and modelling approaches to elucidate multiple dimensions of historical population interactions.


Asunto(s)
Agricultores/historia , Flujo Génico/genética , Variación Genética , Migración Humana/historia , ADN Antiguo/análisis , Conjuntos de Datos como Asunto , Femenino , Alemania , Historia Antigua , Humanos , Hungría , Masculino , Dinámica Poblacional , España , Análisis Espacio-Temporal
14.
Nature ; 538(7626): 510-513, 2016 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-27698418

RESUMEN

The appearance of people associated with the Lapita culture in the South Pacific around 3,000 years ago marked the beginning of the last major human dispersal to unpopulated lands. However, the relationship of these pioneers to the long-established Papuan people of the New Guinea region is unclear. Here we present genome-wide ancient DNA data from three individuals from Vanuatu (about 3,100-2,700 years before present) and one from Tonga (about 2,700-2,300 years before present), and analyse them with data from 778 present-day East Asians and Oceanians. Today, indigenous people of the South Pacific harbour a mixture of ancestry from Papuans and a population of East Asian origin that no longer exists in unmixed form, but is a match to the ancient individuals. Most analyses have interpreted the minimum of twenty-five per cent Papuan ancestry in the region today as evidence that the first humans to reach Remote Oceania, including Polynesia, were derived from population mixtures near New Guinea, before their further expansion into Remote Oceania. However, our finding that the ancient individuals had little to no Papuan ancestry implies that later human population movements spread Papuan ancestry through the South Pacific after the first peopling of the islands.


Asunto(s)
Pueblo Asiatico/genética , Genoma Humano/genética , Genómica , Migración Humana/historia , Nativos de Hawái y Otras Islas del Pacífico/genética , Filogenia , Femenino , Genética de Población , Historia Antigua , Humanos , Masculino , Nueva Guinea/etnología , Polinesia/etnología , Tonga , Vanuatu
15.
Nature ; 536(7617): 419-24, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27459054

RESUMEN

We report genome-wide ancient DNA from 44 ancient Near Easterners ranging in time between ~12,000 and 1,400 bc, from Natufian hunter-gatherers to Bronze Age farmers. We show that the earliest populations of the Near East derived around half their ancestry from a 'Basal Eurasian' lineage that had little if any Neanderthal admixture and that separated from other non-African lineages before their separation from each other. The first farmers of the southern Levant (Israel and Jordan) and Zagros Mountains (Iran) were strongly genetically differentiated, and each descended from local hunter-gatherers. By the time of the Bronze Age, these two populations and Anatolian-related farmers had mixed with each other and with the hunter-gatherers of Europe to greatly reduce genetic differentiation. The impact of the Near Eastern farmers extended beyond the Near East: farmers related to those of Anatolia spread westward into Europe; farmers related to those of the Levant spread southward into East Africa; farmers related to those of Iran spread northward into the Eurasian steppe; and people related to both the early farmers of Iran and to the pastoralists of the Eurasian steppe spread eastward into South Asia.


Asunto(s)
Agricultura/historia , Genómica , Migración Humana/historia , Filogenia , Grupos Raciales/genética , África Oriental , Animales , Armenia , Asia , ADN/análisis , Europa (Continente) , Historia Antigua , Humanos , Hibridación Genética/genética , Irán , Israel , Jordania , Hombre de Neandertal/genética , Filogeografía , Turquía
16.
Nature ; 528(7583): 499-503, 2015 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-26595274

RESUMEN

Ancient DNA makes it possible to observe natural selection directly by analysing samples from populations before, during and after adaptation events. Here we report a genome-wide scan for selection using ancient DNA, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data. The new samples include, to our knowledge, the first genome-wide ancient DNA from Anatolian Neolithic farmers, whose genetic material we obtained by extracting from petrous bones, and who we show were members of the population that was the source of Europe's first farmers. We also report a transect of the steppe region in Samara between 5600 and 300 bc, which allows us to identify admixture into the steppe from at least two external sources. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.


Asunto(s)
Genoma Humano/genética , Selección Genética/genética , Agricultura/historia , Asia/etnología , Estatura/genética , Huesos , ADN/genética , ADN/aislamiento & purificación , Dieta/historia , Europa (Continente)/etnología , Genética de Población , Haplotipos/genética , Historia Antigua , Humanos , Inmunidad/genética , Masculino , Herencia Multifactorial/genética , Pigmentación/genética , Análisis de Secuencia de ADN
17.
Nature ; 522(7555): 207-11, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-25731166

RESUMEN

We generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies and to obtain new insights about the past. We show that the populations of Western and Far Eastern Europe followed opposite trajectories between 8,000-5,000 years ago. At the beginning of the Neolithic period in Europe, ∼8,000-7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a ∼24,000-year-old Siberian. By ∼6,000-5,000 years ago, farmers throughout much of Europe had more hunter-gatherer ancestry than their predecessors, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but also from a population of Near Eastern ancestry. Western and Eastern Europe came into contact ∼4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced ∼75% of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least ∼3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for a steppe origin of at least some of the Indo-European languages of Europe.


Asunto(s)
Evolución Cultural/historia , Pradera , Migración Humana/historia , Lenguaje/historia , Europa (Continente)/etnología , Genoma Humano/genética , Historia Antigua , Humanos , Masculino , Polimorfismo Genético/genética , Dinámica Poblacional , Federación de Rusia
18.
Science ; 381(6657): eade4995, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37535739

RESUMEN

Few African Americans have been able to trace family lineages back to ancestors who died before the 1870 United States Census, the first in which all Black people were listed by name. We analyzed 27 individuals from Maryland's Catoctin Furnace African American Cemetery (1774-1850), identifying 41,799 genetic relatives among consenting research participants in 23andMe, Inc.'s genetic database. One of the highest concentrations of close relatives is in Maryland, suggesting that descendants of the Catoctin individuals remain in the area. We find that many of the Catoctin individuals derived African ancestry from the Wolof or Kongo groups and European ancestry from Great Britain and Ireland. This study demonstrates the power of joint analysis of historical DNA and large datasets generated through direct-to-consumer ancestry testing.


Asunto(s)
Negro o Afroamericano , Bases de Datos Genéticas , Humanos , Negro o Afroamericano/genética , Irlanda , Maryland , Estados Unidos , Análisis de Secuencia de ADN
19.
Genetics ; 217(4)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33772284

RESUMEN

qpAdm is a statistical tool for studying the ancestry of populations with histories that involve admixture between two or more source populations. Using qpAdm, it is possible to identify plausible models of admixture that fit the population history of a group of interest and to calculate the relative proportion of ancestry that can be ascribed to each source population in the model. Although qpAdm is widely used in studies of population history of human (and nonhuman) groups, relatively little has been done to assess its performance. We performed a simulation study to assess the behavior of qpAdm under various scenarios in order to identify areas of potential weakness and establish recommended best practices for use. We find that qpAdm is a robust tool that yields accurate results in many cases, including when data coverage is low, there are high rates of missing data or ancient DNA damage, or when diploid calls cannot be made. However, we caution against co-analyzing ancient and present-day data, the inclusion of an extremely large number of reference populations in a single model, and analyzing population histories involving extended periods of gene flow. We provide a user guide suggesting best practices for the use of qpAdm.


Asunto(s)
Genética de Población/métodos , Población/genética , Programas Informáticos/normas , Animales , ADN Antiguo , Evolución Molecular , Humanos , Linaje , Guías de Práctica Clínica como Asunto
20.
J Archaeol Sci ; 1332021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34483440

RESUMEN

This paper examines how ancient DNA data can enhance radiocarbon dating. Because there is a limit to the number of years that can separate the dates of death of related individuals, the ability to identify relatives through ancient DNA analysis can serve as a constraint on radiocarbon date range estimates. To determine the number of years that can separate related individuals, we modeled maximums derived from biological extremes of human reproduction and death ages and compiled data from historic and genealogical death records. We used these data to jointly study the date ranges of a global dataset of individuals that have been radiocarbon dated and for which ancient DNA analysis identified at least one relative. We found that many of these individuals could have their date uncertainties reduced by building in date of death separation constraints. We examined possible reasons for date discrepancies of related individuals, such as dating of different skeletal elements or wiggles in the radiocarbon curve. We also developed a program, refinedate, which researchers can download and use to help refine the radiocarbon date distributions of related individuals. Our research demonstrates that when combined, radiocarbon dating and ancient DNA analysis can provide a refined and richer view of the past.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA