Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cell ; 157(4): 785-94, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24813606

RESUMEN

Polar bears are uniquely adapted to life in the High Arctic and have undergone drastic physiological changes in response to Arctic climates and a hyper-lipid diet of primarily marine mammal prey. We analyzed 89 complete genomes of polar bear and brown bear using population genomic modeling and show that the species diverged only 479-343 thousand years BP. We find that genes on the polar bear lineage have been under stronger positive selection than in brown bears; nine of the top 16 genes under strong positive selection are associated with cardiomyopathy and vascular disease, implying important reorganization of the cardiovascular system. One of the genes showing the strongest evidence of selection, APOB, encodes the primary lipoprotein component of low-density lipoprotein (LDL); functional mutations in APOB may explain how polar bears are able to cope with life-long elevated LDL levels that are associated with high risk of heart disease in humans.


Asunto(s)
Evolución Biológica , Ursidae/clasificación , Ursidae/genética , Adaptación Fisiológica , Tejido Adiposo/metabolismo , Animales , Apolipoproteínas B/química , Apolipoproteínas B/metabolismo , Regiones Árticas , Ácidos Grasos/metabolismo , Flujo Génico , Genética de Población , Genoma , Ursidae/fisiología
2.
Nature ; 617(7960): 325-334, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37165237

RESUMEN

Single-nucleotide variants (SNVs) in segmental duplications (SDs) have not been systematically assessed because of the limitations of mapping short-read sequencing data1,2. Here we constructed 1:1 unambiguous alignments spanning high-identity SDs across 102 human haplotypes and compared the pattern of SNVs between unique and duplicated regions3,4. We find that human SNVs are elevated 60% in SDs compared to unique regions and estimate that at least 23% of this increase is due to interlocus gene conversion (IGC) with up to 4.3 megabase pairs of SD sequence converted on average per human haplotype. We develop a genome-wide map of IGC donors and acceptors, including 498 acceptor and 454 donor hotspots affecting the exons of about 800 protein-coding genes. These include 171 genes that have 'relocated' on average 1.61 megabase pairs in a subset of human haplotypes. Using a coalescent framework, we show that SD regions are slightly evolutionarily older when compared to unique sequences, probably owing to IGC. SNVs in SDs, however, show a distinct mutational spectrum: a 27.1% increase in transversions that convert cytosine to guanine or the reverse across all triplet contexts and a 7.6% reduction in the frequency of CpG-associated mutations when compared to unique DNA. We reason that these distinct mutational properties help to maintain an overall higher GC content of SD DNA compared to that of unique DNA, probably driven by GC-biased conversion between paralogous sequences5,6.


Asunto(s)
Conversión Génica , Mutación , Duplicaciones Segmentarias en el Genoma , Humanos , Conversión Génica/genética , Genoma Humano/genética , Polimorfismo de Nucleótido Simple/genética , Haplotipos/genética , Exones/genética , Citosina/química , Guanina/química , Islas de CpG/genética
3.
Nature ; 605(7910): 497-502, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35545679

RESUMEN

Although germline mutation rates and spectra can vary within and between species, common genetic modifiers of the mutation rate have not been identified in nature1. Here we searched for loci that influence germline mutagenesis using a uniquely powerful resource: a panel of recombinant inbred mouse lines known as the BXD, descended from the laboratory strains C57BL/6J (B haplotype) and DBA/2J (D haplotype). Each BXD lineage has been maintained by brother-sister mating in the near absence of natural selection, accumulating de novo mutations for up to 50 years on a known genetic background that is a unique linear mosaic of B and D haplotypes2. We show that mice inheriting D haplotypes at a quantitative trait locus on chromosome 4 accumulate C>A germline mutations at a 50% higher rate than those inheriting B haplotypes, primarily owing to the activity of a C>A-dominated mutational signature known as SBS18. The B and D quantitative trait locus haplotypes encode different alleles of Mutyh, a DNA repair gene that underlies the heritable cancer predisposition syndrome that causes colorectal tumors with a high SBS18 mutation load3,4. Both B and D Mutyh alleles are present in wild populations of Mus musculus domesticus, providing evidence that common genetic variation modulates germline mutagenesis in a model mammalian species.


Asunto(s)
Mutación de Línea Germinal , Mamíferos , Sitios de Carácter Cuantitativo , Alelos , Animales , Variación Genética , Haplotipos/genética , Masculino , Mamíferos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Mutación , Sitios de Carácter Cuantitativo/genética
4.
Mol Biol Evol ; 40(4)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37039557

RESUMEN

SARS-CoV-2 evolves rapidly in part because of its high mutation rate. Here, we examine whether this mutational process itself has changed during viral evolution. To do this, we quantify the relative rates of different types of single-nucleotide mutations at 4-fold degenerate sites in the viral genome across millions of human SARS-CoV-2 sequences. We find clear shifts in the relative rates of several types of mutations during SARS-CoV-2 evolution. The most striking trend is a roughly 2-fold decrease in the relative rate of G→T mutations in Omicron versus early clades, as was recently noted by Ruis et al. (2022. Mutational spectra distinguish SARS-CoV-2 replication niches. bioRxiv, doi:10.1101/2022.09.27.509649). There is also a decrease in the relative rate of C→T mutations in Delta, and other subtle changes in the mutation spectrum along the phylogeny. We speculate that these changes in the mutation spectrum could arise from viral mutations that affect genome replication, packaging, and antagonization of host innate-immune factors, although environmental factors could also play a role. Interestingly, the mutation spectrum of Omicron is more similar than that of earlier SARS-CoV-2 clades to the spectrum that shaped the long-term evolution of sarbecoviruses. Overall, our work shows that the mutation process is itself a dynamic variable during SARS-CoV-2 evolution and suggests that human SARS-CoV-2 may be trending toward a mutation spectrum more similar to that of other animal sarbecoviruses.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Animales , Humanos , SARS-CoV-2 , Mutación , Tasa de Mutación , Genoma Viral
5.
Mol Biol Evol ; 40(10)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37770035

RESUMEN

Although evolutionary biologists have long theorized that variation in DNA repair efficacy might explain some of the diversity of lifespan and cancer incidence across species, we have little data on the variability of normal germline mutagenesis outside of humans. Here, we shed light on the spectrum and etiology of mutagenesis across mammals by quantifying mutational sequence context biases using polymorphism data from thirteen species of mice, apes, bears, wolves, and cetaceans. After normalizing the mutation spectrum for reference genome accessibility and k-mer content, we use the Mantel test to deduce that mutation spectrum divergence is highly correlated with genetic divergence between species, whereas life history traits like reproductive age are weaker predictors of mutation spectrum divergence. Potential bioinformatic confounders are only weakly related to a small set of mutation spectrum features. We find that clock-like mutational signatures previously inferred from human cancers cannot explain the phylogenetic signal exhibited by the mammalian mutation spectrum, despite the ability of these signatures to fit each species' 3-mer spectrum with high cosine similarity. In contrast, parental aging signatures inferred from human de novo mutation data appear to explain much of the 1-mer spectrum's phylogenetic signal in combination with a novel mutational signature. We posit that future models purporting to explain the etiology of mammalian mutagenesis need to capture the fact that more closely related species have more similar mutation spectra; a model that fits each marginal spectrum with high cosine similarity is not guaranteed to capture this hierarchy of mutation spectrum variation among species.


Asunto(s)
Mamíferos , Neoplasias , Humanos , Animales , Ratones , Filogenia , Mutación , Mamíferos/genética , Mutagénesis , Flujo Genético , Cetáceos , Neoplasias/genética
6.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34016747

RESUMEN

As populations boom and bust, the accumulation of genetic diversity is modulated, encoding histories of living populations in present-day variation. Many methods exist to decode these histories, and all must make strong model assumptions. It is typical to assume that mutations accumulate uniformly across the genome at a constant rate that does not vary between closely related populations. However, recent work shows that mutational processes in human and great ape populations vary across genomic regions and evolve over time. This perturbs the mutation spectrum (relative mutation rates in different local nucleotide contexts). Here, we develop theoretical tools in the framework of Kingman's coalescent to accommodate mutation spectrum dynamics. We present mutation spectrum history inference (mushi), a method to perform nonparametric inference of demographic and mutation spectrum histories from allele frequency data. We use mushi to reconstruct trajectories of effective population size and mutation spectrum divergence between human populations, identify mutation signatures and their dynamics in different human populations, and calibrate the timing of a previously reported mutational pulse in the ancestors of Europeans. We show that mutation spectrum histories can be placed in a well-studied theoretical setting and rigorously inferred from genomic variation data, like other features of evolutionary history.


Asunto(s)
Frecuencia de los Genes/genética , Genética de Población/estadística & datos numéricos , Modelos Genéticos , Mutación/genética , Animales , Variación Genética/genética , Genómica , Hominidae/genética , Humanos , Tasa de Mutación , Densidad de Población
7.
PLoS Biol ; 18(9): e3000860, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32960891

RESUMEN

Engagement with scientific manuscripts is frequently facilitated by Twitter and other social media platforms. As such, the demographics of a paper's social media audience provide a wealth of information about how scholarly research is transmitted, consumed, and interpreted by online communities. By paying attention to public perceptions of their publications, scientists can learn whether their research is stimulating positive scholarly and public thought. They can also become aware of potentially negative patterns of interest from groups that misinterpret their work in harmful ways, either willfully or unintentionally, and devise strategies for altering their messaging to mitigate these impacts. In this study, we collected 331,696 Twitter posts referencing 1,800 highly tweeted bioRxiv preprints and leveraged topic modeling to infer the characteristics of various communities engaging with each preprint on Twitter. We agnostically learned the characteristics of these audience sectors from keywords each user's followers provide in their Twitter biographies. We estimate that 96% of the preprints analyzed are dominated by academic audiences on Twitter, suggesting that social media attention does not always correspond to greater public exposure. We further demonstrate how our audience segmentation method can quantify the level of interest from nonspecialist audience sectors such as mental health advocates, dog lovers, video game developers, vegans, bitcoin investors, conspiracy theorists, journalists, religious groups, and political constituencies. Surprisingly, we also found that 10% of the preprints analyzed have sizable (>5%) audience sectors that are associated with right-wing white nationalist communities. Although none of these preprints appear to intentionally espouse any right-wing extremist messages, cases exist in which extremist appropriation comprises more than 50% of the tweets referencing a given preprint. These results present unique opportunities for improving and contextualizing the public discourse surrounding scientific research.


Asunto(s)
Bases de Datos como Asunto , Publicaciones , Ciencia , Cambio Social , Medios de Comunicación Sociales , Academias e Institutos/organización & administración , Academias e Institutos/normas , Academias e Institutos/estadística & datos numéricos , Acceso a la Información , Bases de Datos como Asunto/organización & administración , Bases de Datos como Asunto/normas , Bases de Datos como Asunto/estadística & datos numéricos , Procesamiento Automatizado de Datos/organización & administración , Procesamiento Automatizado de Datos/normas , Procesamiento Automatizado de Datos/estadística & datos numéricos , Humanos , Alfabetización Informacional , Internet/organización & administración , Internet/normas , Internet/estadística & datos numéricos , Activismo Político , Publicaciones/clasificación , Publicaciones/normas , Publicaciones/estadística & datos numéricos , Publicaciones/provisión & distribución , Ciencia/organización & administración , Ciencia/normas , Ciencia/estadística & datos numéricos , Medios de Comunicación Sociales/organización & administración , Medios de Comunicación Sociales/normas , Medios de Comunicación Sociales/estadística & datos numéricos
8.
Mol Biol Evol ; 35(5): 1120-1129, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29471451

RESUMEN

Recent genomic analyses have provided substantial evidence for past periods of gene flow from polar bears (Ursus maritimus) into Alaskan brown bears (Ursus arctos), with some analyses suggesting a link between climate change and genomic introgression. However, because it has mainly been possible to sample bears from the present day, the timing, frequency, and evolutionary significance of this admixture remains unknown. Here, we analyze genomic DNA from three additional and geographically distinct brown bear populations, including two that lived temporally close to the peak of the last ice age. We find evidence of admixture in all three populations, suggesting that admixture between these species has been common in their recent evolutionary history. In addition, analyses of ten fossil bears from the now-extinct Irish population indicate that admixture peaked during the last ice age, whereas brown bear and polar bear ranges overlapped. Following this peak, the proportion of polar bear ancestry in Irish brown bears declined rapidly until their extinction. Our results support a model in which ice age climate change created geographically widespread conditions conducive to admixture between polar bears and brown bears, as is again occurring today. We postulate that this model will be informative for many admixing species pairs impacted by climate change. Our results highlight the power of paleogenomics to reveal patterns of evolutionary change that are otherwise masked in contemporary data.


Asunto(s)
Cambio Climático , Fósiles , Flujo Génico , Hibridación Genética , Ursidae/genética , Animales , Cubierta de Hielo
9.
Proc Natl Acad Sci U S A ; 112(11): 3439-44, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25733855

RESUMEN

As humans dispersed out of Africa they adapted to new environmental challenges, including changes in exposure to mutagenic solar radiation. Humans in temperate latitudes have acquired light skin that is relatively transparent to UV light, and some evidence suggests that their DNA damage response pathways have also experienced local adaptation. This raises the possibility that different populations have experienced different selective pressures affecting genome integrity. Here, I present evidence that the rate of a particular mutation type has recently increased in the European population, rising in frequency by 50% during the 40,000-80,000 y since Europeans began diverging from Asians. A comparison of SNPs private to Africa, Asia, and Europe in the 1000 Genomes data reveals that private European variation is enriched for the transition 5'-TCC-3' → 5'-TTC-3'. Although it is not clear whether UV played a causal role in changing the European mutational spectrum, 5'-TCC-3' → 5'-TTC-3' is known to be the most common somatic mutation present in melanoma skin cancers, as well as the mutation most frequently induced in vitro by UV. Regardless of its causality, this change indicates that DNA replication fidelity has not remained stable even since the origin of modern humans and might have changed numerous times during our recent evolutionary history.


Asunto(s)
Evolución Biológica , Genética de Población , Tasa de Mutación , Biología Computacional , Europa (Continente) , Variación Genética , Humanos , Mutación , Transcripción Genética
10.
BMC Biol ; 15(1): 73, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28859637

RESUMEN

Genomic evidence has demonstrated that humans and Neanderthals interbred. Today, the genomes of most individuals outside Africa contain 2-3% Neanderthal DNA. However, it is still hotly debated why the Neanderthals went extinct and if humans contributed to the Neanderthal extinction. In this Q&A we explore what genomic data might have to say about this issue.


Asunto(s)
Evolución Molecular , Genoma Humano , Hibridación Genética , Hombre de Neandertal/genética , Animales , Fósiles , Genómica , Humanos
11.
Genome Res ; 24(9): 1445-54, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25079859

RESUMEN

About 2% of human genetic polymorphisms have been hypothesized to arise via multinucleotide mutations (MNMs), complex events that generate SNPs at multiple sites in a single generation. MNMs have the potential to accelerate the pace at which single genes evolve and to confound studies of demography and selection that assume all SNPs arise independently. In this paper, we examine clustered mutations that are segregating in a set of 1092 human genomes, demonstrating that the signature of MNM becomes enriched as large numbers of individuals are sampled. We estimate the percentage of linked SNP pairs that were generated by simultaneous mutation as a function of the distance between affected sites and show that MNMs exhibit a high percentage of transversions relative to transitions, findings that are reproducible in data from multiple sequencing platforms and cannot be attributed to sequencing error. Among tandem mutations that occur simultaneously at adjacent sites, we find an especially skewed distribution of ancestral and derived alleles, with GC → AA, GA → TT, and their reverse complements making up 27% of the total. These mutations have been previously shown to dominate the spectrum of the error-prone polymerase Pol ζ, suggesting that low-fidelity DNA replication by Pol ζ is at least partly responsible for the MNMs that are segregating in the human population. We develop statistical estimates of MNM prevalence that can be used to correct phylogenetic and population genetic inferences for the presence of complex mutations.


Asunto(s)
Genoma Humano , Modelos Genéticos , Mutación , Animales , Replicación del ADN , ADN Polimerasa Dirigida por ADN/genética , Frecuencia de los Genes , Humanos , Macaca mulatta/genética , Pan troglodytes/genética , Polimorfismo de Nucleótido Simple
12.
PLoS Genet ; 9(6): e1003521, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23754952

RESUMEN

There has been much recent excitement about the use of genetics to elucidate ancestral history and demography. Whole genome data from humans and other species are revealing complex stories of divergence and admixture that were left undiscovered by previous smaller data sets. A central challenge is to estimate the timing of past admixture and divergence events, for example the time at which Neanderthals exchanged genetic material with humans and the time at which modern humans left Africa. Here, we present a method for using sequence data to jointly estimate the timing and magnitude of past admixture events, along with population divergence times and changes in effective population size. We infer demography from a collection of pairwise sequence alignments by summarizing their length distribution of tracts of identity by state (IBS) and maximizing an analytic composite likelihood derived from a Markovian coalescent approximation. Recent gene flow between populations leaves behind long tracts of identity by descent (IBD), and these tracts give our method power by influencing the distribution of shared IBS tracts. In simulated data, we accurately infer the timing and strength of admixture events, population size changes, and divergence times over a variety of ancient and recent time scales. Using the same technique, we analyze deeply sequenced trio parents from the 1000 Genomes project. The data show evidence of extensive gene flow between Africa and Europe after the time of divergence as well as substructure and gene flow among ancestral hominids. In particular, we infer that recent African-European gene flow and ancient ghost admixture into Europe are both necessary to explain the spectrum of IBS sharing in the trios, rejecting simpler models that contain less population structure.


Asunto(s)
Flujo Génico , Genoma Humano , Hominidae/genética , Modelos Genéticos , Hombre de Neandertal/genética , África , Animales , Población Negra/genética , Europa (Continente) , Genética de Población , Haplotipos , Proyecto Genoma Humano , Humanos , Población Blanca/genética
13.
Elife ; 122024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381482

RESUMEN

Maintaining germline genome integrity is essential and enormously complex. Although many proteins are involved in DNA replication, proofreading, and repair, mutator alleles have largely eluded detection in mammals. DNA replication and repair proteins often recognize sequence motifs or excise lesions at specific nucleotides. Thus, we might expect that the spectrum of de novo mutations - the frequencies of C>T, A>G, etc. - will differ between genomes that harbor either a mutator or wild-type allele. Previously, we used quantitative trait locus mapping to discover candidate mutator alleles in the DNA repair gene Mutyh that increased the C>A germline mutation rate in a family of inbred mice known as the BXDs (Sasani et al., 2022, Ashbrook et al., 2021). In this study we developed a new method to detect alleles associated with mutation spectrum variation and applied it to mutation data from the BXDs. We discovered an additional C>A mutator locus on chromosome 6 that overlaps Ogg1, a DNA glycosylase involved in the same base-excision repair network as Mutyh (David et al., 2007). Its effect depends on the presence of a mutator allele near Mutyh, and BXDs with mutator alleles at both loci have greater numbers of C>A mutations than those with mutator alleles at either locus alone. Our new methods for analyzing mutation spectra reveal evidence of epistasis between germline mutator alleles and may be applicable to mutation data from humans and other model organisms.


Asunto(s)
Epistasis Genética , Mutación de Línea Germinal , Humanos , Animales , Ratones , Alelos , Mutación , Mapeo Cromosómico , Mamíferos
14.
Artículo en Inglés | MEDLINE | ID: mdl-38669515

RESUMEN

Novel sequencing technologies are making it increasingly possible to measure the mutation rates of somatic cell lineages. Accurate germline mutation rate measurement technologies have also been available for a decade, making it possible to assess how this fundamental evolutionary parameter varies across the tree of life. Here, we review some classical theories about germline and somatic mutation rate evolution that were formulated using principles of population genetics and the biology of aging and cancer. We find that somatic mutation rate measurements, while still limited in phylogenetic diversity, seem consistent with the theory that selection to preserve the soma is proportional to life span. However, germline and somatic theories make conflicting predictions regarding which species should have the most accurate DNA repair. Resolving this conflict will require carefully measuring how mutation rates scale with time and cell division and achieving a better understanding of mutation rate pleiotropy among cell types.

15.
bioRxiv ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38895202

RESUMEN

URA3 is frequently used in the yeast community as the mutation target for 5-fluoroorotic acid (5-FOA) resistance. We identified a novel class of ura6 mutants that can grow in the presence of 5-FOA. Unlike ura3 mutants, ura6 mutants remain prototrophic and grow in the absence of uracil. In addition to 5-FOA resistance, we found that mutations to URA6 also confer resistance to 5-fluorocytosine (5-FC) and 5-fluorouracil (5-FU). In total, we identified 50 unique missense mutations across 32 residues of URA6. We found that 28 out of the 32 affected residues are located in regions conserved between Saccharomyces cerevisiae and three clinically relevant pathogenic fungi. These findings suggest that mutations to URA6 present a second target for mutation screens utilizing 5-FOA as a selection marker as well as a potential mode of resistance to the antifungal therapeutic 5-FC.

16.
Genetics ; 226(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38298127

RESUMEN

Short tandem repeats (STRs) are hotspots of genomic variability in the human germline because of their high mutation rates, which have long been attributed largely to polymerase slippage during DNA replication. This model suggests that STR mutation rates should scale linearly with a father's age, as progenitor cells continually divide after puberty. In contrast, it suggests that STR mutation rates should not scale with a mother's age at her child's conception, since oocytes spend a mother's reproductive years arrested in meiosis II and undergo a fixed number of cell divisions that are independent of the age at ovulation. Yet, mirroring recent findings, we find that STR mutation rates covary with paternal and maternal age, implying that some STR mutations are caused by DNA damage in quiescent cells rather than polymerase slippage in replicating progenitor cells. These results echo the recent finding that DNA damage in oocytes is a significant source of de novo single nucleotide variants and corroborate evidence of STR expansion in postmitotic cells. However, we find that the maternal age effect is not confined to known hotspots of oocyte mutagenesis, nor are postzygotic mutations likely to contribute significantly. STR nucleotide composition demonstrates divergent effects on de novo mutation (DNM) rates between sexes. Unlike the paternal lineage, maternally derived DNMs at A/T STRs display a significantly greater association with maternal age than DNMs at G/C-containing STRs. These observations may suggest the mechanism and developmental timing of certain STR mutations and contradict prior attribution of replication slippage as the primary mechanism of STR mutagenesis.


Asunto(s)
Repeticiones de Microsatélite , Tasa de Mutación , Humanos , Femenino , Niño , Mutación , Padres , Meiosis , Nucleótidos
17.
bioRxiv ; 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37162999

RESUMEN

Maintaining germline genome integrity is essential and enormously complex. Although many proteins are involved in DNA replication, proofreading, and repair [1], mutator alleles have largely eluded detection in mammals. DNA replication and repair proteins often recognize sequence motifs or excise lesions at specific nucleotides. Thus, we might expect that the spectrum of de novo mutations - the frequencies of C>T, A>G, etc. - will differ between genomes that harbor either a mutator or wild-type allele. Previously, we used quantitative trait locus mapping to discover candidate mutator alleles in the DNA repair gene Mutyh that increased the C>A germline mutation rate in a family of inbred mice known as the BXDs [2,3]. In this study we developed a new method to detect alleles associated with mutation spectrum variation and applied it to mutation data from the BXDs. We discovered an additional C>A mutator locus on chromosome 6 that overlaps Ogg1, a DNA glycosylase involved in the same base-excision repair network as Mutyh [4]. Its effect depended on the presence of a mutator allele near Mutyh, and BXDs with mutator alleles at both loci had greater numbers of C>A mutations than those with mutator alleles at either locus alone. Our new methods for analyzing mutation spectra reveal evidence of epistasis between germline mutator alleles and may be applicable to mutation data from humans and other model organisms.

18.
bioRxiv ; 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37398383

RESUMEN

Little is known about how the spectrum and etiology of germline mutagenesis might vary among mammalian species. To shed light on this mystery, we quantify variation in mutational sequence context biases using polymorphism data from thirteen species of mice, apes, bears, wolves, and cetaceans. After normalizing the mutation spectrum for reference genome accessibility and k -mer content, we use the Mantel test to deduce that mutation spectrum divergence is highly correlated with genetic divergence between species, whereas life history traits like reproductive age are weaker predictors of mutation spectrum divergence. Potential bioinformatic confounders are only weakly related to a small set of mutation spectrum features. We find that clocklike mutational signatures previously inferred from human cancers cannot explain the phylogenetic signal exhibited by the mammalian mutation spectrum, despite the ability of these clocklike signatures to fit each species' 3-mer spectrum with high cosine similarity. In contrast, parental aging signatures inferred from human de novo mutation data appear to explain much of the mutation spectrum's phylogenetic signal when fit to non-context-dependent mutation spectrum data in combination with a novel mutational signature. We posit that future models purporting to explain the etiology of mammalian mutagenesis need to capture the fact that more closely related species have more similar mutation spectra; a model that fits each marginal spectrum with high cosine similarity is not guaranteed to capture this hierarchy of mutation spectrum variation among species.

19.
bioRxiv ; 2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38187618

RESUMEN

Short tandem repeats (STRs) are hotspots of genomic variability in the human germline because of their high mutation rates, which have long been attributed largely to polymerase slippage during DNA replication. This model suggests that STR mutation rates should scale linearly with a father's age, as progenitor cells continually divide after puberty. In contrast, it suggests that STR mutation rates should not scale with a mother's age at her child's conception, since oocytes spend a mother's reproductive years arrested in meiosis II and undergo a fixed number of cell divisions that are independent of the age at ovulation. Yet, mirroring recent findings, we find that STR mutation rates covary with paternal and maternal age, implying that some STR mutations are caused by DNA damage in quiescent cells rather than the classical mechanism of polymerase slippage in replicating progenitor cells. These results also echo the recent finding that DNA damage in quiescent oocytes is a significant source of de novo SNVs and corroborate evidence of STR expansion in postmitotic cells. However, we find that the maternal age effect is not confined to previously discovered hotspots of oocyte mutagenesis, nor are post-zygotic mutations likely to contribute significantly. STR nucleotide composition demonstrates divergent effects on DNM rates between sexes. Unlike the paternal lineage, maternally derived DNMs at A/T STRs display a significantly greater association with maternal age than DNMs at GC-containing STRs. These observations may suggest the mechanism and developmental timing of certain STR mutations and are especially surprising considering the prior belief in replication slippage as the dominant mechanism of STR mutagenesis.

20.
medRxiv ; 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38196581

RESUMEN

Variation in DNA repair genes can increase cancer risk by elevating the rate of oncogenic mutation. Defects in one such gene, MUTYH, are known to elevate the incidence of colorectal cancer in a recessive Mendelian manner, and some evidence has also linked MUTYH to elevated incidence of other cancers as well as elevated mutation rates in normal somatic and germline cells. Here, we use whole genome sequencing to measure germline de novo mutation rates in a large extended family affected by pathogenic MUTYH variation and a history of colorectal cancer. Although this family's genotype, p.Y179C/V234M (c.536A>G/700G>A on transcript NM_001128425), contains a variant with conflicting functional interpretations, we use an in vitro cell line assay to determine that it partially attenuates MUTYH's function. In the children of mothers affected by the Y179C/V234M genotype, we identify an elevation of the C>A mutation rate that is weaker than mutator effects previously reported to be caused by other pathogenic MUTYH genotypes, suggesting that mutation rates in normal tissues may be useful for classifying cancer-associated variation along a continuum of severity. Surprisingly, we detect no significant elevation of the C>A mutation rate in children born to a father with the same biallelic MUTYH genotype, despite calculating that we should have adequate power to detect such a mutator effect. This suggests that the oxidative stress repaired by MUTYH may contribute more to female reproductive aging than male reproductive aging in the general population.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA