Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nature ; 625(7993): 189-194, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38057663

RESUMEN

In vitro-transcribed (IVT) mRNAs are modalities that can combat human disease, exemplified by their use as vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). IVT mRNAs are transfected into target cells, where they are translated into recombinant protein, and the biological activity or immunogenicity of the encoded protein exerts an intended therapeutic effect1,2. Modified ribonucleotides are commonly incorporated into therapeutic IVT mRNAs to decrease their innate immunogenicity3-5, but their effects on mRNA translation fidelity have not been fully explored. Here we demonstrate that incorporation of N1-methylpseudouridine into mRNA results in +1 ribosomal frameshifting in vitro and that cellular immunity in mice and humans to +1 frameshifted products from BNT162b2 vaccine mRNA translation occurs after vaccination. The +1 ribosome frameshifting observed is probably a consequence of N1-methylpseudouridine-induced ribosome stalling during IVT mRNA translation, with frameshifting occurring at ribosome slippery sequences. However, we demonstrate that synonymous targeting of such slippery sequences provides an effective strategy to reduce the production of frameshifted products. Overall, these data increase our understanding of how modified ribonucleotides affect the fidelity of mRNA translation, and although there are no adverse outcomes reported from mistranslation of mRNA-based SARS-CoV-2 vaccines in humans, these data highlight potential off-target effects for future mRNA-based therapeutics and demonstrate the requirement for sequence optimization.


Asunto(s)
Sistema de Lectura Ribosómico , Seudouridina , ARN Mensajero , Animales , Humanos , Ratones , Vacuna BNT162/efectos adversos , Vacuna BNT162/genética , Vacuna BNT162/inmunología , Sistema de Lectura Ribosómico/genética , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Seudouridina/análogos & derivados , Seudouridina/metabolismo , Ribosomas/metabolismo , Biosíntesis de Proteínas
2.
Mol Cell ; 82(8): 1557-1572.e7, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35180429

RESUMEN

During the translation surveillance mechanism known as ribosome-associated quality control, the ASC-1 complex (ASCC) disassembles ribosomes stalled on the mRNA. Here, we show that there are two distinct classes of stalled ribosome. Ribosomes stalled by translation elongation inhibitors or methylated mRNA are short lived in human cells because they are split by the ASCC. In contrast, although ultraviolet light and 4-nitroquinoline 1-oxide induce ribosome stalling by damaging mRNA, and the ASCC is recruited to these stalled ribosomes, we found that they are refractory to the ASCC. Consequently, unresolved UV- and 4NQO-stalled ribosomes persist in human cells. We show that ribosome stalling activates cell-cycle arrest, partly through ZAK-p38MAPK signaling, and that this cell-cycle delay is prolonged when the ASCC cannot resolve stalled ribosomes. Thus, we propose that the sensitivity of stalled ribosomes to the ASCC influences the kinetics of stall resolution, which in turn controls the adaptive stress response.


Asunto(s)
Daño del ADN , Ribosomas , Humanos , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
3.
Mol Cell ; 81(15): 3041-3042, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34358456

RESUMEN

Einstein et al. (2021) uncover a novel role for the RNA-binding protein YTHDF2, one of the m6A reader proteins, in TNBC proliferation and survival. This study demonstrates the clinical potential of targeting a specific reader protein in the treatment of breast cancer.


Asunto(s)
Proteínas de Unión al ARN , Proteínas de Unión al ARN/genética
4.
Nat Methods ; 21(1): 60-71, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38036857

RESUMEN

Although the subcellular dynamics of RNA and proteins are key determinants of cell homeostasis, their characterization is still challenging. Here we present an integrative framework to simultaneously interrogate the dynamics of the transcriptome and proteome at subcellular resolution by combining two methods: localization of RNA (LoRNA) and a streamlined density-based localization of proteins by isotope tagging (dLOPIT) to map RNA and protein to organelles (nucleus, endoplasmic reticulum and mitochondria) and membraneless compartments (cytosol, nucleolus and cytosolic granules). Interrogating all RNA subcellular locations at once enables system-wide quantification of the proportional distribution of RNA. We obtain a cell-wide overview of localization dynamics for 31,839 transcripts and 5,314 proteins during the unfolded protein response, revealing that endoplasmic reticulum-localized transcripts are more efficiently recruited to cytosolic granules than cytosolic RNAs, and that the translation initiation factor eIF3d is key to sustaining cytoskeletal function. Overall, we provide the most comprehensive overview so far of RNA and protein subcellular localization dynamics.


Asunto(s)
Retículo Endoplásmico , ARN , ARN/genética , ARN/metabolismo , Fracciones Subcelulares/metabolismo , Retículo Endoplásmico/metabolismo , Proteoma/análisis
5.
EMBO J ; 39(22): e106711, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33034048

RESUMEN

The molecular events in response to severe hyperthermia are not fully understood, and research has focused mainly on the effects of cooling at temperatures between 28°C and 35°C. In a new study, Fischl et al have analysed human cardiomyocytes at lower temperatures (8°C, 18°C and 28°C) and identified a novel mechanism by which hypothermia synchronises the circadian clock: cooling induces nuclear accumulation of transcripts that encode negative regulators of the circadian clock, which are released into the cytoplasm upon rewarming allowing synthesis of specific clock proteins.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Proteínas CLOCK , Cromatina , Relojes Circadianos/genética , Ritmo Circadiano/genética , Humanos , ARN Mensajero
6.
Semin Cancer Biol ; 86(Pt 3): 151-165, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35487398

RESUMEN

In tumourigenesis, oncogenes or dysregulated tumour suppressor genes alter the canonical translation machinery leading to a reprogramming of the translatome that, in turn, promotes the translation of selected mRNAs encoding proteins involved in proliferation and metastasis. It is therefore unsurprising that abnormal expression levels and activities of eukaryotic initiation factors (eIFs), elongation factors (eEFs) or termination factors (eRFs) are associated with poor outcome for patients with a wide range of cancers. In this review we discuss how RNA binding proteins (RBPs) within the canonical translation factor machinery are dysregulated in cancers and how targeting such proteins is leading to new therapeutic avenues.


Asunto(s)
Neoplasias , Biosíntesis de Proteínas , Humanos , Eucariontes/genética , Eucariontes/metabolismo , Carcinogénesis/genética , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Neoplasias/genética , Neoplasias/patología , Transformación Celular Neoplásica/genética
7.
Biochem J ; 479(8): 901-920, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35380004

RESUMEN

Diagnostic testing continues to be an integral component of the strategy to contain the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) global pandemic, the causative agent of Coronavirus Disease 2019 (COVID-19). The SARS-CoV-2 genome encodes the 3C-like protease (3CLpro) which is essential for coronavirus replication. This study adapts an in vitro colorimetric gold nanoparticle (AuNP) based protease assay to specifically detect the activity of SARS-CoV-2 3CLpro as a purified recombinant protein and as a cellular protein exogenously expressed in HEK293T human cells. We also demonstrate that the specific sensitivity of the assay for SARS-CoV-2 3CLpro can be improved by use of an optimised peptide substrate and through hybrid dimerisation with inactive 3CLpro mutant monomers. These findings highlight the potential for further development of the AuNP protease assay to detect SARS-CoV-2 3CLpro activity as a novel, accessible and cost-effective diagnostic test for SARS-CoV-2 infection at the point-of-care. Importantly, this versatile assay could also be easily adapted to detect specific protease activity associated with other viruses or diseases conditions.


Asunto(s)
COVID-19 , Nanopartículas del Metal , Antivirales , COVID-19/diagnóstico , Colorimetría , Proteasas 3C de Coronavirus , Oro , Células HEK293 , Humanos , Péptido Hidrolasas , Inhibidores de Proteasas , SARS-CoV-2
8.
PLoS Biol ; 17(6): e3000297, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31199786

RESUMEN

Posttranscriptional modifications in transfer RNA (tRNA) are often critical for normal development because they adapt protein synthesis rates to a dynamically changing microenvironment. However, the precise cellular mechanisms linking the extrinsic stimulus to the intrinsic RNA modification pathways remain largely unclear. Here, we identified the cytosine-5 RNA methyltransferase NSUN2 as a sensor for external stress stimuli. Exposure to oxidative stress efficiently repressed NSUN2, causing a reduction of methylation at specific tRNA sites. Using metabolic profiling, we showed that loss of tRNA methylation captured cells in a distinct catabolic state. Mechanistically, loss of NSUN2 altered the biogenesis of tRNA-derived noncoding fragments (tRFs) in response to stress, leading to impaired regulation of protein synthesis. The intracellular accumulation of a specific subset of tRFs correlated with the dynamic repression of global protein synthesis. Finally, NSUN2-driven RNA methylation was functionally required to adapt cell cycle progression to the early stress response. In summary, we revealed that changes in tRNA methylation profiles were sufficient to specify cellular metabolic states and efficiently adapt protein synthesis rates to cell stress.


Asunto(s)
ADN-Citosina Metilasas/metabolismo , Metiltransferasas/metabolismo , Animales , Línea Celular , Citosina/metabolismo , Metilación de ADN/fisiología , ADN-Citosina Metilasas/fisiología , Humanos , Ratones , Estrés Oxidativo/fisiología , Biosíntesis de Proteínas/fisiología , ARN/metabolismo , ARN de Transferencia/metabolismo
9.
Nat Protoc ; 15(8): 2568-2588, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32651564

RESUMEN

RNA-protein interactions play a pivotal role in cell homeostasis and disease, but current approaches to study them require a considerable amount of starting material, favor the recovery of only a subset of RNA species or are complex and time-consuming. We recently developed orthogonal organic phase separation (OOPS): a quick, efficient and reproducible method to purify cross-linked RNA-protein adducts in an unbiased way. OOPS avoids molecular tagging or the capture of polyadenylated RNA. Instead, it is based on sampling the interface of a standard TRIzol extraction to enrich RNA-binding proteins (RBPs) and their cognate bound RNA. OOPS specificity is achieved by digesting the enriched interfaces with RNases or proteases to release the RBPs or protein-bound RNA, respectively. Here we present a step-by-step protocol to purify protein-RNA adducts, free protein and free RNA from the same sample. We further describe how OOPS can be applied in human cell lines, Arabidopsis thaliana, Schizosaccharomyces pombe and Escherichia coli and how it can be used to study RBP dynamics.


Asunto(s)
Fraccionamiento Químico/métodos , Proteoma/aislamiento & purificación , Proteínas de Unión al ARN/aislamiento & purificación , ARN/aislamiento & purificación , Transcriptoma , Línea Celular , Humanos , Proteoma/metabolismo , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Flujo de Trabajo
10.
Wiley Interdiscip Rev RNA ; 11(3): e1578, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31755249

RESUMEN

Following cell stress, a wide range of molecular pathways are initiated to orchestrate the stress response and enable adaptation to an environmental or intracellular perturbation. The post-transcriptional regulation strategies adopted during the stress response result in a substantial reorganization of gene expression, designed to prepare the cell for either acclimatization or programmed death, depending on the nature and intensity of the stress. Fundamental to the stress response is a rapid repression of global protein synthesis, commonly mediated by phosphorylation of translation initiation factor eIF2α. Recent structural and biochemical information have added unprecedented detail to our understanding of the molecular mechanisms underlying this regulation. During protein synthesis inhibition, the translation of stress-specific mRNAs is nonetheless enhanced, often through the interaction between RNA-binding proteins and specific RNA regulatory elements. Recent studies investigating the unfolded protein response (UPR) provide some important insights into how posttranscriptional events are spatially and temporally fine-tuned in order to elicit the most appropriate response and to coordinate the transition from an early, acute stage into the chronic state of adaptation. Importantly, cancer cells are known to hi-jack adaptive stress response pathways, particularly the UPR, to survive and proliferate in the unfavorable tumor environment. In this review, we consider the implications of recent research into stress-dependent post-transcriptional regulation and make the case for the exploration of the stress response as a strategy to identify novel targets in the development of cancer therapies. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution Translation > Translation Mechanisms > Translation Regulation.


Asunto(s)
Factor 2 Eucariótico de Iniciación/genética , Neoplasias/genética , Procesamiento Postranscripcional del ARN/genética , Animales , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Respuesta de Proteína Desplegada/genética
11.
Elife ; 92020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32432547

RESUMEN

Disruption of mitochondrial function selectively targets tumour cells that are dependent on oxidative phosphorylation. However, due to their high energy demands, cardiac cells are disproportionately targeted by mitochondrial toxins resulting in a loss of cardiac function. An analysis of the effects of mubritinib on cardiac cells showed that this drug did not inhibit HER2 as reported, but directly inhibits mitochondrial respiratory complex I, reducing cardiac-cell beat rate, with prolonged exposure resulting in cell death. We used a library of chemical variants of mubritinib and showed that modifying the 1H-1,2,3-triazole altered complex I inhibition, identifying the heterocyclic 1,3-nitrogen motif as the toxicophore. The same toxicophore is present in a second anti-cancer therapeutic carboxyamidotriazole (CAI) and we demonstrate that CAI also functions through complex I inhibition, mediated by the toxicophore. Complex I inhibition is directly linked to anti-cancer cell activity, with toxicophore modification ablating the desired effects of these compounds on cancer cell proliferation and apoptosis.


The pharmaceutical industry needs to make safe and effective drugs. At the same time this industry is under pressure to keep the costs of developing these drugs at an acceptable level. Drugs work by interacting with and typically blocking a specific target, such as a protein in a particular type of cell. Sometimes, however, drugs also bind other unexpected targets. These "off-target" effects can be the reason for a drug's toxicity, and it is important ­ both for the benefit of patients and the money that can be saved when developing drugs ­ to identify how drugs cause toxic side effects. The earlier researchers detect off-target effects, the better. Recent data has suggested that an anti-cancer drug called mubritinib has off-target effects on the compartments within cells that provide the cell with most of their energy, the mitochondria. This drug's intended target is a protein called HER2, which is found in large amounts on the surfaces of some breast cancer cells. Yet if mubritinib has this off-target effect on mitochondria, it may be harmful to other cells including heart cells because the heart is an organ that needs a large amount of energy from its mitochondria. Stephenson et al. have now performed experiments to show that mubritinib does not actually interact with HER2 at all, but only targets mitochondria. The effect of mubritinib as an anti-cancer drug is therefore only due to its activity against mitochondria. Digging deeper into the chemistry revealed the small parts of its chemical structure that was responsible for mubritinib's toxicity against heart cells, the so-called toxic substructure. Another anti-cancer drug called carboxyamidotriazole also has the same toxic substructure. Carboxyamidotriazole is supposed to stop cells from taking up calcium ions, but a final set of experiments demonstrated that this drug also only acts by inhibiting mitochondria. Often there is not enough information about many drugs' substructures, meaning off-target effects and toxicities cannot be predicted. The pharmaceutical industry will now be able to benefit from this new knowledge about the toxic substructures within some drugs. This research may also help patients who take mubritinib or carboxyamidotriazole, because their doctors will have to check for side effects on the heart more carefully.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Oxazoles/farmacología , Triazoles/farmacología , Adenosina Trifosfato/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Muerte Celular , Línea Celular , Proliferación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Mitocondrias/metabolismo , Miocitos Cardíacos , Oxazoles/química , Oxazoles/toxicidad , Fosforilación Oxidativa , Unión Proteica , Receptor ErbB-2 , Triazoles/química , Triazoles/toxicidad
12.
Sci Signal ; 12(612)2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31848319

RESUMEN

After exposure to cytotoxic chemotherapeutics, tumor cells alter their translatome to promote cell survival programs through the regulation of eukaryotic initiation factor 4F (eIF4F) and ternary complex. Compounds that block mTOR signaling and eIF4F complex formation, such as rapamycin and its analogs, have been used in combination therapies to enhance cell killing, although their success has been limited. This is likely because the cross-talk between signaling pathways that coordinate eIF4F regulation with ternary complex formation after treatment with genotoxic therapeutics has not been fully explored. Here, we described a regulatory pathway downstream of p53 in which inhibition of mTOR after DNA damage promoted cross-talk signaling and led to eIF2α phosphorylation. We showed that eIF2α phosphorylation did not inhibit protein synthesis but was instead required for cell migration and that pharmacologically blocking this pathway with either ISRIB or trazodone limited cell migration. These results support the notion that therapeutic targeting of eIF2α signaling could restrict tumor cell metastasis and invasion and could be beneficial to subsets of patients with cancer.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Doxorrubicina/farmacología , Factor 2 Eucariótico de Iniciación/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Línea Celular Tumoral , Humanos , Fosforilación/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo
14.
Nat Biotechnol ; 37(2): 169-178, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30607034

RESUMEN

Existing high-throughput methods to identify RNA-binding proteins (RBPs) are based on capture of polyadenylated RNAs and cannot recover proteins that interact with nonadenylated RNAs, including long noncoding RNA, pre-mRNAs and bacterial RNAs. We present orthogonal organic phase separation (OOPS), which does not require molecular tagging or capture of polyadenylated RNA, and apply it to recover cross-linked protein-RNA and free protein, or protein-bound RNA and free RNA, in an unbiased way. We validated OOPS in HEK293, U2OS and MCF10A human cell lines, and show that 96% of proteins recovered were bound to RNA. We show that all long RNAs can be cross-linked to proteins, and recovered 1,838 RBPs, including 926 putative novel RBPs. OOPS is approximately 100-fold more efficient than existing methods and can enable analyses of dynamic RNA-protein interactions. We also characterize dynamic changes in RNA-protein interactions in mammalian cells following nocodazole arrest, and present a bacterial RNA-interactome for Escherichia coli. OOPS is compatible with downstream proteomics and RNA sequencing, and can be applied in any organism.


Asunto(s)
ARN Mensajero/química , Proteínas de Unión al ARN/aislamiento & purificación , ARN/aislamiento & purificación , Línea Celular Tumoral , Análisis por Conglomerados , Reactivos de Enlaces Cruzados/química , Escherichia coli , Glicoproteínas/química , Células HEK293 , Humanos , Nocodazol/química , Unión Proteica , Proteoma , Proteómica , ARN/química , ARN Bacteriano/química , ARN Largo no Codificante/química , Proteínas de Unión al ARN/química , Análisis de Secuencia de ARN , Timidina/química , Transcriptoma
15.
Curr Opin Genet Dev ; 48: 30-35, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29100210

RESUMEN

The processes by which the canonical protein synthesis machinery is modified by environmental stresses to allow healthy cells to respond to external conditions to maintain homeostasis, are frequently hijacked by tumour cells to enhance their survival. Two major stress response pathways that play a major role in this regard are the unfolded protein response (UPR) and the DNA damage response (DDR). Recent data have shown that key proteins which coordinate post-transcriptional control, and which are regulated by signalling through the UPR and DDR, are upregulated in cancers and that targeting these proteins/pathways will provide new therapeutic avenues for cancer treatments.


Asunto(s)
Reparación del ADN , Neoplasias/fisiopatología , Biosíntesis de Proteínas , Respuesta de Proteína Desplegada , Animales , Regulación de la Expresión Génica , Humanos , Neoplasias/terapia
16.
Wiley Interdiscip Rev RNA ; 9(3): e1465, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29341429

RESUMEN

The canonical molecular machinery required for global mRNA translation and its control has been well defined, with distinct sets of proteins involved in the processes of translation initiation, elongation and termination. Additionally, noncanonical, trans-acting regulatory RNA-binding proteins (RBPs) are necessary to provide mRNA-specific translation, and these interact with 5' and 3' untranslated regions and coding regions of mRNA to regulate ribosome recruitment and transit. Recently it has also been demonstrated that trans-acting ribosomal proteins direct the translation of specific mRNAs. Importantly, it has been shown that subsets of RBPs often work in concert, forming distinct regulatory complexes upon different cellular perturbation, creating an RBP combinatorial code, which through the translation of specific subsets of mRNAs, dictate cell fate. With the development of new methodologies, a plethora of novel RNA binding proteins have recently been identified, although the function of many of these proteins within mRNA translation is unknown. In this review we will discuss these methodologies and their shortcomings when applied to the study of translation, which need to be addressed to enable a better understanding of trans-acting translational regulatory proteins. Moreover, we discuss the protein domains that are responsible for RNA binding as well as the RNA motifs to which they bind, and the role of trans-acting ribosomal proteins in directing the translation of specific mRNAs. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Translation > Translation Regulation Translation > Translation Mechanisms.


Asunto(s)
Proteínas de Unión al ARN/metabolismo , Animales , Humanos , Biosíntesis de Proteínas , Dominios Proteicos , Proteínas de Unión al ARN/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA