Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 315(6): H1851-H1860, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30216119

RESUMEN

Chemerin and its G protein-coupled receptor [chemerin receptor 23 (ChemR23)] have been associated with endothelial dysfunction, inflammation, and insulin resistance. However, the role of chemerin on insulin signaling in the vasculature is still unknown. We aimed to determine whether chemerin reduces vascular insulin signaling and whether there is interplay between chemerin/ChemR23, insulin resistance, and vascular complications associated with type 2 diabetes (T2D). Molecular and vascular mechanisms were probed in mesenteric arteries and cultured vascular smooth muscle cells (VSMCs) from C57BL/6J, nondiabetic lean db/m, and diabetic obese db/db mice as well as in human microvascular endothelial cells (HMECs). Chemerin decreased insulin-induced vasodilatation in C57BL/6J mice, an effect prevented by CCX832 (ChemR23 antagonist) treatment. In VSMCs, chemerin, via oxidative stress- and ChemR23-dependent mechanisms, decreased insulin-induced Akt phosphorylation, glucose transporter 4 translocation to the membrane, and glucose uptake. In HMECs, chemerin decreased insulin-activated nitric oxide signaling. AMP-activated protein kinase phosphorylation was reduced by chemerin in both HMECs and VSMCs. CCX832 treatment of db/db mice decreased body weight, insulin, and glucose levels as well as vascular oxidative stress. CCX832 also partially restored vascular insulin responses in db/db and high-fat diet-fed mice. Our novel in vivo findings highlight chemerin/ChemR23 as a promising therapeutic target to limit insulin resistance and vascular complications associated with obesity-related diabetes. NEW & NOTEWORTHY Our novel findings show that the chemerin/chemerin receptor 23 axis plays a critical role in diabetes-associated vascular oxidative stress and altered insulin signaling. Targeting chemerin/chemerin receptor 23 may be an attractive strategy to improve insulin signaling and vascular function in obesity-associated diabetes.


Asunto(s)
Diabetes Mellitus/metabolismo , Arterias Mesentéricas/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Transducción de Señal , Vasodilatación , Animales , Antioxidantes/farmacología , Células Cultivadas , Diabetes Mellitus/fisiopatología , Endotelio Vascular/metabolismo , Humanos , Insulina/metabolismo , Masculino , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/fisiopatología , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Óxido Nítrico/metabolismo , Compuestos Orgánicos/farmacología , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Vasodilatadores/farmacología
2.
Adv Exp Med Biol ; 1065: 511-528, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30051404

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive disease characterised by increased pulmonary vascular resistance and pulmonary artery remodelling as result of increased vascular tone and vascular cell proliferation, respectively. Eventually, this leads to right heart failure. Heritable PAH is caused by a mutation in the bone morphogenetic protein receptor-II (BMPR-II). Female susceptibility to PAH has been known for some time, and most recent figures show a female-to-male ratio of 4:1. Variations in the female sex hormone estrogen and estrogen metabolism modify FPAH risk, and penetrance of the disease in BMPR-II mutation carriers is increased in females. Several lines of evidence point towards estrogen being pathogenic in the pulmonary circulation, and thus increasing the risk of females developing PAH. Recent studies have also suggested that estrogen metabolism may be crucial in the development and progression of PAH with studies indicating that downstream metabolites such as 16α-hydroxyestrone are upregulated in several forms of experimental pulmonary hypertension (PH) and can cause pulmonary artery smooth muscle cell proliferation and subsequent vascular remodelling. Conversely, other estrogen metabolites such as 2-methoxyestradiol have been shown to be protective in the context of PAH. Estrogen may also upregulate the signalling pathways of other key mediators of PAH such as serotonin.


Asunto(s)
Presión Arterial , Hipertensión Pulmonar/fisiopatología , Arteria Pulmonar/fisiopatología , Remodelación Vascular , Factores de Edad , Animales , Antihipertensivos/uso terapéutico , Presión Arterial/efectos de los fármacos , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Hormonas Esteroides Gonadales/metabolismo , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/epidemiología , Hipertensión Pulmonar/metabolismo , Masculino , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Receptores de Estrógenos/metabolismo , Factores de Riesgo , Caracteres Sexuales , Factores Sexuales , Transducción de Señal , Resultado del Tratamiento , Remodelación Vascular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA