Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Microbiology (Reading) ; 160(Pt 6): 1252-1266, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24777662

RESUMEN

Salmonella enterica sv. Typhimurium is an established model organism for Gram-negative, intracellular pathogens. Owing to the rapid spread of resistance to antibiotics among this group of pathogens, new approaches to identify suitable target proteins are required. Based on the genome sequence of S. Typhimurium and associated databases, a genome-scale metabolic model was constructed. Output was based on an experimental determination of the biomass of Salmonella when growing in glucose minimal medium. Linear programming was used to simulate variations in the energy demand while growing in glucose minimal medium. By grouping reactions with similar flux responses, a subnetwork of 34 reactions responding to this variation was identified (the catabolic core). This network was used to identify sets of one and two reactions that when removed from the genome-scale model interfered with energy and biomass generation. Eleven such sets were found to be essential for the production of biomass precursors. Experimental investigation of seven of these showed that knockouts of the associated genes resulted in attenuated growth for four pairs of reactions, whilst three single reactions were shown to be essential for growth.


Asunto(s)
Redes y Vías Metabólicas/genética , Salmonella typhimurium/genética , Antibacterianos/farmacología , Biomasa , Simulación por Computador , Medios de Cultivo/química , Técnicas de Inactivación de Genes , Genómica , Glucosa/metabolismo , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/crecimiento & desarrollo
2.
Sci Rep ; 10(1): 8438, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32439837

RESUMEN

We characterized the global transcriptome of Escherichia coli MG1655:: tetA grown in the presence of ½ MIC (14 mg/L) of OTC, and for comparison WT MG1655 strain grown with 1//2 MIC of OTC (0.25 mg/L OTC). 1646 genes changed expression significantly (FDR > 0.05) in the resistant strain, the majority of which (1246) were also regulated in WT strain. Genes involved in purine synthesis and ribosome structure and function were top-enriched among up-regulated genes, and anaerobic respiration, nitrate metabolism and aromatic amino acid biosynthesis genes among down-regulated genes. Blocking of the purine-synthesis- did not affect resistance phenotypes (MIC and growth rate with OTC), while blocking of protein synthesis using low concentrations of chloramphenicol or gentamicin, lowered MIC towards OTC. Metabolic-modeling, using a novel model for MG1655 and continuous weighing factor that reflected the degree of up or down regulation of genes encoding a reaction, identified 102 metabolic reactions with significant change in flux in MG1655:: tetA when grown in the presence of OTC compared to growth without OTC. These pathways could not have been predicted by simply analyzing functions of the up and down regulated genes, and thus this work has provided a novel method for identification of reactions which are essential in the adaptation to growth in the presence of antimicrobials.


Asunto(s)
Antibacterianos/farmacología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Metaboloma/efectos de los fármacos , Oxitetraciclina/farmacología , Resistencia a la Tetraciclina/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/genética , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica
3.
Front Microbiol ; 8: 1700, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28974944

RESUMEN

National surveillance of Shigella flexneri ensures the rapid detection of outbreaks to facilitate public health investigation and intervention strategies. In this study, we used whole-genome sequencing (WGS) to type S. flexneri in order to detect linked cases and support epidemiological investigations. We prospectively analyzed 330 isolates of S. flexneri received at the Gastrointestinal Bacteria Reference Unit at Public Health England between August 2015 and January 2016. Traditional phenotypic and WGS sub-typing methods were compared. PCR was carried out on isolates exhibiting phenotypic/genotypic discrepancies with respect to serotype. Phylogenetic relationships between isolates were analyzed by WGS using single nucleotide polymorphism (SNP) typing to facilitate cluster detection. For 306/330 (93%) isolates there was concordance between serotype derived from the genome and phenotypic serology. Discrepant results between the phenotypic and genotypic tests were attributed to novel O-antigen synthesis/modification gene combinations or indels identified in O-antigen synthesis/modification genes rendering them dysfunctional. SNP typing identified 36 clusters of two isolates or more. WGS provided microbiological evidence of epidemiologically linked clusters and detected novel O-antigen synthesis/modification gene combinations associated with two outbreaks. WGS provided reliable and robust data for monitoring trends in the incidence of different serotypes over time. SNP typing can be used to facilitate outbreak investigations in real-time thereby informing surveillance strategies and providing the opportunities for implementing timely public health interventions.

4.
J Biotechnol ; 251: 30-37, 2017 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-28385593

RESUMEN

Rice straw is a major crop residue which is burnt in many countries, creating significant air pollution. Thus, alternative routes for disposal of rice straw are needed. Biotechnological treatment of rice straw hydrolysate has potential to convert this agriculture waste into valuable biofuel(s) and platform chemicals. Geobacillus thermoglucosidasius is a thermophile with properties specially suited for use as a biocatalyst in lignocellulosic bioprocesses, such as high optimal temperature and tolerance to high levels of ethanol. However, the capabilities of G. thermoglucosidasius to utilise sugars in rice straw hydrolysate for making bioethanol and other platform chemicals have not been fully explored. In this work, we have created a genome scale metabolic model (denoted iGT736) of the organism containing 736 gene products, 1159 reactions and 1163 metabolites. The model was validated both by purely theoretical approaches and by comparing the behaviour of the model to previously published experimental results. The model was then used to determine the yields of a variety of platform chemicals from glucose and xylose - two primary sugars in rice straw hydrolysate. A comparison with results from a model of Escherichia coli shows that G. thermoglucosidasius is capable of producing a wider range of products, and that for the products also produced by E. coli, the yields are comparable. We also discuss strategies to utilise arabinose, a minor component of rice straw hydrolysate, and propose additional reactions to lead to the synthesis of xylitol, not currently produced by G. thermoglucosidasius. Our results provide additional motivation for the current exploration of the industrial potential of G. thermoglucosidasius and we make our model publicly available to aid the development of metabolic engineering strategies for this organism.


Asunto(s)
Geobacillus/metabolismo , Modelos Biológicos , Genoma Bacteriano , Geobacillus/genética , Glucosa/metabolismo , Lignina/metabolismo , Ingeniería Metabólica , Oryza , Residuos , Xilosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA