Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 47(3): 566-581.e9, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28930663

RESUMEN

Microglia play a pivotal role in the maintenance of brain homeostasis but lose homeostatic function during neurodegenerative disorders. We identified a specific apolipoprotein E (APOE)-dependent molecular signature in microglia from models of amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and Alzheimer's disease (AD) and in microglia surrounding neuritic ß-amyloid (Aß)-plaques in the brains of people with AD. The APOE pathway mediated a switch from a homeostatic to a neurodegenerative microglia phenotype after phagocytosis of apoptotic neurons. TREM2 (triggering receptor expressed on myeloid cells 2) induced APOE signaling, and targeting the TREM2-APOE pathway restored the homeostatic signature of microglia in ALS and AD mouse models and prevented neuronal loss in an acute model of neurodegeneration. APOE-mediated neurodegenerative microglia had lost their tolerogenic function. Our work identifies the TREM2-APOE pathway as a major regulator of microglial functional phenotype in neurodegenerative diseases and serves as a novel target that could aid in the restoration of homeostatic microglia.


Asunto(s)
Apolipoproteínas E/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglía/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Receptores Inmunológicos/metabolismo , Transducción de Señal , Transcriptoma , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Apoptosis/genética , Apoptosis/inmunología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Análisis por Conglomerados , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Marcación de Gen , Humanos , Tolerancia Inmunológica , Ratones , Ratones Noqueados , Ratones Transgénicos , Microglía/inmunología , Monocitos/inmunología , Monocitos/metabolismo , Enfermedades Neurodegenerativas/inmunología , Neuronas/metabolismo , Fagocitosis/genética , Fagocitosis/inmunología , Fenotipo , Placa Amiloide/metabolismo , Placa Amiloide/patología , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
2.
Circ Res ; 133(12): 966-988, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-37955182

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is a chronic vascular disease characterized, among other abnormalities, by hyperproliferative smooth muscle cells and a perturbed cellular redox and metabolic balance. Oxidants induce cell cycle arrest to halt proliferation; however, little is known about the redox-regulated effector proteins that mediate these processes. Here, we report a novel kinase-inhibitory disulfide bond in cyclin D-CDK4 (cyclin-dependent kinase 4) and investigate its role in cell proliferation and PH. METHODS: Oxidative modifications of cyclin D-CDK4 were detected in human pulmonary arterial smooth muscle cells and human pulmonary arterial endothelial cells. Site-directed mutagenesis, tandem mass-spectrometry, cell-based experiments, in vitro kinase activity assays, in silico structural modeling, and a novel redox-dead constitutive knock-in mouse were utilized to investigate the nature and definitively establish the importance of CDK4 cysteine modification in pulmonary vascular cell proliferation. Furthermore, the cyclin D-CDK4 oxidation was assessed in vivo in the pulmonary arteries and isolated human pulmonary arterial smooth muscle cells of patients with pulmonary arterial hypertension and in 3 preclinical models of PH. RESULTS: Cyclin D-CDK4 forms a reversible oxidant-induced heterodimeric disulfide dimer between C7/8 and C135, respectively, in cells in vitro and in pulmonary arteries in vivo to inhibit cyclin D-CDK4 kinase activity, decrease Rb (retinoblastoma) protein phosphorylation, and induce cell cycle arrest. Mutation of CDK4 C135 causes a kinase-impaired phenotype, which decreases cell proliferation rate and alleviates disease phenotype in an experimental mouse PH model, suggesting this cysteine is indispensable for cyclin D-CDK4 kinase activity. Pulmonary arteries and human pulmonary arterial smooth muscle cells from patients with pulmonary arterial hypertension display a decreased level of CDK4 disulfide, consistent with CDK4 being hyperactive in human pulmonary arterial hypertension. Furthermore, auranofin treatment, which induces the cyclin D-CDK4 disulfide, attenuates disease severity in experimental PH models by mitigating pulmonary vascular remodeling. CONCLUSIONS: A novel disulfide bond in cyclin D-CDK4 acts as a rapid switch to inhibit kinase activity and halt cell proliferation. This oxidative modification forms at a critical cysteine residue, which is unique to CDK4, offering the potential for the design of a selective covalent inhibitor predicted to be beneficial in PH.


Asunto(s)
Ciclinas , Hipertensión Arterial Pulmonar , Humanos , Ratones , Animales , Ciclinas/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Cisteína/metabolismo , Células Endoteliales/metabolismo , Proliferación Celular , Arteria Pulmonar/metabolismo , Fosforilación , Puntos de Control del Ciclo Celular , Ciclina D/metabolismo , Células Cultivadas , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(26): 13016-13025, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31186362

RESUMEN

Chronic hypoxia causes pulmonary hypertension (PH), vascular remodeling, right ventricular (RV) hypertrophy, and cardiac failure. Protein kinase G Iα (PKGIα) is susceptible to oxidation, forming an interprotein disulfide homodimer associated with kinase targeting involved in vasodilation. Here we report increased disulfide PKGIα in pulmonary arteries from mice with hypoxic PH or lungs from patients with pulmonary arterial hypertension. This oxidation is likely caused by oxidants derived from NADPH oxidase-4, superoxide dismutase 3, and cystathionine γ-lyase, enzymes that were concomitantly increased in these samples. Indeed, products that may arise from these enzymes, including hydrogen peroxide, glutathione disulfide, and protein-bound persulfides, were increased in the plasma of hypoxic mice. Furthermore, low-molecular-weight hydropersulfides, which can serve as "superreductants" were attenuated in hypoxic tissues, consistent with systemic oxidative stress and the oxidation of PKGIα observed. Inhibiting cystathionine γ-lyase resulted in decreased hypoxia-induced disulfide PKGIα and more severe PH phenotype in wild-type mice, but not in Cys42Ser PKGIα knock-in (KI) mice that are resistant to oxidation. In addition, KI mice also developed potentiated PH during hypoxia alone. Thus, oxidation of PKGIα is an adaptive mechanism that limits PH, a concept further supported by polysulfide treatment abrogating hypoxia-induced RV hypertrophy in wild-type, but not in the KI, mice. Unbiased transcriptomic analysis of hypoxic lungs before structural remodeling identified up-regulation of endothelial-to-mesenchymal transition pathways in the KI compared with wild-type mice. Thus, disulfide PKGIα is an intrinsic adaptive mechanism that attenuates PH progression not only by promoting vasodilation but also by limiting maladaptive growth and fibrosis signaling.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Hipertensión Pulmonar/patología , Hipoxia/complicaciones , Arteria Pulmonar/patología , Adulto , Animales , Línea Celular , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/química , Cistationina gamma-Liasa/antagonistas & inhibidores , Cistationina gamma-Liasa/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Disulfuros/química , Femenino , Fibrosis , Técnicas de Sustitución del Gen , Humanos , Hipertensión Pulmonar/sangre , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/prevención & control , Hipoxia/sangre , Hipoxia/tratamiento farmacológico , Pulmón/irrigación sanguínea , Pulmón/patología , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Oxidantes/metabolismo , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Sulfuros/administración & dosificación , Sulfuros/sangre , Sulfuros/metabolismo , Regulación hacia Arriba , Vasoconstricción/efectos de los fármacos , Vasodilatación/efectos de los fármacos
4.
J Virol ; 94(21)2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32817220

RESUMEN

Lassa fever (LF) is a zoonotic viral hemorrhagic fever caused by Lassa virus (LASV), which is endemic to West African countries. Previous studies have suggested an important role for T-cell-mediated immunopathology in LF pathogenesis, but the mechanisms by which T cells influence disease severity and outcome are not well understood. Here, we present a multiparametric analysis of clinical immunology data collected during the 2017-2018 Lassa fever outbreak in Nigeria. During the acute phase of LF, we observed robust activation of the polyclonal T-cell repertoire, which included LASV-specific and antigenically unrelated T cells. However, severe and fatal LF cases were characterized by poor LASV-specific effector T-cell responses. Severe LF was also characterized by the presence of circulating T cells with homing capacity to inflamed tissues, including the gut mucosa. These findings in LF patients were recapitulated in a mouse model of LASV infection, in which mucosal exposure resulted in remarkably high lethality compared to skin exposure. Taken together, our findings indicate that poor LASV-specific T-cell responses and activation of nonspecific T cells with homing capacity to inflamed tissues are associated with severe LF.IMPORTANCE Lassa fever may cause severe disease in humans, in particular in areas of endemicity like Sierra Leone and Nigeria. Despite its public health importance, the pathophysiology of Lassa fever in humans is poorly understood. Here, we present clinical immunology data obtained in the field during the 2018 Lassa fever outbreak in Nigeria indicating that severe Lassa fever is associated with activation of T cells antigenically unrelated to Lassa virus and poor Lassa virus-specific effector T-cell responses. Mechanistically, we show that these bystander T cells express defined tissue homing signatures that suggest their recruitment to inflamed tissues and a putative role of these T cells in immunopathology. These findings open a window of opportunity to consider T-cell targeting as a potential postexposure therapeutic strategy against severe Lassa fever, a hypothesis that could be tested in relevant animal models, such as nonhuman primates.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Brotes de Enfermedades , Mucosa Intestinal/inmunología , Fiebre de Lassa/inmunología , Virus Lassa/patogenicidad , Activación de Linfocitos , Adolescente , Adulto , Anciano , Animales , Linfocitos T CD4-Positivos/patología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/patología , Linfocitos T CD8-positivos/virología , Niño , Preescolar , Femenino , Regulación de la Expresión Génica , Antígenos HLA-DR/genética , Antígenos HLA-DR/inmunología , Humanos , Lactante , Recién Nacido , Integrina beta1/genética , Integrina beta1/inmunología , Interferón gamma/genética , Interferón gamma/inmunología , Mucosa Intestinal/patología , Mucosa Intestinal/virología , Fiebre de Lassa/genética , Fiebre de Lassa/mortalidad , Fiebre de Lassa/virología , Virus Lassa/crecimiento & desarrollo , Virus Lassa/inmunología , Proteína 1 de la Membrana Asociada a los Lisosomas/genética , Proteína 1 de la Membrana Asociada a los Lisosomas/inmunología , Masculino , Ratones , Persona de Mediana Edad , Nigeria/epidemiología , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Piel/inmunología , Piel/patología , Piel/virología , Análisis de Supervivencia , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
5.
Reproduction ; 160(1): 155-169, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32130203

RESUMEN

Strategically located in mucosal barriers, innate lymphoid cells (ILCs) are relevant in local containment and tolerance of commensal microflora. ILCs have been recently described at the fetomaternal interface, where the development of a semi-allogeneic fetus can only succeed in a well-controlled immune environment. We postulate that ILCs adapt their antigen presentation capacity to protect pregnancy from excessive immune responses. Human ILCs were studied in deciduae of term pregnancies, peripheral blood and in in vitro generated ILCs. Fresh isolated lymphocytes or cells treated with pregnancy-related factors were investigated. The fetal antigen rejection-based CBA/J × DBA/2J mouse model (poor outcome pregnant mice; POPM) was used to characterize ILC antigen presentation potential in normal and immunologically disturbed pregnancies. ILC antigen presentation potential was characterized by flow cytometry and qPCR. We discovered that the distribution of ILC subsets changed during both human and murine pregnancy. Moreover, the pregnancy was accompanied by reduced MHCII expression in splenic ILCs during normal pregnancy (CBA/J × BALB/c; good outcome pregnant mice; GOPM) but increased in splenic and intestinal ILCs of CBA/J × DBA/2J mice. In vitro, splenic ILCs from pregnant mice increased MHCII expression after stimulation with IL-1ß and IL-23. In contrast, uterine ILCs displayed lower MHCII expression, which remained unchanged after stimulation. Finally, pregnancy-related factors and hormones present in the uterine environment reduced antigen presentation potential of human ILCs in vitro. Together, these data indicate that, during pregnancy, peripheral and especially uterine ILCs adapt their antigen presenting potential to maintain a level of tolerance and support pregnancy.


Asunto(s)
Presentación de Antígeno/inmunología , Feto/inmunología , Hormonas/farmacología , Tolerancia Inmunológica/inmunología , Inmunidad Innata/inmunología , Linfocitos/inmunología , Animales , Presentación de Antígeno/efectos de los fármacos , Femenino , Feto/efectos de los fármacos , Humanos , Tolerancia Inmunológica/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Linfocitos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos CBA , Ratones Endogámicos DBA , Embarazo
6.
J Infect Dis ; 215(1): 70-79, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28077585

RESUMEN

Severe human adenovirus (HAdV) infections are an increasing threat for immunosuppressed individuals, particularly those who have received stem cell transplants. It has been previously hypothesized that severe infections might be due to reactivation of a persistent infection, but this hypothesis has been difficult to test owing to the lack of a permissive in vivo model of HAdV infection. Here we established a humanized mouse model that reproduces features of acute and persistent HAdV infection. In this model, acute infection correlated with high mortality, weight loss, liver pathology, and expression of viral proteins in several organs. In contrast, persistent infection was asymptomatic and led to establishment of HAdV-specific adaptive immunity and expression of early viral genes exclusively in the bone marrow. These findings validate the use of humanized mice to study acute and persistent HAdV infection and strongly suggest the presence of cellular reservoirs in the bone marrow.


Asunto(s)
Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/fisiología , Infecciones Asintomáticas , Modelos Animales de Enfermedad , Enfermedad Aguda , Inmunidad Adaptativa , Infecciones por Adenovirus Humanos/inmunología , Adenovirus Humanos/genética , Adenovirus Humanos/inmunología , Animales , Médula Ósea/virología , ADN Viral/genética , Humanos , Huésped Inmunocomprometido , Hígado/patología , Hígado/virología , Ratones , Ratones Transgénicos , Carga Viral , Viremia
7.
Infect Immun ; 85(6)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28289147

RESUMEN

Rickettsia typhi is the causative agent of endemic typhus, a disease with increasing incidence worldwide that can be fatal. Because of its obligate intracellular life style, genetic manipulation of the pathogen is difficult. Nonetheless, in recent years, genetic manipulation tools have been successfully applied to rickettsiae. We describe here for the first time the transformation of R. typhi with the pRAM18dRGA plasmid that originally derives from Rickettsia amblyommatis and encodes the expression of GFPuv (green fluorescent protein with maximal fluorescence when excited by UV light). Transformed R. typhi (R. typhiGFPuv) bacteria are viable, replicate with kinetics similar to those of wild-type R. typhi in cell culture, and stably maintain the plasmid and GFPuv expression under antibiotic treatment in vitro and in vivo during infection of mice. CB17 SCID mice infected with R. typhiGFPuv succumb to the infection with kinetics similar to those for animals infected with wild-type R. typhi and develop comparable pathology and bacterial loads in the organs, demonstrating that the plasmid does not influence pathogenicity. In the spleen and liver of infected CB17 SCID mice, the bacteria are detectable by immunofluorescence microscopy in neutrophils and macrophages by histological staining. Finally, we show for the first time that transformed rickettsiae can be used for the detection of CD8+ T cell responses. GFP-specific restimulation of spleen cells from R. typhiGFPuv-infected BALB/c mice elicits gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin 2 (IL-2) secretion by CD8+ T cells. Thus, R. typhiGFPuv bacteria are a novel, potent tool to study infection with the pathogen in vitro and in vivo and the immune response to these bacteria.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Citocinas/inmunología , Rickettsia typhi/patogenicidad , Tifus Endémico Transmitido por Pulgas/inmunología , Animales , Proteínas Fluorescentes Verdes/genética , Hígado/microbiología , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Neutrófilos/microbiología , Plásmidos , Rickettsia typhi/genética , Bazo/microbiología , Transformación Bacteriana , Tifus Endémico Transmitido por Pulgas/microbiología
8.
Biochem Biophys Res Commun ; 469(4): 1069-74, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26731031

RESUMEN

We have previously reported that the hormone calcitonin (CT) negatively regulates bone formation by inhibiting the release of sphingosine-1-phosphate from bone-resorbing osteoclasts. In the context of this study we additionally observed that CT repressed the expression of Pate4, encoding the secreted protein caltrin/Svs7, in osteoclasts from wildtype mice. To assess a possible function of Pate4 in bone remodeling, we utilized commercially available embryonic stem cells with a targeted Pate4 allele to generate Pate4-deficient mice. These were born at the expected Mendelian ratio and did not display obvious abnormalities until the age of 6 months. A bone-specific histomorphometric analysis further revealed that bone remodeling is unaffected in male and female Pate4-deficient mice. Since a subsequently performed multi-tissue expression analysis confirmed that Pate4 is primarily expressed in prostate and seminal vesicles, we additionally analyzed the respective tissues of Pate4-deficient mice, but failed to detect histological abnormalities. Most importantly, as assessed by mating with female wildtype mice, we did not observe reduced fertility associated with Pate4-deficiency. Taken together, our study was the first to generate and analyze a mouse model lacking Pate4, a gene with strong expression in prostate and seminal vesicles, yet without major function for fertility.


Asunto(s)
Anomalías Múltiples/genética , Resorción Ósea/genética , Proteínas Portadoras/genética , Ratones/genética , Proteínas de Secreción de la Vesícula Seminal/genética , Animales , Predisposición Genética a la Enfermedad/genética , Ratones Noqueados , Fenotipo
9.
Nat Med ; 29(5): 1243-1252, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37188781

RESUMEN

We characterized the world's second case with ascertained extreme resilience to autosomal dominant Alzheimer's disease (ADAD). Side-by-side comparisons of this male case and the previously reported female case with ADAD homozygote for the APOE3 Christchurch (APOECh) variant allowed us to discern common features. The male remained cognitively intact until 67 years of age despite carrying a PSEN1-E280A mutation. Like the APOECh carrier, he had extremely elevated amyloid plaque burden and limited entorhinal Tau tangle burden. He did not carry the APOECh variant but was heterozygous for a rare variant in RELN (H3447R, termed COLBOS after the Colombia-Boston biomarker research study), a ligand that like apolipoprotein E binds to the VLDLr and APOEr2 receptors. RELN-COLBOS is a gain-of-function variant showing stronger ability to activate its canonical protein target Dab1 and reduce human Tau phosphorylation in a knockin mouse. A genetic variant in a case protected from ADAD suggests a role for RELN signaling in resilience to dementia.


Asunto(s)
Enfermedad de Alzheimer , Animales , Femenino , Humanos , Masculino , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Heterocigoto , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal
10.
Cells ; 11(19)2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36230910

RESUMEN

Prion diseases are neurodegenerative diseases that affect humans and animals. They are always fatal and, to date, no treatment exists. The hallmark of prion disease pathophysiology is the misfolding of an endogenous protein, the cellular prion protein (PrPC), into its disease-associated isoform PrPSc. Besides the aggregation and deposition of misfolded PrPSc, prion diseases are characterized by spongiform lesions and the activation of astrocytes and microglia. Microglia are the innate immune cells of the brain. Activated microglia and astrocytes represent a common pathological feature in neurodegenerative disorders. The role of activated microglia has already been studied in prion disease mouse models; however, it is still not fully clear how they contribute to disease progression. Moreover, the role of microglia in human prion diseases has not been thoroughly investigated thus far, and specific molecular pathways are still undetermined. Here, we review the current knowledge on the different roles of microglia in prion pathophysiology. We discuss microglia markers that are also dysregulated in other neurodegenerative diseases including microglia homeostasis markers. Data on murine and human brain tissues show that microglia are highly dysregulated in prion diseases. We highlight here that the loss of homeostatic markers may especially stand out.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedades por Prión , Priones , Animales , Homeostasis , Humanos , Ratones , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades por Prión/metabolismo , Proteínas Priónicas/metabolismo , Priones/metabolismo , Isoformas de Proteínas/metabolismo
11.
FEBS J ; 289(15): 4622-4645, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35176204

RESUMEN

Four-and-a-half LIM domains protein 2 (FHL2) is an anti-hypertrophic adaptor protein that regulates cardiac myocyte signalling and function. Herein, we identified cardiomyopathy-associated 5 (CMYA5) as a novel FHL2 interaction partner in cardiac myocytes. In vitro pull-down assays demonstrated interaction between FHL2 and the N- and C-terminal regions of CMYA5. The interaction was verified in adult cardiac myocytes by proximity ligation assays. Immunofluorescence and confocal microscopy demonstrated co-localisation in the same subcellular compartment. The binding interface between FHL2 and CMYA5 was mapped by peptide arrays. Exposure of neonatal rat ventricular myocytes to a CMYA5 peptide covering one of the FHL2 interaction sites led to an increase in cell area at baseline, but a blunted response to chronic phenylephrine treatment. In contrast to wild-type hearts, loss or reduced FHL2 expression in Fhl2-targeted knockout mouse hearts or in a humanised mouse model of hypertrophic cardiomyopathy led to redistribution of CMYA5 into the perinuclear and intercalated disc region. Taken together, our results indicate a direct interaction of the two adaptor proteins FHL2 and CMYA5 in cardiac myocytes, which might impact subcellular compartmentation of CMYA5.


Asunto(s)
Cardiomiopatía Hipertrófica , Péptidos y Proteínas de Señalización Intracelular , Proteínas con Homeodominio LIM , Proteínas Musculares , Miocitos Cardíacos , Factores de Transcripción , Animales , Cardiomiopatía Hipertrófica/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Ratas , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
IEEE Trans Biomed Eng ; 69(7): 2305-2313, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35025732

RESUMEN

OBJECTIVE: Decellularizing solid organs is a promising top-down process to produce acellular bio-scaffolds for 'de novo' regrowth or application as tissue 'patches' that compensate, e.g., large volumetric muscle loss in reconstructive surgery. Therefore, generating standardized acellular muscle scaffolds marks a pressing area of need. Although animal muscle decellularization protocols were established, those are mostly manually performed and lack defined bioreactor environments and metrologies to assess decellularization quality in real-time. To close this gap, we engineered an automated bioreactor system to provide chemical decellularization solutions to immersed whole rat gastrocnemius medialis muscle through perfusion of the main feeding arteries. RESULTS: Perfusion control is adjustable according to decellularization quality feedback. This was assessed both from (i) ex situ assessment of sarcomeres/nuclei through multiphoton fluorescence and label-free Second Harmonic Generation microscopy and DNA quantification, along with (ii) in situ within the bioreactor environment assessment of the sample's passive mechanical elasticity. CONCLUSION: We find DNA and sarcomere-free constructs after 72 h of 0.1% SDS perfusion-decellularization. Furthermore, passive elasticity can be implemented as additional online decellularization quality measure, noting a threefold elasticity decrease in acellular constructs. SIGNIFICANCE: Our MyoBio represents a novel and useful automated bioreactor environment for standardized and controlled generation of acellular whole muscle scaffolds as a valuable source for regenerative medicine.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Animales , Reactores Biológicos , ADN , Matriz Extracelular , Músculo Esquelético , Perfusión , Ratas , Ingeniería de Tejidos/métodos
13.
Matrix Biol Plus ; 16: 100122, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36193159

RESUMEN

Aortic smooth muscle cells (SMCs) have an intrinsic role in regulating vessel homeostasis and pathological remodelling. In two-dimensional (2D) cell culture formats, however, SMCs are not embedded in their physiological extracellular matrix (ECM) environment. To overcome the limitations of conventional 2D SMC cultures, we established a 3D in vitro model of engineered vascular smooth muscle cell tissues (EVTs). EVTs were casted from primary murine aortic SMCs by suspending a SMC-fibrin master mix between two flexible silicon-posts at day 0 before prolonged culture up to 14 days. Immunohistochemical analysis of EVT longitudinal sections demonstrated that SMCs were aligned, viable and secretory. Mass spectrometry-based proteomics analysis of murine EVT lysates was performed and identified 135 matrisome proteins. Proteoglycans, including the large aggregating proteoglycan versican, accumulated within EVTs by day 7 of culture. This was followed by the deposition of collagens, elastin-binding proteins and matrix regulators up to day 14 of culture. In contrast to 2D SMC controls, accumulation of versican occurred in parallel to an increase in versikine, a cleavage product mediated by proteases of the A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS) family. Next, we tested the response of EVTs to stimulation with transforming growth factor beta-1 (TGFß-1). EVTs contracted in response to TGFß-1 stimulation with altered ECM composition. In contrast, treatment with the pharmacological activin-like kinase inhibitor (ALKi) SB 431542 suppressed ECM secretion. As a disease stimulus, we performed calcification assays. The ECM acts as a nidus for calcium phosphate deposition in the arterial wall. We compared the onset and extent of calcification in EVTs and 2D SMCs cultured under high calcium and phosphate conditions for 7 days. Calcified EVTs displayed increased tissue stiffness by up to 30 % compared to non-calcified controls. Unlike the rapid calcification of SMCs in 2D cultures, EVTs sustained expression of the calcification inhibitor matrix Gla protein and allowed for better discrimination of the calcification propensity between independent biological replicates. In summary, EVTs are an intuitive and versatile model to investigate ECM synthesis and turnover by SMCs in a 3D environment. Unlike conventional 2D cultures, EVTs provide a more relevant pathophysiological model for retention of the nascent ECM produced by SMCs.

14.
Stem Cell Reports ; 17(2): 307-320, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35063125

RESUMEN

Neurological complications are common in COVID-19. Although SARS-CoV-2 has been detected in patients' brain tissues, its entry routes and resulting consequences are not well understood. Here, we show a pronounced upregulation of interferon signaling pathways of the neurovascular unit in fatal COVID-19. By investigating the susceptibility of human induced pluripotent stem cell (hiPSC)-derived brain capillary endothelial-like cells (BCECs) to SARS-CoV-2 infection, we found that BCECs were infected and recapitulated transcriptional changes detected in vivo. While BCECs were not compromised in their paracellular tightness, we found SARS-CoV-2 in the basolateral compartment in transwell assays after apical infection, suggesting active replication and transcellular transport of virus across the blood-brain barrier (BBB) in vitro. Moreover, entry of SARS-CoV-2 into BCECs could be reduced by anti-spike-, anti-angiotensin-converting enzyme 2 (ACE2)-, and anti-neuropilin-1 (NRP1)-specific antibodies or the transmembrane protease serine subtype 2 (TMPRSS2) inhibitor nafamostat. Together, our data provide strong support for SARS-CoV-2 brain entry across the BBB resulting in increased interferon signaling.


Asunto(s)
Barrera Hematoencefálica/virología , Sistema Nervioso Central/virología , SARS-CoV-2/fisiología , Internalización del Virus , Anticuerpos/farmacología , Benzamidinas/farmacología , COVID-19/patología , COVID-19/virología , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Endoteliales/virología , Guanidinas/farmacología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Modelos Biológicos , ARN Viral/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Internalización del Virus/efectos de los fármacos
15.
EBioMedicine ; 83: 104193, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35930888

RESUMEN

BACKGROUND: Autopsy studies have provided valuable insights into the pathophysiology of COVID-19. Controversies remain about whether the clinical presentation is due to direct organ damage by SARS-CoV-2 or secondary effects, such as overshooting immune response. SARS-CoV-2 detection in tissues by RT-qPCR and immunohistochemistry (IHC) or electron microscopy (EM) can help answer these questions, but a comprehensive evaluation of these applications is missing. METHODS: We assessed publications using IHC and EM for SARS-CoV-2 detection in autopsy tissues. We systematically evaluated commercially available antibodies against the SARS-CoV-2 proteins in cultured cell lines and COVID-19 autopsy tissues. In a multicentre study, we evaluated specificity, reproducibility, and inter-observer variability of SARS-CoV-2 IHC. We correlated RT-qPCR viral tissue loads with semiquantitative IHC scoring. We used qualitative and quantitative EM analyses to refine criteria for ultrastructural identification of SARS-CoV-2. FINDINGS: Publications show high variability in detection and interpretation of SARS-CoV-2 abundance in autopsy tissues by IHC or EM. We show that IHC using antibodies against SARS-CoV-2 nucleocapsid yields the highest sensitivity and specificity. We found a positive correlation between presence of viral proteins by IHC and RT-qPCR-determined SARS-CoV-2 viral RNA load (N= 35; r=-0.83, p-value <0.0001). For EM, we refined criteria for virus identification and provide recommendations for optimized sampling and analysis. 135 of 144 publications misinterpret cellular structures as virus using EM or show only insufficient data. We provide publicly accessible digitized EM sections as a reference and for training purposes. INTERPRETATION: Since detection of SARS-CoV-2 in human autopsy tissues by IHC and EM is difficult and frequently incorrect, we propose criteria for a re-evaluation of available data and guidance for further investigations of direct organ effects by SARS-CoV-2. FUNDING: German Federal Ministry of Health, German Federal Ministry of Education and Research, Berlin University Alliance, German Research Foundation, German Center for Infectious Research.


Asunto(s)
COVID-19 , Autopsia , Humanos , ARN Viral/análisis , Reproducibilidad de los Resultados , SARS-CoV-2 , Proteínas Virales
16.
Antioxidants (Basel) ; 9(11)2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33153029

RESUMEN

Nowadays, the beneficial role of a healthy lifestyle, particularly emphasizing the quality of foods and cancer management, is accepted worldwide. Polyphenols and oleic acid play a key role in this context, but are still scarcely used as anti-cancer agents due to their bio-accessibility limits. Therefore, we aimed to synthesize a set of new oleoyl-hybrids of quercetin, morin, pinocembrin, and catechin to overcome the low bioavailability of polyphenols, throughout a bio-catalytic approach using pancreatic porcine lipase as a catalyst. The in vitro assays, using a wide panel of human cancer cell lines showed, mainly for two novel regioisomer oleoyl-hybrids of quercetin, a remarkable increase in apoptotic cell populations. We suggested that the DNA damage shown as ɣH2AX signals might be the major cause of apoptotic cell death. Finally, we demonstrated convincing data about two novel polyphenol-based hybrids displaying a highly selective anti-cancer cytotoxicity and being superior compared to their reference/parental compounds.

17.
JCI Insight ; 4(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31550241

RESUMEN

Filoviruses of the genus Ebolavirus include 6 species with marked differences in their ability to cause disease in humans. From the highly virulent Ebola virus to the seemingly nonpathogenic Reston virus, case fatality rates can range between 0% and 90%. In order to understand the molecular basis of these differences, it is imperative to establish disease models that recapitulate human disease as faithfully as possible. Nonhuman primates (NHPs) are the gold-standard models for filovirus pathogenesis, but comparative studies are skewed by the fact that Reston virus infection can be lethal for NHPs. Here we used HLA-A2-transgenic, NOD-scid-IL-2γ receptor-knockout (NSG-A2) mice reconstituted with human hematopoiesis to compare Ebola virus and Reston virus pathogenesis in a human-like environment. While markedly less pathogenic than Ebola virus, Reston virus killed 20% of infected mice, a finding that was linked to exacerbated inflammation and viral replication in the liver. In addition, the case fatality ratios of different Ebolavirus species in humans were recapitulated in the humanized mice. Our findings point to humanized mice as a putative model to test the pathogenicity of newly discovered filoviruses, and suggest that further investigations on Reston virus pathogenesis in humans are warranted.


Asunto(s)
Fiebre Hemorrágica Ebola/patología , Animales , Modelos Animales de Enfermedad , Ebolavirus/patogenicidad , Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/virología , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Membrana Mucosa/virología , Carga Viral , Replicación Viral
18.
Acta Neuropathol Commun ; 7(1): 83, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31118110

RESUMEN

Astrogliosis and activation of microglia are hallmarks of prion diseases in humans and animals. Both were viewed to be rather independent events in disease pathophysiology, with proinflammatory microglia considered to be the potential neurotoxic species at late disease stages. Recent investigations have provided substantial evidence that a proinflammatory microglial cytokine cocktail containing TNF-α, IL-1α and C1qa reprograms a subset of astrocytes to change their expression profile and phenotype, thus becoming neurotoxic (designated as A1-astrocytes). Knockout or antibody blockage of the three cytokines abolish formation of A1-astrocytes, therefore, this pathway is of high therapeutic interest in neurodegenerative diseases. Since astrocyte polarization profiles have never been investigated in prion diseases, we performed several analyses and could show that C3+-PrPSc-reactive-astrocytes, which may represent a subtype of A1-astrocytes, are highly abundant in prion disease mouse models and human prion diseases. To investigate their impact on prion disease pathophysiology and to evaluate their potential therapeutic targeting, we infected TNF-α, IL-1α, and C1qa Triple-KO mice (TKO-mice), which do not transit astrocytes into A1, with prions. Although formation of C3+-astrocytes was significantly reduced in prion infected Triple-KO-mice, this did not affect the amount of PrPSc deposition or titers of infectious prions. Detailed characterization of the astrocyte activation signature in thalamus tissue showed that astrocytes in prion diseases are highly activated, showing a mixed phenotype that is distinct from other neurodegenerative diseases and were therefore termed C3+-PrPSc-reactive-astrocytes. Unexpectedly, Triple-KO led to a significant acceleration of prion disease course. While pan-astrocyte and -microglia marker upregulation was unchanged compared to WT-brains, microglial homeostatic markers were lost early in disease in TKO-mice, pointing towards important functions of different glia cell types in prion diseases.


Asunto(s)
Astrocitos/patología , Complemento C3/metabolismo , Microglía/metabolismo , Microglía/patología , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Anciano , Animales , Astrocitos/metabolismo , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patología , Citocinas/genética , Citocinas/metabolismo , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Proteínas PrPSc/metabolismo
19.
Brain Pathol ; 27(5): 590-602, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27558169

RESUMEN

Prion diseases are fatal transmissible diseases, where conversion of the endogenous prion protein (PrPC ) into a misfolded isoform (PrPSc ) leads to neurodegeneration. Microglia, the immune cells of the brain, are activated in neurodegenerative disorders including prion diseases; however, their impact on prion disease pathophysiology is unclear with both beneficial PrPSc -clearing and detrimental potentially neurotoxic effects. Moreover, monocytes entering the brain from the periphery during disease course might add to disease pathophysiology. Here, the degree of microglia activation in the brain of prion infected mice with and without an additional intraperitoneal retrovirus infection was studied. Peripheral murine retrovirus infection leads to activation of parenchymal microglia without recruitment of monocytes. This activation correlated with transient clearance or delay in accumulation of infectious prions specifically from the brain at early time points in the diseases course. Microglia expression profiling showed upregulation of genes involved in protein degradation coinciding with prion clearance. This enforces a concept where microglia act beneficial in prion disease if adequately activated. Once microglia activation has ceased, prion disease reemerges leading to disease kinetics undistinguishable from the situation in prion-only infected mice. This might be caused by the loss of microglial homeostatic function at clinical prion disease.


Asunto(s)
Encéfalo/inmunología , Microglía/inmunología , Enfermedades por Prión/inmunología , Priones/inmunología , Infecciones por Retroviridae/inmunología , Animales , Periodo de Incubación de Enfermedades Infecciosas , Ratones , Microglía/metabolismo , Monocitos/inmunología , Enfermedades por Prión/complicaciones , Proteolisis , Infecciones por Retroviridae/complicaciones
20.
Eur J Pharmacol ; 497(2): 139-46, 2004 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-15306198

RESUMEN

Ionotropic gamma-aminobutyric acid (GABA) receptors form a large family of molecular isoforms with distinct properties. We have characterized a distinct new type of GABA receptors in CA1 pyramidal cells in rat hippocampal slices. Somatic application of GABA induced currents which were partially suppressed by (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA), a specific antagonist of GABA(C) receptors. This sensitivity was enhanced when we evoked the currents by the GABA(C) receptor agonist cis-4-aminocrotonic acid (CACA). However, both GABA- and CACA-evoked currents were sensitive towards bicuculline and thus lack the defining feature of GABA(C) receptors, which are insensitive towards this antagonist. Spontaneous miniature post-synaptic currents (mIPSCs) revealed a similar pharmacological behaviour. We conclude that juvenile CA1 pyramidal cells express a fraction of ionotropic GABA receptors with mixed pharmacological properties of both, GABA(A) and GABA(C) receptors.


Asunto(s)
Receptores de GABA-A/fisiología , Receptores de GABA/fisiología , Animales , Bicuculina/farmacología , Relación Dosis-Respuesta a Droga , Agonistas de Receptores de GABA-A , Antagonistas de Receptores de GABA-A , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Ratas , Ratas Wistar , Ácido gamma-Aminobutírico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA