RESUMEN
mRNA vaccines against the Spike glycoprotein of severe acute respiratory syndrome type 2 coronavirus (SARS-CoV-2) elicit strong T-cell responses. However, it is unknown whether T cell clones induced by the first vaccination or newly generated T cell clones dominate responses to the secondary vaccination. Here, we analyzed the kinetic profile of Spike-reactive T-cell clones before the first dose, one week after the first and second dose, and four weeks after the second dose of the BNT162b mRNA vaccine. Interestingly, a new set of Spike-reactive CD8+ T cell clones exhibited the greatest expansion following secondary vaccination and replaced the clones that had responded to the primary vaccination. Single-cell mRNA/protein/TCR analysis revealed that the first-responder clones exhibited a terminally differentiated phenotype, whereas second-responder clones exhibited an actively proliferating phenotype. These results show that Spike-reactive T cell responses induced by repetitive mRNA vaccination are augmented and maintained by replacement with newly-generated clones with proliferative potential. One Sentence SummaryTCR repertoire analysis following mRNA vaccination against SARS-CoV-2 revealed the replacement of Spike-reactive T cell clones.
RESUMEN
The progression of the SARS-CoV-2 pandemic in Africa has so far been heterogeneous and the full impact is not yet well understood. Here, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations, predominantly from Europe, which diminished following the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1 and C.1.1. Although distorted by low sampling numbers and blind-spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a breeding ground for new variants.
RESUMEN
Investment in Africa over the past year with regards to SARS-CoV-2 genotyping has led to a massive increase in the number of sequences, exceeding 100,000 genomes generated to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence within their own borders, coupled with a decrease in sequencing turnaround time. Findings from this genomic surveillance underscores the heterogeneous nature of the pandemic but we observe repeated dissemination of SARS-CoV-2 variants within the continent. Sustained investment for genomic surveillance in Africa is needed as the virus continues to evolve, particularly in the low vaccination landscape. These investments are very crucial for preparedness and response for future pathogen outbreaks. One-Sentence SummaryExpanding Africa SARS-CoV-2 sequencing capacity in a fast evolving pandemic.